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Chapter 31510

Classical Cyclotron1511

Abstract This chapter introduces the classical cyclotron, and the theoretical material1512

needed for the simulation exercises. It begins with a brief reminder of the historical1513

context, and continues with beam optics and with the principles and methods which1514

the classical cyclotron leans on, including1515

- ion orbit in a cyclic accelerator,1516

- weak focusing and periodic transverse motion,1517

- revolution period and isochronism,1518

- voltage gap and resonant acceleration,1519

- the cyclotron equation.1520

The simulation of a cyclotron dipole will either resort to an analytical model of the1521

field: the optical element DIPOLE, or will resort to using a field map together with1522

the keyword TOSCA to handle it and raytrace through. An additional accelerator1523

device needed in the exercises, CAVITE, simulates a local oscillating voltage. Run-1524

ning a simulation generates a variety of output files, including the execution listing1525

zgoubi.res, always, and other zgoubi.plt, zgoubi.CAVITE.out, zgoubi.MATRIX.out,1526

etc., aimed at looking up program execution, storing data for post-treatment, produc-1527

ing graphs, etc. Additional keywords are introduced as needed, such as the matching1528

procedure FIT[2]; FAISCEAU and FAISTORE which log local particle data in1529

zgoubi.res or in a user defined ancillary file; MARKER; the ’system call’ command1530

SYSTEM; REBELOTE, a ’do loop’; and some more. This chapter introduces in addi-1531

tion to spin motion in accelerator magnets; dedicated simulation exercises include a1532

variety of keywords: SPNTRK, a request for spin tracking, SPNPRT or FAISTORE,1533

to log spin vector components in respectively zgoubi.res or some ancillary file, and1534

the “IL=2” flag to log stepwise particle data, including spin vector, in zgoubi.plt file.1535

Simulations include deriving transport matrices, beam matrix, optical functions and1536

their transport, from rays, using MATRIX and TWISS keywords.1537
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Notations used in the Text1538

B; B0 magnetic field; at a reference radius R0

B; BR; By field vector; radial component; axial component

BR = p/q magnetic rigidity

C; C0 orbit length, C = 2πR; reference, C0 = 2πR0

E ion energy, E = γm0c2

frev, frf revolution and RF voltage frequencies

G gyromagnetic anomaly, G = 1.7928 for proton, −4.184 for helion

h harmonic number, an integer, h = frf/ frev
k = R

B
dB
dR

radial field index

m; m0; M ion mass; rest mass; in units of MeV/c2

p; p; p0 ion momentum vector; its modulus; reference

q ion charge

R; R0; RE equilibrium orbit radius; reference, R(p0); at energy E

RF Radio-Frequency

s path variable

Trev, Trf revolution and accelerating voltage periods

v; v ion velocity vector; its modulus

V(t); V̂ oscillating voltage; its peak value

W kinetic energy, W = 1
2 mv

2

x, x’, y, y’ radial and axial coordinates
[
(∗)′ = d(∗)

ds

]

α trajectory deviation, or momentum compaction

β = v
c
; β0; βs normalized ion velocity; reference; synchronous

γ = E/m0c2 Lorentz relativistic factor

∆p, δp momentum offset

εu Courant-Snyder invariant (u : x, r, y, l,Y, Z, s, etc.)

θ azimuthal angle

φ RF phase at ion arrival at the voltage gap

1539

3.1 Introduction1540

Cyclotrons are the most widespread type of accelerator, today, used by thousands,1541

with the production of isotopes as the dominant application. This chapter is devoted1542

to the first cyclic accelerator: the early 1930s classical cyclotron which its concept1543

limited to low energy, a few 10s of MeV/nucleon. This limitation overcome a decade1544

later by the azimuthally varying field (AVF) technique, this is the subject of the next1545

chapter.1546

The classical cyclotron is based on four main principles:1547

(i) the use of a cylindrical-symmetry magnetic field in the gap of an electromagnet1548

(Fig. 3.1) to maintain ions on a circular trajectory1549
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(ii) transverse vertical confinement of the beam obtained by a slow radial decrease1550

of the magnetic field. A technique known as weak focusing, applied over the years1551

in all cyclic accelerators: microtron, betatron, synchrocyclotron, synchrotron. These1552

weak focusing accelerator species all are still part of the landscape today1553

(iii) resonant acceleration by synchronization of a fixed-frequency accelerating volt-1554

age on the quasi-constant revolution time (Fig. 3.1). and1555

(iv) use of high voltage, to mitigate the effect of the turn-by-turn RF phase slip.1556

Resonant acceleration has the advantage that a small gap voltage is enough to1557

accelerate with, in principle, no energy limitation, by contrast with the electrostatic1558

techniques developed at the time, which required the generation of the full voltage,1559

such as the Van de Graaf which was limited by sparking at a few tens of megavolts.1560

The cyclotron concept goes back to the late 1920s [1], yet it was not until the early1561

1930s when a cyclotron was first brought to operation [2]. The principles are sum-1562

marized in Fig. 3.1: an oscillating voltage is applied on a pair of electrodes (“dees”)1563

forming an accelerating gap and placed between the two poles of an electromagnet.1564

Ions reaching the gap during the acceleration phase of the voltage wave experience1565

an energy boost; no field is experienced inside the dees. Under the effect of energy1566

increase at the gap every half-revolution, they spiral out in the quasi-constant field1567

of the dipole.
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Fig. 3.1 Left: a cyclotron electromagnet, namely here that used for a model of Berkeley’s 184-
inch cyclotron in the early 1940s [3]. Magnetic field in the gap decreases with radius. Right: a
schematic of the resonant acceleration motion; gap after gap, accelerated ions spiral out (bottom)
in the quasi-uniform field (top). A double-dee (or, a variant, a single-dee facing a slotted electrode)
forms an accelerating gap. The fixed-frequency oscillating voltage V (t) applied is a harmonic
of the revolution frequency. Ions experiencing proper voltage phase at the gap, turn by turn, are
accelerated. A septum electrode allows beam extraction

1568

The first cyclotron achieved acceleration of H+
2

hydrogen ions to 80 keV [2], at1569

Berkeley in 1931. The apparatus used a dee-shaped electrode vis-à-vis a slotted1570

electrode forming a voltage gap, the ensemble housed in a 5 in diameter vacuum1571

chamber and placed in the 1.3 Tesla field of an electromagnet. A ≈ 12 MHz vacuum1572

tube oscillator provided 1 kVolt gap voltage.1573
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One goal foreseen in developing this technology was the acceleration of protons1574

to MeV energy range for the study of atom nucleus. And in background, a wealth1575

of potential applications. An 11 in cyclotron followed which delivered a 0.01 µA1576

H+
2

beam at 1.22 MeV [4], and a 27 in cyclotron later reached 6 MeV (Fig. 3.2) [5].1577

Targets were mounted at the periphery of the 11-inch cyclotron, disintegrations were1578

observed in 1932. And, in 1933: ‘The neutron had been identified by Chadwick1579

in 1932. By 1933 we were producing and observing neutrons from every target1580

bombarded by deuterons.“ [5, M.S. Livingston, p. 22].1581
V

Fig. 3.2 Berkeley 27-inch cyclotron, brought to operation in 1934, accelerated deuterons up to
6 MeV. Left: a double-dee (seen in the vacuum chamber, cover off), 22 in diameter, creates an
accelerating gap: 13 kV, 12 MHz radio frequency voltage is applied for deuterons for instance
(through two feed lines seen at the top right corner). This apparatus was dipped in the 1.6 Tesla
dipole field of a 27 in diameter, 75 ton, electromagnet. A slight decrease of the dipole field with
radius, from the center of the dipole, ensures axial beam focusing. With their energy increasing,
ions spiral out from the center to eventually strike a target (red arrow). Right: ionization of the air
by the extracted beam (1936); the view also shows the vacuum chamber squeezed between the pole
pieces of the electromagnet [3]

