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Third order Resonances
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The Poincar´e maps for betatron motion perturbed by a single sextupole magnet 
at a tune below (left) and above (right) a third order resonance. The integrated 
sextupole strength is S=0.5m−2 with lattice parameters βx=20m, and αx=0. 
Arrows indicate directions of motion near a separatrix.
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The leading order resonances driven by sextupoles





The third order resonance at 3νx = ℓ
The Hamiltonian near a third-order resonance at 3νx = ℓ is

where G3,0,ℓ is the resonance strength, Jx, ϕx are conjugate phase-space coordinates, θ is 
the orbiting angle serving time coordinate, νx is the horizontal betatron tune.

Transform the phase space coordinate to a resonance rotating frame with a 
generating function to obtain new phase-space coordinates:

The new Hamiltonian and Hamilton’s equations of motion are

where δ=νx−ℓ/3 is the resonance proximity parameter.



The fixed points (FPs) of the Hamiltonian are determined by dJ/dθ=0 and 
dϕ/dθ=0. Without nonlinear detuning, there is no stable fixed point for the third 
order resonance. The action and Hamiltonian value at the UFP, and small 
amplitude motion near the UFP are

The motion near the fixed point is hyperbolic. Because of nonlinear term in the 
Equation above, the amplitude will grow faster than an exponential. The 
direction of particle motion near a separatrix is marked with arrows in the 
Figure.



Without a nonlinear detuning term, the third-
order resonance appears at all values of δ. The 
stable motion is bounded by the curve of 
J1/2

UFP. For a given aperture Jmax the width of 
the third-order betatron resonance is

Separatrix
The separatrix is the Hamiltonian torus that passes through the UFP, i.e. H = EUFP. 
The separatrix orbit, for δ/G3,0,ℓ > 0,



Nonlinearity in accelerators has been employed to provide 
• Beam manipulations such as slow extraction, beam dilution
• Landau damping for collective beam instabilities
• Overcoming spin depolarization resonances  



Nonlinear detuning parameters:
Accelerator magnets may have many nonlinear magnetic multipoles. Some of 
them can introduce nonlinear perturbation to betatron motion, e.g.

With Floquet transformation, the Hamiltonian becomes

The coefficients α’s are called nonlinear detuning parameters 



Betatron detuning:

+…..

chromaticity

octupole

sextupole



The bifurcation of third-order resonance 
islands occurs at 16αδ ≤ 9G3,0,ℓ

2. The 
Figure shows αJUFP

1/2/|G3,0,ℓ| vs αδ/G3,0,ℓ
2

for the bifurcation of third-order resonance. 

Effect of nonlinear detuning
Nonlinear magnetic multipoles also generate nonlinear betatron detuning, i.e. the 
betatron tunes depend on the betatron actions. Including the effect of nonlinear 
betatron detuning, the Hamiltonian near a third-order resonance is

With nonlinear detuning, stable fixed points appear. The fixed points of the 
Hamiltonian for á > 0 and G > 0 are



Sextupole 3rd resonance





Nonlinear beam dynamics on 
resonance crossing 



It appears that sextupoles will not produce resonances higher than the third order 
ones listed esarlier. However, strong sextupoles are usually needed to correct 
chromatic aberration. Concatenation of strong sextupoles can generate high-order 
resonances such as 4νx, 2νx±2νz, 4νz, 5νx, . . . , etc. The Figure below shows the 
Poincar´e maps of the single sextupole model at νx=3.7496 and νx=3.795, i.e. a 
single sextupole can also drive the fourth and higher order resonances. One can use 
a canonical perturbation method to explain the tracking result. Since resonance 
islands only exist with νx<3.75 or νx<3.8, the effective nonlinear detuning must be 
positive. The largest phase space map marks the boundary of stable motion.



Near a weak fourth-order 1D resonance, the Hamiltonian 
can normally be approximated by

The solid lines are the Hamiltonian tori with parameters 
αxx=650(πm)−1, G4,0,15=80(πm)−1, and νx−3.75=−7.8×10−4.



The betatron phase space can be
visualized as a space filled by
invariant tori, even near a nonlinear
resonance.
For a difference resonance, the
invariant is bounded!