Fig. 3.3 Berkeley 184 in di-
ameter, 4,000 ton cyclotron
during construction [3]. The
coil windings around both of
the magnetic poles are clearly
visible. Following the inven-
tion of longitudinal focusing
it was actually operated as
a synchrocyclotron, in 1946.
The man on the right gives the
scale
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A broad range of applications were foreseen: “At this time biological experiments1582

were started. [...] Also at about this same time the first radioactive tracer experiments1583

on human beings were tried [...] simple beginnings of therapeutic use, coming a1584

little bit later, in which neutron radiation was used, for instance, in the treatment1585

of cancer. [...] Another highlight from 1936 was the first time that anyone tried1586

to make artificially a naturally occurring radio-nuclide. (a bismuth isotope) [5,1587

McMillan, p. 26].1588

Berkeley’s 184 in cyclotron, the largest (Fig. 3.3), commissioned in 1941, was to1589

accelerate Deuterons to 100 MeV for meson production. It’s magnet however was1590

diverted to the production of uranium for the atomic bomb during the second world1591

war years [1]. Re-started in 1946, as a consequence of the discovery of phase focusing1592

the accelerator was actually operated as a synchrocyclotron (an accelerator species1593

addressed in Chap. 7).1594

Limitation in energy1595

The understanding of the dynamics of ions in the classical cyclotron took some time,1596

and brought two news, a bad one and a good one,1597

(i) the bad one first: the energy limitation. A consequence of the loss of isochro-1598

nism resulting from the relativistic increase of the ion mass so that “[...] it seems1599

useless to build cyclotrons of larger proportions than the existing ones [...] an accel-1600

erating chamber of 37 in radius will suffice to produce deuterons of 11 MeV energy1601

which is the highest possible [...]” [6], or in a different form: “If you went to graduate1602

school in the 1940s, this inequality (−1 < k < 0) was the end of the discussion of1603

accelerator theory” [7].1604

(ii) the good news now: the energy limit which results from the mass increase can1605

be removed by splitting the magnetic pole into valley and hill field sectors. This is1606

the azimuthally varying field (AVF) cyclotron technology, due to L.H. Thomas in1607

1938 [8]. It took some years to see effects of this breakthrough (Fig. 3.4). The AVF1608

is the object of Chap. 4.1609

With the progress in magnet computation tools, in computer speed and in beam1610

dynamics simulations, the AVF cyclotron ends up being essentially as simple to1611

design and build: it has in a general manner supplanted the classical cyclotron in all1612

energy domains (Fig. 3.4).1613

3.2 Basic Concepts and Formulæ1614

The cyclotron was conceived as a means to overcome the technological difficulty of1615

a long series of high electrostatic voltage electrodes in a linear layout, by, instead,1616

repeated recirculation through a single accelerating gap in synchronism with an1617

oscillating voltage (Fig. 3.5). As the accelerated bunch spirals out in the uniform1618

magnetic field, the velocity increase comes with an increase in orbit length; the1619
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Fig. 3.4 Evolution of the
number of the various cy-
clotron species, over the
years [9]. From the 1950s on
the AVF cyclotron rapidly sup-
planted the 1930s’ classical
cyclotron

Fig. 3.5 Resonant accelera-
tion: in an h = 1 configuration
an ion bunch meets an oscil-
lating field E across gap A,
at time t , at an accelerating
phase; it meets again, half a
turn later, at time t+Trev/2, the
accelerating phase across gap
A’, and so on: the magnetic
field recirculates the bunch
through the gap, repeatedly.
Higher harmonic allows more
bunches: the next possibility
in the present configuration is
h=3, and 3 bunches, 120 de-
grees apart, in synchronism
with E
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Fig. 3.6 An ion which reaches
the double-dee gap at the
RF phase ωrf t = φA or
ωrf t = φB is accelerated. If it
reaches the gap at ωrf t = φC

it is decelerated
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net result is a slow increase of the revolution period Trev with energy, yet, with1620

appropriate fixed frf ≈ h/Trev the revolution motion and the oscillating voltage can1621

be maintained in sufficiently close synchronism, Trev ≈ Trf/h, that the bunch will1622

transit the voltage gap at an accelerating phase (Fig. 3.6) over a large enough number1623

of turns that it acquires a significant energy boost.1624

The orbital motion quantities: radius R, ion rigidity BR, revolution frequency1625

frev, satisfy1626

BR =
p

q
, 2π frev = ωrev =

v

R
=

qB

m
=

qB

γm0
(3.1)

These relationships hold at all γ, so covering the classical cyclotron domain (v ≪ c,1627

γ ≈ 1) as well as the isochronous cyclotron (in which the ion energy increase is1628

commensurate with its mass). To give an idea of the revolution frequency, in the1629

limit γ = 1, for protons, one has frev/B = q/2πm = 15.25 MHz/T.1630

The cyclotron design sets the constant RF frequency frf = ωrf/2π at an interme-1631

diate value of h frev along the acceleration cycle. The energy gain, or loss, by the ion1632

when transiting the gap, at time t, is1633

∆W(t) = qV̂ sin φ(t) with φ(t) = ωrft − ωrevt + φ0 (3.2)

with φ its phase with respect to the RF signal at the gap (Fig. 3.6), φ0 = φ(t = 0),1634

and ωrevt the orbital angle. Assuming constant field B, the increase of the revolution1635

period with ion energy satisfies1636

∆Trev

Trev
= γ − 1 (3.3)

The mis-match so induced between the RF and cyclotron frequencies is a turn-by-turn1637

cumulative effect and sets a limit to the tolerable isochronism defect, ∆Trev/Trev ≈1638

2 − 3%, or highest velocity β = v/c ≈ 0.22. This results for instance in a practical1639

limitation to ≈ 25 MeV for protons, and ≈ 50 MeV for D and α particles, a limit1640

however dependent on energy gain per turn.1641

Over time multiple-gap accelerating structures where developed, whereby a1642

“multiple-∆” electrode pattern substitutes to a “double-D”. An example is GANIL1643

C0 injector with its 4 accelerating gaps and h = 4 and h = 8 RF harmonic opera-1644

tion [10].1645

3.2.1 Fixed-Energy Orbits, Revolution Period1646

In a laboratory frame (O;x,y,z), with (O;x,z) the bend plane (Fig. 3.7), assume

B|y=0 = By , constant. An ion is launched from the origin with a velocity

v =

(
dx

dt
,

dy

dt
,

dz

dt

)
= (v sinα, 0, v cosα)
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at an angle α from the z-axis. Solving

Fig. 3.7 Circular motion of
an ion in the plane normal
to a uniform magnetic field
B. The orbit is centered
at xC = −v cosα/ωrev,
zC = v sinα/ωrev, its radius
is v/ωrev

O

z
α

V

x

B

C

cz xc

y

1647

mÛv = qv × B (3.4)

with B = (0, By, 0) yields the parametric equations of motion1648





x(t) = v

ωrev
cos(ωrevt − α) − v cosα

ωrev
y(t) = constant

z(t) = v

ωrev
sin(ωrevt − α) + v sinα

ωrev

(3.5)

which result in1649

(
x +

v cosα

ωrev

)2

+

(
z − v sinα

ωrev

)2

=

(
v

ωrev

)2

(3.6)

a circular trajectory of radius R = v/ωrev centered at (xC, zC) = (− v cosα
ωrev
, v sinα

ωrev
).1650

Stability of the cyclic motion - The initial velocity vector defines a reference closed1651

orbit in the median plane of the cyclotron dipole; a small perturbation in α or v1652

results in a new orbit in the vicinity of the reference. An axial velocity component vy1653

on the other hand, causes the ion to drift away from the reference, vertically, linearly1654

with time, as there is no axial restoring force. The next Section will investigate the1655

necessary field property to ensure both horizontal and vertical confinement of the1656

cyclic motion in the vicinity of a reference orbit in the median plane.1657

3.2.2 Weak Focusing1658
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In the early accelerated turns in a classical cyclotron (central region of the electro-1659

magnet, energy up to tens of keV/u), the accelerating electric field provides vertical1660

focusing for particles with proper RF phase [11, Sect. 8], whereas a flat magnetic1661

field with uniformity dB/B < 10−4 is sufficient to maintain isochronism. Beyond1662

this low energy region however, at greater radii, a magnetic field gradient must be1663

introduced to ensure transverse stability: field must decrease with R.1664

Fig. 3.8 Moving frame
(M0; s, x, y) along the ref-
erence circular orbit. The cur-
vature 1/R0 is constant along
the orbit and (M0; s, x, y)
can be considered equiva-
lent to the cylindrical frame
(C; θ, R0, y)

   

B

reference

0
M

M x

y

v   

s

C

r(s)

0
R

Ion coordinates in the following are defined in the moving frame (M0; s, x, y)1665

(Fig. 3.8), which moves along the reference orbit (radius R0), with its origin M01666

the projection of ion location M on the reference orbit; the s axis is tangent to the1667

latter, the x axis is normal to s, the y axis is normal to the bend plane. Median-plane1668

symmetry of the field is assumed, thus the radial field component BR |y=0 = 0 at all1669

R (Fig. 3.9).1670

Consider small motion excursions x(t) = r(t) − R0 ≪ R0; introduce Taylor1671

expansion of the field components,1672

By(R0 + x) = By(R0) + x
∂By

∂R

����
R0

+

x2

2!

∂2By

∂R2

�����
R0

+ ... ≈ By(R0) + x
∂By

∂R

����
R0

BR(0 + y) = y
∂BR

∂y

����
0︸ ︷︷ ︸

=
∂By

∂R

���
R0

+

y
3

3!

∂3BR

∂y3

����
0

+ ... ≈ y
∂By

∂R

����
R0

(3.7)

Using these, and noting Û(∗) = d(∗)/dt, the linear approximation of the differential1673

equations of motion in the moving frame writes1674
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Fx = m Üx = −qvBy(R) +
mv

2

R0 + x
≈ −qv

(

By(R0) +
∂By

∂R

����
R0

x

)

+

mv
2

R0

(
1 − x

R0

)

→ m Üx = −mv
2

R2
0

(
R0

B0

∂By

∂R

����
R0

+ 1

)

x (3.8)

Fy = m Üy = qvBR(y) = qv
∂BR

∂y

����
y=0

y + higher order → m Üy = qv
∂By

∂R
y

Fig. 3.9 Axial motion stabil-
ity requires proper shaping of
field lines: By has to decrease
with radius. The Laplace force
pulls a positive charge with
velocity pointing out of the
page, at I, toward the median
plane. Increasing the field
gradient (k closer to -1, gap
opening up faster) increases
the focusing

F
B=B y    

BF
I

I

r

Magnet pole, South

Magnet pole, North

plane
Median

B

y

g
(r

)

1675

Fig. 3.10 Geometrical focus-
ing: take k=0; two circular
trajectories which start from
r = R0±δR (solid lines, going
counter-clockwise) undergo
exactly one oscillation around
the reference orbit r = R0.
A negative k (triangles), for
axial focusing, decreases the
radial convergence; a positive
k (square markers) increases
the radial convergence - and
increases vertical divergence

 0  0.05  0.1  0.15  0.2

k=0

k<0

k>0

R
0

R
0
-δ

R

R
0
+

δ
R

Note By(R0) = B0 and introduce1676

ω2
R = ω

2
rev

(
1 +

R0

B0

∂By

∂R

)
, ω2

y = −ω2
rev

R0

B0

∂By

∂R
(3.9)

substitute in Eqs. 3.8, this yields1677
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Fig. 3.11 Radial motion
stability. Trajectory arcs at
p = mv are represented:
case of k = 0 (thin black
lines), of −1 < k < 0
(thick blue lines), and of
k = −1 (dashed concentric
circles). k decreasing towards
−1 reduces the geometrical
focusing, increases axial
focusing. The resultant of
the Laplace and centrifugal
forces, Ft = −qvB + mv2/r ,
is zero at I, motion is stable if
Ft is toward I at i, i.e. qvBi <

mv2/Ri , and toward I as well
at e, i.e. qvBe > mv2/Re

2

force toward Iforce toward I

BR<mv/q BR>mv/q  BR=
mv/q

rB
decreases        

  increases       
 R

mv /R

                   

s

x

I

y

i e

qvB    

O

R0

C

Üx + ω2
Rx = 0 and Üy + ω2

y y = 0 (3.10)

A restoring force (linear terms in x and y, Eq. 3.10) arises from the radially varying1678

field, characterized by a field index1679

k =
R0

B0

∂By

∂R

����
R=R0,y=0

(3.11)

Radial stability: radially this force adds to the geometrical focusing (curvature term1680

“1” in ω2
R

, Eq. 3.9, Fig. 3.10). In the weakly decreasing field B(R) an ion with mo-1681

mentum p = mv moving in the vicinity of the R0-radius reference orbit experiences1682

in the moving frame a resultant force Ft = −qvB + m
v

2

r
(Fig. 3.11) of which the1683

(outward) component fc = m v2

r
decreases with r at a higher rate than the decrease1684

of the Laplace (inward) component fB = −qvB(r). In other words, radial stability1685

requires BR to increase with R, ∂BR
∂R
= B + R ∂B

∂R
> 0, this holds in particular at R0,1686

thus 1 + k > 0.1687

Axial stability requires a restoring force directed toward the median plane. Refer-1688

ring to Fig. 3.9, this means Fy = −a× y (with a a positive quantity) and thus BR < 0,1689

at all (r, y , 0). This is achieved by designing a guiding field which decreases with1690

radius, ∂BR

∂y
< 0. Referring to Eq. 3.11 this means k < 0.1691

From these radial and axial constraints the condition of “weak focusing” for1692

transverse motion stability around the circular equilibrium orbit results, namely,1693

−1 < k < 0 (3.12)

Note regarding the geometrical focusing: the focal distance associated with the1694

curvature of a magnet of arc length L is obtained by integrating d2x
ds2 +

1
R2

0

x = 0 and1695

identifying with the focusing property ∆x ′
= −x/ f , namely,1696
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∆x ′
=