νx–2 νz=ℓ



• The studies of sum resonances are not as successful. We have constructed a tune 
jump quadrupole to move betatron tunes onto a sum resonance νx+2νz and 
observed betatron amplitude growth obeying the invariant at the resonance. 

• Take 2νx+2νz resonance as an example, we expect to see particle loss through tori 
as shown in the graph below. This means that the betatron phase space is filled 
with resonance lines, where particles that locked onto a resonance will leak out to 
a large amplitude betatron motion through these resonance tori. The invariant tori 
are unbounded for sum resonances!

• Experiments has yet to be carried out!



Linear  resonances

Resonances up to 4th order

Up to 8th order resonances



Space charge resonances in high power accelerators
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The next effect, which is important, is stochastic trajectories, which appear in the motion 
of the particles (turn by turn) – see Fig. 11. One of a simple criteria which was developed 
is called Chirikov criteria, stating that that stochastic layer in Poincare diagrams (the 
particles motion) appears when two non-linear resonances overlap. Careful look into fig 
11 reveals that in addition to main resonance (4th and 3rd order) there are additional high 
order resonance (islands) formed – some of them clearly identifiable, some destroyed and 
turned into a stochastic layer. Usually stochastic layer cause loss of particles at large 
amplitudes. It is also typical (with exception of beam-beam effects, when the nonlinearity 
of the beam is of the order of the beam size) that motion at large amplitudes becomes 
unstable and chaotic. Area of the dynamically (not physically) stable motion of particles 
is called “dynamic aperture” or DA. 

     
   (a)     (b) 
Fig.11. Two tracking results: (a) with 4th order and (b) 3rd order resonance strictures.  
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Methods of increasing dynamic aperture are multiple and there is no one specific trick (or 
set of tricks), which does the magic – to a degree it remains to be an art form. Still, 
reducing strength of the resonant terms and low order geometrical distortion are 
necessary steps in creating modern accelerator with large dynamic aperture.  
 

 
Fig.12. Momentum dependent dynamic aperture for 4th-roder geometrical achromat (with 
zero chromaticity) Energy offsets: 0% - blue solid, 0.5%  - dashed blue, 1% - red solid, 
1.5% - dashed red, 1.5% - green. The dynamic aperture shown in a  specific place in the 
storage ring – particles launched outside the dynamic aperture do not survive and are loss 
at large amplitudes. 
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 Fig. 13. The frequency map for an ideal lattice for ALS light source (LBNL) in tune 
space (a) and real space (b). The color scheme is logarithmic, with blue indicating 
completely stable motion and red/dark read chaotic behavior close to complete loss of 
stability (white).  

Computers playing important role in both generating and analyzing non-linear maps. 
There is a very strong link to cosmology, which faces problems similar to that in modern 
accelerators - a long-time tracking of solar and star systems. One the modern tools in DA 
studies is borrowed from cosmology and called frequency map analysis (FMA) – the idea 
is to characterize how chaotic is the motion of particles with given amplitude of 
oscillations.  
If we perform a discrete Fourier transform on the tracking data (starting with an initial x-
y) position and obtain the betatron tunes (for N turn tracking, the precision is 1/N). If we 
repeat this process with different initial positions, we can obtain a tune map. To indicate 
the variation of the tunes over different turns of the ring, we can define a diffusion or 
regularity, which describes the difference between the tunes over various periods (usually 
the first half of the tracking (Qx1, Qy1) and the second half (Qx2, Qy2)). In other words, 
we define a diffusion constant D: 

D = log10 (Qy2 −Qy1)
2 + (Qx2 −Qx1)