∫
d2x

ds2
ds ≈ −x

R2

∫
ds =

−xL
R2
, thus f =

R2

L (3.13)

Isochronism: the axial focusing constraint, B decreasing with R, contributes break-1697

ing the isochronism (in addition to the effect of the mass increase) by virtue of1698

ωrev ∝ B.1699

Paraxial Transverse Coordinates1700

Introduce the path variable s as the independent variable in Eq. 3.10 and neglect the1701

transverse velocity components (1 + x
R0

≈ 1, y ≪ 0) so that1702

ds =
[
r2(s)dθ2 + dr2

+ dy2
]1/2 ≈ |v|dt

ds

ds

dr

0

0R

M0

θ

r

d

(3.14)

thus the equations of motion in the moving frame (Eq. 3.10) take the form1703

d2x

ds2
+

1 + k

R2
0

x = 0 and
d2

y

ds2
− k

R2
0

y = 0 (3.15)

Given −1 < k < 0 the motion is that of a harmonic oscillator, in both planes, with1704

respective restoring constants (1 + k)/R2
0

and −k/R2
0
, both positive quantities. The1705

solution is a sinusoidal motion,1706

{
r(s) − R0 = x(s) = x0 cos

√
1+k
R0

(s − s0) + x ′
0

R0√
1+k

sin
√

1+k
R0

(s − s0)
r ′(s) = x ′(s) = −x0

√
1+k
R0

sin
√

1+k
R0

(s − s0) + x ′
0

cos
√

1+k
R0

(s − s0)
(3.16)

1707 {
y(s) = y0 cos

√
−k
R0

(s − s0) + y
′
0

R0√
−k

sin
√
−k
R0

(s − s0)
y
′(s) = −y0

√
−k
R0

sin
√
−k
R0

(s − s0) + y
′
0

cos
√
−k
R0

(s − s0)
(3.17)

Radial and axial wave numbers can be introduced,1708

νR =
ωR

ωrev
=

√
1 + k and νy =

ωy

ωrev
=

√
−k (3.18)

i.e., the number of sinusoidal oscillations of the paraxial motion about the reference1709

circular orbit over a turn, respectively radial and axial. Both are less than 1: there1710

is less than one sinusoidal oscillation in a revolution. In addition, as a result of the1711

revolution symmetry of the field,1712

ν2R + ν
2
y = 1 (3.19)
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Off-Momentum Orbit1713

In a structure with revolution symmetry, the equilibrium trajectory at momentum
{

p0

p = p0 + ∆p
is at radius

{
R0 with B0R0 =

p0

q

R with BR =
p

q

, where

{
B = B0 +

(
∂B
∂x

)

0
∆x + ...

R = R0 + ∆x

On the other hand

BR =
p

q
⇒

[
B0 +

(
∂B

∂x

)

0

∆x + ...

]
(R0 + ∆x) = p0 + ∆p

q

which, neglecting terms in (∆x)2, and given B0R0 =
p0

q
, leaves∆x

[(
∂B
∂x

)

0
R0 + B0

]
=1714

∆p

q
. With k =

R0

B0

(
∂B
∂x

)

0
this yields

R

y

A B

R0 R

Magnet pole

Magnet pole R

R

p
0

.

p0

Fig. 3.12 The equilibrium radius at location A is R0, momentum is p0, rigidity is B0R0. The
equilibrium radius at B is R, momentum p, rigidity BR

1715

∆x = D
∆p

p0
with D =

R0

1 + k
the dispersion function (3.20)

The dispersion D is an s-independent quantity as a result of the revolution symmetry1716

of the field (k and R=p/qB are s-independent).1717

To the first order in the coordinates, the vertical coordinates y(s), y’(s) (Eq. 3.17)1718

are unchanged under the effect of a momentum offset, the horizontal trajectory angle1719

x’(s) (Eq. 3.16) is unchanged as well (the circular orbits are concentric, Fig. 3.12)1720

whereas x(s) satisfies1721

x(s, p0 + ∆p) = x(s, p0) + ∆p
∂x

∂p

����
s,p0

= x(s, po) + D
∆p

p0
(3.21)
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Orbit and revolution period lengthening1722

A δp momentum offset results in (Eq. 3.20)1723

δC
C =

δR

R
=

δx

R
= α
δp

p
with α =

1

1 + k
=

1

ν2
R

(3.22)

with α the momentum compaction, a positive quantity: orbit length increases with1724

momentum. Substituting
δβ

β
=

1
γ2

δp

p
, the change in revolution period Trev = C/βc1725

with momentum writes1726

δTrev

Trev
=

δC
C

− δβ
β
=

(
α − 1

γ2

)
δp

p
(3.23)

Given that −1 < k < 0 and γ & 1, it results that α − 1/γ2 > 0: the revolution period1727

increases with energy, the increase in radius is faster than the velocity increase.1728

3.2.3 Quasi-Isochronous Resonant Acceleration1729

The energy W of an accelerated ion (in the non-relativistic energy domain of the1730

classical cyclotron) satisfies the frequency dependence1731

W =
1

2
mv

2
=

1

2
m (2πR frev)2 =

1

2
m

(
2πR

frf

h

)2

(3.24)

Observe in passing: given the cyclotron size (radius R), frf and h set the limit for1732

the acceleration range. The revolution frequency decreases with energy and the1733

condition of synchronism with the oscillating voltage, frf = h frev, is only fulfilled1734

at that particular radius where ωrf = qB/m (Fig. 3.13-left). The out-phasing ∆φ of1735

the RF at ion arrival at the gap builds-up turn after turn, decreasing in a first stage1736

(towards lower voltages in Fig. 3.13-right) and then increasing back to φ = π/2 and1737

beyond towards π. Beyond φ = π the RF voltage is decelerating.1738

With ωrev constant between two gap passages, differentiating φ(t) (Eq. 3.2) yields1739

Ûφ = ωrf −ωrev. Between two gap passages on the other hand, ∆φ = Ûφ∆T = ÛφTrev/2 =1740

Ûφ πR
v

, yielding a phase-shift of1741

half-turn ∆φ = π

(
ωrf

ωrev(R)
− 1

)
= π

(
mωrf

qB(R) − 1

)
(3.25)

The out-phasing is thus a gap-after-gap, cumulative effect. Due to this the classical1742

cyclotron requires quick acceleration (small number of turns), which means high1743

voltage (tens to hundreds of kVolts). As expected, withωrf and B constant, φ presents1744

a minimum ( Ûφ = 0) at ωrf = ωrev = qB/m where exact isochronism is reached1745

(Fig. 3.13). The upper limit to φ is set by the condition ∆W > 0: acceleration.1746
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Fig. 3.13 Left: a sketch of the synchronism condition at one point (h=1 assumed). Right: the span
in phase of the energy gain ∆W = qV̂ sinφ (Eq. 3.2) over the acceleration cycle

Fig. 3.14 A graph of the
cyclotron equation (Eq. 3.26),
for three different accel-
erating voltages: 100, 200
and 400 kV/gap (respectively
square, circle and triangle
markers). The sole settings re-
sulting in −1 < cosφ(E) < 1,
∀E , allow complete accelera-
tion to top energy. φi = π/4
at injection for instance, does
not (upper three curves).
φi = 3π/4 works (lower
three curves), with as low as
100 kV/gap
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The cyclotron equation determines the achievable energy range, depending on1747

the injection energy Ei , the RF phase at injection φi , the RF frequency ωrf and gap1748

voltage V̂ . It writes [12]1749

cos φ = cos φi + π

[
1 − ωrf

ωrev

E + Ei

2M

]
E − Ei

qV̂
(3.26)

Equation 3.26 is represented in Fig. 3.14 for various values of the peak voltage1750

and phase at injection φi . M [eV/c2] and E [eV] are respectively the rest mass and1751

relativistic energy, qV̂ is expressed in electron-volts, the index i denotes injection1752

parameters.1753
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3.2.4 Beam Extraction1754

From R = p/qB and assuming B(R) ≈constant (this is legitimate as k is normally1755

small), in the non-relativistic approximation (W ≪ M , W = p2/2M) one gets1756

dR

R
=

1

2

dW

W
(3.27)

Integrating yields1757

R2
= R2

i

W

Wi

(3.28)

with Ri , Wi initial conditions. From Eqs. 3.27, 3.28, assuming Wi ≪ W and constant1758

acceleration rate dW such that W = n dW after n turns, one gets the scaling laws1759

R ∝
√

n, dR ∝ R

W
∝ 1

R
∝ dW,

dR

dn
=

R

2n
(3.29)

The turn separation dR is proportional to the energy gain per turn and inversely1760

proportional to the orbit radius.1761

Fig. 3.15 The radial distance
between successive turns
decreases with energy, in
inverse proportion to the
orbit radius. The red and
blue segments here figure the
accelerating gap

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

 0  0.2  0.4  0.6  0.8

Y
L
a
b
 [
m

]

XLab [m]

The radial distance between successive turns decreases with energy, toward zero1762

(Fig. 3.15), eventually resulting in insufficient spacing for insertion of an extraction1763

septum.1764

Orbit modulation1765

Consider an ion bunch injected in the cyclotron with some (x0, x
′
0
) conditions in1766

the vicinity of the reference orbit, and assume slow acceleration. While accelerated1767

the bunch undergoes an oscillatory motion around the equilibrium orbit (Eq. 3.16).1768

Observed at the extraction septum this oscillation modulates the distance of the1769
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bunch to the local equilibrium orbit, moving it outwards or inwards depending on1770

the turn number, which modulates the distance between the accelerated turns. This1771

effect can be resorted to, so to increase the separation between the final two turns1772

and so enhance the extraction efficiency [9].1773

3.2.5 Spin Dance1774

“Much of the physics of spin motion can be illustrated using the simplest model of a1775

storage ring consisting of uniform horizontal bending and no straight sections.” [13].1776

By virtue of this statement, a preliminary introduction to spin motion in magnetic1777

fields is given in the present chapter. In support to this in addition, comes the fact that1778

cyclotrons happened to be the first circular machines to acelerate polarized beams1779

(first acceleration of polarized beams had happened earlier in the 1960s, using1780

electrostatic columns at voltage generators, when polarized proton and deuteron1781

sources began operating [14]).1782

The magnetic field B of the cyclotron dipole exerts a torque on the spin angular1783

momentum S of an ion, causing it to precess following the Thomas-BMT differential1784

equation [15]1785

dS

dt
= S × q

m

[
(1 + G)B‖ + (1 + Gγ)B⊥

]

︸                                  ︷︷                                  ︸
ωsp

(3.30)

where t is the time; ωsp the precession vector: a combination of B‖ and B⊥ compo-1786

nents of B respectively parallel and orthogonal to the ion velocity vector. G is the1787

gyromagnetic anomaly,1788

G=1.7928474 (proton), -0.178 (Li), -0.143 (deuteron), -4.184 (3He) ...1789

S in this equation is in the ion rest frame, all other quantities are in the laboratory1790

frame.1791

In the case of an ion moving in the median plane of the dipole, B‖ = 0, thus the1792

precession axis is parallel to the magnetic field vector, By , so that ωsp =
q

m
(1 +1793

Gγ)By . The spin precession angle over a trajectory arc L is1794

θsp, Lab =
1

v

∫

(L)
ωsp ds = (1 + Gγ)

∫
(L) B ds

BR
= (1 + Gγ)α (3.31)

with α the velocity vector precession (Fig. 3.16). The precession angle in the moving1795

frame (the latter rotates by an angle α along L) is1796

θsp = Gγα (3.32)

thus the number of 2π spin precessions per ion orbit around the cyclotron is Gγ. By1797

analogy with the wave numbers (Eq. 3.18) this defines the “spin tune”1798
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Fig. 3.16 Spin and velocity
vector precession in a constant
field, from S to S′ and v to
v′ respectively. In the moving
frame the spin precession
along the arc L = Rα

is Gγα, in the laboratory
frame the spin precesses by
(1 +Gγ)α

R

y

v

S x

α

xy

S

x’
G

γα

(1
+

G
γ)α

S
’

v’

νsp = Gγ (3.33)
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3.3 Exercises1799

Note: some of the input data files for these simulations are available in zgoubi1800

sourceforge repository at1801

https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/book/zgoubiMaterial/cyclotron_classical/1802

3.1 Modeling a Cyclotron Dipole: Using a Field Map1803

Solution: page 711804

In this exercise, ion trajectories are ray-traced, various optical properties addressed1805

in the foregoing are recovered, using a field map to simulate the cyclotron dipole.1806

Fabricating that field map is a preliminary step of the exercise.1807

The interest of using a field map is that it is an easy way to account for fancy1808

magnet geometries and fields, including field gradients and possible defects. A1809

field map can be generated using mathematical field models, or from magnet com-1810

putation codes, or from magnetic measurements. The first method is used, here.1811

TOSCA[MOD.MOD1=22.1] keyword [16, cf. INDEX] is used to ray-trace through1812

the map.1813

Working hypotheses: A 2-dimensional m(R, θ) polar meshing of the median plane1814

is considered (Fig. 3.17). It is defined in a (O; X,Y ) frame and covers an angular1815

sector of a few tens of degrees. The mid-plane field map is the set of values BZ (R, θ) at1816

the nodes of the mesh. During ray-tracing, TOSCA[MOD.MOD1=22.1] extrapolates1817

the field along 3D space (R, θ, Z) ion trajectories from the 2D polar map [16].1818

Fig. 3.17 Principle of a 2D
field map in polar coordinates,
covering a 180o sector (over
the right hand side dee).
The mesh nodes m(R, θ)
are distant ∆R radially, ∆θ
azimuthally. The map is used
twice to cover the 360o

cyclotron dipole as sketched
here, while allowing insertion
of an accelerating gap between
the two dees

O

X

Y

m(R,  )θ

θ

R

R∆

    