2 . 
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Nonlinear effects in particle’s motion in accelerators (or in Hamiltonian mechanics in general) 
some time can be treated in perturbative manner – the way we learned in this course. But while 
giving analytical expressions for the results, it is limited by – usually – second order perturbation 
and not necessarily converging when brought to higher orders. Needless to say it becoming very 
cumbersome even in the second order… Resonant approach, while giving a nice intuitive 
understanding of the resonances, is limited to (a) a single resonance, (b) ignores non-resonant 
terms which definitely distort or even – at large amplitude - ruin the simple picture we looked at. 
Fortunately there is a very systematic and rigorous method for non-linear dynamics developed by 
Prof. Alex J. Dragt (UM) and his follower (many of them his former students). This fundamental 
work started in late 1970s and brought to a well-formulated theory in early 1980s. Naturally, the 
work did not stopped there and there is a lot of new addition to this method (frequently oriented 
to computing and analyzing non-linear maps), which are extension of the method. Method itself 
is uses a number of mathematical concepts and power of Lie algebraic tools. It exploits 
symmetries of Hamiltonian systems and is – at present - the most comprehensive approach to the 
non-linear beam dynamics. We cannot follow each and every – some of them rather complex – 
derivations. Hence, we will deviate from tradition in our course to prove almost everything and 
will instead have a short introduction to this method. We may offer a dedicated course 
sometimes in near future. 

Nonlinear dynamics
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Let’s start from something we are well aware of: group (G) of 2n x 2n symplectic matrices 
(formally called Sp(2n)) satisfying simplicity conditions: 

MTSM = S ;     (26-1)  
which satisfy group properties G : 

1. It contains identity matrix I: since obvious ITSI = S  

2. If M∈G→M−1 ∈G (contains inverse matrix) :  

MTSM = S;®M-1 = -SMTS;®MTSM = S;
M-1TSM-1 = -SMSMTS = S.

 

3. M,N∈G→M ⋅N∈G : since MN( )T S ⋅MN = NT MTSM( )N = NTSN = S  

4. M NL( ) = MN( )L

 

, which is correct for any square matrices of the same order. 

Thus, we proved that that symplectic matrices form symplectic group. Now we will focus on 
more formal definition of something we are familiar with, which is called lie algebraic 
properties. For any matrix A we defined exponential matrix function (heavily use in Lie 
algebras): 

exp A( ) = An

n!n=0

∞

∑ ;     (26-2)  

which converge for any A . A bit trickier is inverse, i.e. natural logarithm function: 

ln A( ) = ln I− I−A( )( ) = −
I−A( )n
nn=1

∞

∑ . ;    (26-3)  

uniqueness and convergence of which is much less trivial. It definitely converges when norm of 
I−A  is close to zero.  
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We know that for (real) matrix A with non-zero eigen values (e.g. non-zero determinant!) we can 
use Sylvester formula and find (a bit trickier to get it to be real) a solution of (26-3). We are all 
aware that ln of any number has branching at zero and is defined with accuracy of 2nπ. It means 
that A = exp B( )  has infinite number of solutions.  

It is possible to show (a good exercise similar to proving exp(ln(x))=x) that if:  

B = ln A( )→ A = exp B( ) .   (26-4)  

If M is real and symplectic, than  

D = ln M( )→ DTS+ SD = 0; .   (26-5)  

or D is anti-commute with S. It is easy to prove: 

D = ln M( );−D = ln M−1( ) = ln S−1MTS( ) = S−1 ln MT( )S = −S ln MT( )S;
DT = S ln MT( )S( )T = S ln M( )S = SDS;→ DT − SDS = −(DTS+ SD)S = 0;

.  (26-6) 

It means that (surprise-surprise) that D=SH, where H is symmetric matrix: 

H = -SD; DT = SDS→HT = DTS = SDS2 = −SD = H.    (26-7) 
We already proved many times that for HT=H,  

M = exp SH( )→MTSM = S,     (26-8) 

which is a two-liner: 

MT = exp SH( )T( ) = exp −HS( ) = exp −S−1SHS( ) = S−1 exp −SH( )S = Sexp −SH( )S
S−1 = −S; MTSM = −Sexp −SH( )S2 exp SH( ) = Sexp SH − SH( ) = S.
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What we shown is that symplectic matrix can be written on form  

MTSM = S→M = exp SH( ), HT = H.    (26-9) 
Now we are ready to define Lie algebra for matrices: A set of matrices forms Lie algebra if: 