∆θ  

(a) Construct a 180o two-dimensional map of a median plane field BZ (R, θ),1819

proper to simulate the field in a cyclotron as sketched in Fig. 3.1. Use one of1820

the following two methods: either (i) write an independent program, or (ii) use1821

zgoubi and its analytical field model DIPOLE, together with the keyword OP-1822

TIONS[CONSTY=ON] [16, cf. INDEX].1823

Besides: use a uniform mesh (Fig. 3.17) covering from Rmin=1 to Rmax=76 cm,1824

with radial increment ∆R = 0.5 cm, azimuthal increment ∆θ = 0.5 [cm]/R0 with R01825
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some reference radius (say, 50 cm, in view of subsequent exercises), and constant1826

axial field BZ = 5 kG. The appropriate 6-column formatting of the field map data1827

for TOSCA[MOD.MOD1=22.1] to read is the following:1828

R cos θ, Z, R sin θ, BY, BZ, BX1829

with θ varying first, R varying second; Z is the vertical direction (normal to the map1830

mesh), Z ≡ 0 in the present case. Note that proper functioning of TOSCA requires1831

the field map to begin with the following line of numerical values:1832

Rmin [cm] ∆R [cm] ∆θ [deg] Z [cm]1833

Produce a graph of the BZ (R, θ) field map content.1834

(b) Ray-trace a few concentric circular mid-plane trajectories centered on the1835

center of the dipole, ranging in 10 ≤ R ≤ 80 cm. Produce a graph of these concentric1836

trajectories in the (O; X,Y ) laboratory frame.1837

Initial coordinates can be defined using OBJET, particle coordinates along tra-1838

jectories during the stepwise ray-tracing can be logged in zgoubi.plt by setting IL=21839

under TOSCA. In order to find the Larmor radius corresponding to a particular1840

momentum, the matching procedure FIT can be used. In order to repeat the latter for1841

a series of different momenta, REBELOTE[IOPT=1] can be used.1842

Explain why it is possible to push the ray-tracing beyond the 76 cm radial extent1843

of the field map.1844

(c) Compute the orbit radius R and the revolution period Trev as a function of1845

kinetic energy W or rigidity BR. Produce a graph, including for comparison the1846

theoretical dependence of Trev.1847

(d) Check the effect of the density of the mesh (the choice of ∆R and ∆θ values,1848

i.e., the number of nodes Nθ × NR = (1+ 180o

∆θ
) × (1+ 80 cm

∆R
)), on the accuracy of the1849

trajectory and time-of-flight computation.1850

(e) Check the effect of the integration step size on the accuracy of the trajectory1851

and time-of-flight computation, by considering a small ∆s = 1 cm and a large1852

∆s = 10 cm, at 200 keV and 5 MeV (proton), and comparing with theory.1853

(f) Consider a periodic orbit, thus its radius R should remain unchanged after1854

stepwise integration of the motion over a turn. However, the size ∆s of the numerical1855

integration step has an effect on the final value of the radius:1856

For two different cases, 200 keV (a small orbit) and 5 MeV (a larger one), provide a1857

graph of the dependence of the relative error δR/R after one turn, on the integration1858

step size ∆s (consider a series of ∆s values in a range ∆s : 0.1 mm → 20 cm).1859

REBELOTE[IOPT=1] do-loop can be used to repeat the one-turn raytracing with1860

different ∆s.1861

3.2 Modeling a Cyclotron Dipole: Using an Analytical Field Model1862

Solution: page 801863

This exercise is similar to exercise 3.1, yet using the analytical modeling DIPOLE,1864

instead of a field map. DIPOLE provides the Z-parallel median plane field B(R, θ, Z =1865

0) ≡ BZ (R, θ, Z = 0) at the projected m(R, θ, Z = 0) ion location (Fig. 3.18), while1866

B(R, θ, Z) at particle location is obtained by extrapolation.1867
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Fig. 3.18 DIPOLE provides
the value BZ (m) of the
median plane field at m,
projection of particle position
M(R, θ, Z) in the median
plane. B(R, θ, Z) is obtained
by extrapolation

z

  = 0

mR

θ

θ

M

ZB

(a) Simulate a 180o sector dipole; DIPOLE requires a reference radius [16,1868

Eqs. 6.3.19-21], noted R0 here; for the sake of consistency with other exercises, it is1869

suggested to take R0 = 50 cm. Take a constant axial field BZ = 5 kG.1870

Explain the various data that define the field simulation in DIPOLE: geometry,1871

role of R0, field and field indices, fringe fields, integration step size, etc.1872

Produce a graph of BZ (R, θ).1873

(b) Repeat question (b) of exercise 3.1.1874

(c) Repeat question (c) of exercise 3.1.1875

(d) As in question (e) of exercise 3.1, check the effect of the integration step size1876

on the accuracy of the trajectory and time-of-flight computation.1877

Repeat question (f) of exercise 3.1.1878

(e) From the two series of results (exercise 3.1 and the present one), comment on1879

various pros and cons of the two methods, field map versus analytical field model.1880

3.3 Resonant Acceleration1881

Solution: page 841882

Based on the earlier exercises, using indifferently a field map (TOSCA) or an1883

analytical model of the field (DIPOLE), introduce a sinusoidal voltage between the1884

two dees, with peak value 100 kV. Assume that ion motion does not depend on RF1885

phase: the boost through the gap is the same at all passes, use CAVITE[IOPT=3] [16,1886

cf. INDEX] for that. Note that using CAVITE requires prior PARTICUL in order to1887

specify ion species and data, necessary to compute the energy boost (Eq. 3.2).1888

(a) Accelerate a proton with initial kinetic energy 20 keV, up to 5 MeV, take1889

harmonic h=1. Produce a graph of the accelerated trajectory in the laboratory frame.1890

(b) Provide a graph of the proton momentum p and total energy E as a function1891

of its kinetic energy, both from this numerical experiment (ray-tracing data can be1892

stored using FAISTORE) and from theory, all on the same graph.1893

(c) Provide a graph of the normalized velocity β = v/c as a function of kinetic1894

energy, both numerical and theoretical, and in the latter case both classical and1895

relativistic.1896
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(d) Provide a graph of the relative change in velocity∆β/β and orbit length∆C/C1897

as a function of kinetic energy, both numerical and theoretical. From their evolution,1898

conclude that the time of flight increases with energy.1899

(e) Repeat the previous questions, assuming a harmonic h=3 RF frequency.1900

3.4 Spin Dance1901

Solution: page 881902

Cyclotron modeling in the present exercise can use Exercise 3.1 or Exercise 3.21903

technique (i.e., a field map or an analytical field model), indifferently.1904

(a) Add spin transport, using SPNTRK [16, cf. INDEX]. Produce a listing1905

(zgoubi.res) of a simulation, including spin outcomes.1906

Note: PARTICUL is necessary here, for the spin equation of motion (Eq. 3.30) to1907

be solved [16, Sect. 2]. SPNPRT can be used to have local spin coordinates listed in1908

zgoubi.res (at the manner that FAISCEAU lists local particle coordinates).1909

(b) Consider proton case, take initial spin longitudinal, compute the spin preces-1910

sion over one revolution, as a function of energy over a range 12 keV→5 MeV. Give1911

a graphical comparison with theory.1912

FAISTORE can be used to store local particle data, which include spin coor-1913

dinates, in a zgoubi.fai style output file. IL=2 [16, cf. INDEX] (under DIPOLE or1914

TOSCA, whichever modeling is used) can be used to obtain a print out of particle1915

and spin motion data to zgoubi.plt during stepwise integration.1916

(c) Inject a proton with longitudinal initial spin Si . Give a graphic of the lon-1917

gitudinal spin component value as a function of azimuthal angle, over a few turns1918

around the ring. Deduce the spin tune from this computation. Repeat for a couple of1919

different energies.1920

Place both FAISCEAU and SPNPRT commands right after the first dipole sector,1921

and use them to check the spin rotation and its relationship to particle rotation, right1922

after the first passage through that first sector.1923

(d) Spin dance: the input data file optical sequence here is assumed to model a1924

full turn. Inject an initial spin at an angle from the horizontal plane (this is in order1925

to have a non-zero vertical component), produce a 3-D animation of the spin dance1926

around the ring, over a few turns.1927

(e) Repeat questions (b-d) for two additional ions: deuteron (much slower spin1928

precession), 3He2+ (much faster spin precession).1929

3.5 Synchronized Spin Torque1930

Solution: page 941931

A synchronized spin kick is superimposed on orbital motion. An input data file for1932

a complete cyclotron is considered as in question 3.4 (d), for instance six 60 degree1933

DIPOLEs, or two 180 degree DIPOLEs.1934

Insert a local spin rotation of a few degrees around the longitudinal axis, at the1935

end of the optical sequence (i.e., after one orbit around the cyclotron). SPINR can be1936

used for that, rather than a local magnetic field, so to avoid any orbital effect. Track1937

4 particles on their respective equilibrium orbit, with energies 0.2, 108.412, 118.8781938

and 160.746 MeV.1939
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Produce a graph of the motion of the vertical spin component Sy along the circular1940

orbit.1941

Produce a graph of the spin vector motion on a sphere.1942

3.6 Weak Focusing1943

Solution: page 971944

(a) Consider a 60o sector as in earlier exercises (building a field map and using1945

TOSCA as in exercise 3.1, or using DIPOLE as in exercise 3.2), construct the sector1946

accounting for a non-zero radial index k in order to introduce axial focusing, say1947

k = −0.03, assume a reference radius R0 for a reference energy of 200 keV (R0 and1948

B0 are required in order to define the index k, Eq. 3.11). Ray-trace that 200 keV1949

reference orbit, plot it in the lab frame: make sure it comes out as expected, namely,1950

constant radius, final and initial angles zero.1951

(b) Using FIT[2], find and plot the radius dependence of orbit rigidity, BR(R),1952

from ray-tracing over a BR range covering 20 keV to 5 MeV; superpose the theoretical1953

curve. REBELOTE[IOPT=1] can be used to perform the scan.1954

(c) Produce a graph of the paraxial axial motion of a 1 MeV proton, over a few1955

turns (use IL=2 under TOSCA, or DIPOLE, to have step by step particle and field1956

data logged in zgoubi.plt). Check the effect of the focusing strength by comparing1957

the trajectories for a few different index values, including close to -1 and close to 0.1958

(d) Produce a graph of the magnetic field experienced by the ion along these1959

trajectories.1960

3.7 Loss of Isochronism1961

Solution: page 1061962

Compare on a common graphic the revolution period Trev(R) for a field index1963

value k ≈ −0.95, −0.5, −0.03, 0−. The scan method of exercise 3.6, based on1964

REBELOTE[IOPT=1] preceded by FIT[2], can be referred to.1965

3.8 Ion Trajectories1966

Solution: page 1081967

In this exercise individual ion trajectories are computed. DIPOLE or TOSCA1968

magnetic field modeling can be used, indifferently. No acceleration here, ions circle1969

around the cyclotron at constant energy.1970

(a) Produce a graph of the horizontal x(s) and vertical y(s) trajectory coordinates1971

of an ion with rigidity close to BR(R0) (R0 is the reference radius in the definition of1972

the index k), over a few turns around the cyclotron. From the number of turns, give1973

an estimate of the wave numbers. Check the agreement with the expected νR(k),1974

νy(k) values (Eq. 3.18).1975

(b) Consider now protons at 1 MeV and 5 MeV, far from the reference energy1976

E(R0); the wave numbers change with energy: consistency with theory can be1977

checked. Find their theoretical values, compare with numerical outcomes.1978

(c) Consider proton, 200 keV energy, plot as a function of s the difference between1979

x(s) from raytracing and its values from Eq. 3.16. Same for y(s) compared to Eq. 3.17.1980
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IL=2 can be used to store in zgoubi.plt the step-by-step particle coordinates across1981

DIPOLE.1982

(d) Perform a scan of the wave numbers over 200 keV−5 MeV energy inter-1983

val, computed using OBJET[KOBJ=5] and MATRIX[IORD=1,IFOC=11], or OB-1984

JET[KOBJ=6] and MATRIX[IORD=2,IFOC=11], together with REBELOTE[IOPT=1]1985

to repeat MATRIX for a series of energy values.1986

3.9 RF Phase at the Accelerating Gap1987

Solution: page 1141988

Consider the cyclotron model of exercise 3.6: field index k = −0.03 defined at1989

R0 = 50 cm, field B0 = 5 kG on that radius. two dees, double accelerating gap.1990

Accelerate a proton from 1 to 5 MeV: get the turn-by-turn phase-shift at the gaps;1991

use CAVITE[IOPT=7] to simulate the acceleration. Compare the half-turn ∆φ so1992

obtained with the theoretical expectation (Eq. 3.25). Produce similar graphs B(R)1993

and ∆W(φ) to Fig. 3.13.1994

Accelerate over more turns, observe the particle decelerating.1995

3.10 The Cyclotron Equation1996

Solution: page 1161997

The cyclotron model of exercise 3.3 is considered: two dees, double accelerating1998

gap, uniform field B = 5 kG, no field gradient needed here (no vertical motion).1999

(a) Set up an input data file for the simulation of a proton acceleration from2000

0.2 to 20 MeV. In particular, assume that cos(φ) reaches its maximum value at2001

Wm = 10 MeV; find the RF voltage frequency from d(cos φ)/dW = 0 at Wm.2002

(b) Give a graph of the energy-phase relationship (Eq. 3.26), for φi =
3π
4 ,

π
2 ,

π
4 ,2003

from both simulation and theory.2004

3.11 Cyclotron Extraction2005

Solution: page 1182006

(a) Acceleration of a proton in a uniform field B = 5 kG is first considered (field2007

hypotheses as in exercise 3.3). RF phase is ignored: CAVITE[IOPT=3] can be used2008

for acceleration. Take a 100 kV gap voltage.2009

Compute the distance ∆R between turns, as a function of turn number and of2010

energy, over the range E : 0.02 → 5 MeV. Compare graphically with theoretical2011

expectation.2012

(b) Assume a beam with Gaussian momentum distribution and rms momentum2013

spread δp/p = 10−3. An extraction septum is placed half-way between two successive2014

turns, provide a graph of the percentage of beam loss at extraction, as a function of2015

extraction turn number. COLLIMA can be used for that simulation and for particle2016

counts, it also allows for possible septum thickness.2017

(c) Repeat (a) and (b) considering a field with index: take for instance B0 = 5 kG2018

and k = −0.03 at R0 = R(0.2 MeV) = 12.924888 cm.2019

(d) Investigate the effect of injection conditions (Yi,Ti) on the modulation of the2020

distance between turns.2021
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Try and confirm numerically that, with slow acceleration, the oscillation is mini-2022

mized for an initial |Ti | = | x0νR

R
| (after Ref. [9, p. 133]).2023

3.12 Acceleration and Extraction of a 6-D Polarized Bunch2024

Solution: page 1232025

The cyclotron simulation hypotheses of exercise 3.10-a are considered; account2026

or k = −0.02 field index.2027

Add a short “high energy” extraction line, say 1 meter, following REBELOTE in2028

the optical sequence, ending up with a “Beam_Dump” MARKER for instance.2029

(a) Create a 1,000 ion bunch with the following initial parameters:2030

- random Gaussian transverse phase space densities, centered on the equilibrium2031

orbit, truncated at 3 sigma, normalized rms emittances εY = εZ = 1 πµm, both2032

emittances matched to the 0.2 MeV orbit optics,2033

- uniform bunch momentum density 0.2×(1−10−3) ≤ p ≤ 0.2×(1+10−3)MeV,2034

matched to the dispersion, namely (Eq. 3.21), ∆x = D
∆p

p
,2035

- random uniform longitudinal distribution −0.5 ≤ s ≤ 0.5 mm,2036

Note: two ways to create this object are, (i) using MCOBJET[KOBJ=3] which2037

generates a random distribution, or (ii) using OBJET[KOBJ=3] to read an external2038

particle coordinate file.2039

Add spin tracking request (SPNTRK), all initial spins normal to the bend plane.2040