1. If matrix A is in the Lie algebra, than so any product with a scalar a, aA ; 
2. If matrices A and B is in the Lie algebra, then so their sum A+B. 
3. If matrices A and B is in the Lie algebra, then so their commutator [A,B], defined as 

A,B[ ]= AB-BA,      (26-10) 
which is something new we did not touched yet in our course, but something having a very 
fundamental relation with Poisson brackets in Hamiltonian mechanics. The next is to show that 
our D=SH, HT=H set of matrices D form an Lie algebra. From observing that H=-SD, two first 
conditions are trivial adding symmetric matrices and multiplying them by a scalar keeps them 
symmetric. Third condition is a new and can be easily proved: 

A = SH1,B = SH2; A,B[ ] = SH
H = −S A,B[ ]= SBA − SAB = H1SH2 −H2SH1;

HT = H1SH2 −H2SH1( ) = H2
TSTH1

T −H1
TSTH2

T( ) = H1SH2 −H2SH1 = H;
 (26-11) 

which proves that A,B[ ] = SH  with HT = H .  
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Further, is possible to prove that symplectic matrix can be presented in form of the product of 
exponents  

M = exp SHa( )exp SHs( ), SHa = −HaS;SHc = HcS;    (26-12) 

with commuting and anti-commuting generating matrices Ha ,Hc . This can be proven using the 
fact that an arbitrary real non-singular matrix can be decomposed as product of real positive 
definite symmetric matrix P and orthogonal matrix O (we use it without prove!): 

M = PO; PT = P; OT =O−1;     (26-13) 

For symplectic matrix we have 

M= S-1 M-1( )T S→ PO = S-1P-1S( ) S-1OS( )     

where we used PT = P; OT =O−1  and with S-1P-1S  being real, symmetric and positive definite 
and S-1O−1S  real and orthogonal. Since polar decomposition is unique (we use it without prove!) 
than 

P = S-1P-1S;O = S-1OS;→ P = −S P-1( )T S;O = −S O-1( )T S.;
PTSP = PT P-1( )T S = S; OTSO =OT O-1( )T S = S#

   

e.g. both of these matrices are symplectic. A bit more of exercises are needed to prove that 
A = lnO  is asymmetric matrixAT = −A  and B = lnP  is symmetric matrixBT = B : 

−A = lnO−1 = lnOT = AT ; BT = lnPT = lnP = B.  As we found that for any logarithm of 

symplectic matrix condition (26-5) applies D = ln M( )→ DTS+ SD = 0; requiring: 

ATS+ SA = 0→ AS = SA;A = SHc →HcS = SHc

BTS+ SB = 0→ BS = −SB;B = SHa →HaS = −SHa #
  (26-14) 
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This proves (relying on a couple of theorem from linear algebra we took for granted) that (26-12) 
is correct. Since, S2 = −I = iI( )2  and generating matrices either commute or anti-commute with 
S, one can find real Ha ,Hc … again without proof. 
Now we are ready to connect our – so far an abstract exercise – to Poisson brackets, which are 
defined for two functions of coordinates and momenta as  

X = xi ,i = 1,2n{ } = qk ,P
k{ }k = 1,n{ };

f = f X, s( ) ≡ f qk ,P
k , s( );g = g X, s( ) ≡ g qk ,P

k , s( );

f ,g[ ]def =
∂ f
∂qk

∂g
∂Pk −

∂g
∂qk

∂ f
∂Pk

⎛
⎝⎜

⎞
⎠⎟k=1

n

∑ = ∂ f
∂xi

Sij
∂g
∂x j

⎛

⎝⎜
⎞

⎠⎟i, j=1

2n

∑ =

∂X f ,S ⋅ ∂X g( ) = ∂X f( )T S ⋅ ∂X g( ).

  (26-15) 

From Hamiltonian mechanics we know that  
df
dt

= ∂ f
∂t

+ f ,H[ ] = ∂ f
∂t

+ ∂ f
∂X

S ∂H
∂X

= ∂ f
∂t

+ ∂ f
∂qk

∂H
∂Pk −

∂ f
∂Pk

∂H
∂qk

;    

and time-independent function “commuting” with Hamiltonian are invariants of motion. 