Produce a graph of the three initial 2-D phase spaces: (Y,T), (Z,P), (δl,δp/p),2041

matched to the 200 keV periodic optics. Provide Y, Z, dp/p, δl and SZ histograms2042

(HISTO can be used), check the distribution parameters.2043

(b) Accelerate this polarized bunch to 20 MeV, using the following RF conditions:2044

- 200 kV peak voltage,2045

- RF harmonic 1,2046

- initial RF phase φi = π/4.2047

Produce a graph of the three phase spaces as observed downstream of the extrac-2048

tion line. Provide the Y, Z, dp/p, δl and SZ histograms. Compare the distribution2049

parameters with the initial values.2050

What causes the spins to spread away from vertical?2051

3.4 Solutions of Exercises of Chapter 3: Classical Cyclotron2052

3.1 Modeling a Cyclotron Dipole: Using a Field Map2053

2054

(a) A field map of a 180o sector of a classical cyclotron magnet.2055

The first option is retained here: a Fortran program, geneSectorMap.f, given in2056

Tab. 3.1. constructs the required map of a field distribution BZ (R, θ), to be subse-2057

quently read and raytraced through using the keyword TOSCA [16, lookup INDEX].2058
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Regarding the second option: using the analytical model DIPOLE together with2059

the keyword OPTIONS[CONSTY=ON] to fabricate a field map, examples can be2060

found for instance in the FFAG chapter exercises (Chap. 10).2061

Fig. 3.19 Principle 2-D field
map mesh as used by TOSCA,
and the (O;X,Y) coordinate
system. (A), (B): Cartesian
mesh in the (X,Y) plane,
case of respectively 9-point
and a 25-point interpolation
grid; the mesh increments
are ∆X and ∆Y . (C) : polar
mesh and increments ∆R
and ∆α (∆θ in the text), and
(O;X,Y) frame moving along
a reference arc of radius RM .
The field at particle location is
interpolated from its values at
the closest 3×3 or 5×5 nodes

A polar mesh is retained (Fig. 3.19), rather than Cartesian, consistently with2062

cyclotron magnet symmetry. The program can be compiled (gfortran -o geneSec-2063

torMap geneSectorMap.f will provide the executable, geneSectorMap) and run, as2064

is. The field map is saved under the name geneSectorMap.out, excerpts of the ex-2065

pected content are given in Tab. 3.2. That name appears under TOSCA in zgoubi2066

input data file for this simulation (Tab. 3.3). Figure 3.20 shows the field over the2067

180o azimuthal extent (using a gnuplot script, bottom of Tab. 3.2.2068

Note the following:2069

(i) the field map azimuthal extent (set at 180o in geneSectorMap) can be changed,2070

for instance to simulate a 60 deg sector instead;2071

(ii) the field is vertical being the mid-plane field of dipole magnet. The field2072

is taken constant in this exercise, ∀R, ∀θ throughout the map mesh, whereas in2073

upcoming exercises, a focusing index will be introduced, which will make BZ ≡2074

BZ (R) an R-dependent quantity (in Chap. 4 which addresses Thomas focusing and2075

the isochronous cyclotron, exercises will further resort to BZ ≡ BZ (R, θ), an R- and2076

θ-dependent quantity).2077

This field map can be readily tested using the example of Tab. 3.3, which raytraces2078

Ek = 0.12, 0.2 and 5.52 MeV protons on circular trajectories centered at the center2079

of the field map. Trajectory radii, respectively R = 10.011, 12.924 and 67.998 cm2080

(Tab. 3.3), have been prior determined from2081

Rigidity Bρ = B0 × R and Bρ = p/c =
√

Ek(Ek + 2 M)/c (3.34)

with B0 = 0.5 T (Tab. 3.1) and M = 938.272 MeV/c2 the proton mass.2082

The optical sequence for this particle raytracing uses the following keywords:2083
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Table 3.1 A Fortran program which generates a 180o mid-plane field map. This angle as well as
field amplitude can be changed, a field index can be added. This program can be compiled and run,
as is. The field map it produces is logged in geneSectorMap.out

C geneSectorMap.f program

implicit double precision (a-h,o-z)

parameter (pi=4.d0*atan(1.d0), BY=0.d0, BX=0.d0, Z=0.d0)

open(unit=2,file=’geneSectorMap.out’) ! Field map storage file.

C------------ Hypotheses :

AT = 180.d0 /180.d0*pi ! Angular extent of field map. Can be changed 360, 60 deg, etc.).

BZ=5.d0 ! Field (kG).

Rmi=1.d0; Rma=76.d0; RM=50.d0 ! cm. Radial extent of field map; reference radius to define mesh.

dR = 0.5d0 ; NR = NINT((Rma - Rmi)/dR)+1 ! R-distance between nodes in mesh. Number of R-nodes.

C RdA=RM*dA is the distance between two nodes along R=RM arc,

RdA = 0.5d0 ! given angle increment dA (dA is the "Delta theta" quantity in the main text).

NX= NINT(RM*AT /RdA) +1 ; RdA= RM*AT / DBLE(NX -1) ! exact mesh step at RM, corresponding to NX.

dA = RdA / RM ;A1 = 0.d0 ; A2 = AT ! corresponding delta_angle.

C----------------------------------------------

write(2,*) Rmi,dR,dA/pi*180.d0,dZ,

>’ ! Rmi/cm, dR/cm, dA/deg, dZ/cm’

write(2,*) ’# Field map generated using geneSectorMap.f ’

write(2,fmt=’(a)’) ’# AT/rd, AT/deg, Rmi/cm, Rma/cm, RM/cm,’

>//’ NR, dR/cm, NX, RdA/cm, dA/rd : ’

write(2,fmt=’(a,1p,5(e16.8,1x),2(i3,1x,e16.8,1x),e16.8)’)

>’# ’,AT, AT/pi*180.d0,Rmi, Rma, RM, NR, dR, NX, RdA, dA

write(2,*) ’# For TOSCA: ’,NX,NR,’ 1 22.1 1. !IZ=1 -> 2D ; ’

>//’MOD=22 -> polar map ; .MOD2=.1 -> one map file’

write(2,*) ’# R*cosA Z==0, R*sinA’

>//’ BY BZ BX ix jr’

write(2,*) ’# cm cm cm ’

>//’ kG kG kG ’

write(2,*) ’# ’

do jr = 1, NR

R = Rmi + dble(jr-1)*dR

do ix = 1, NX

A = A1 + dble(ix-1)*dA ; X = R * sin(A) ; Y = R * cos(A)

write(2,fmt=’(1p,6(e16.8),2(1x,i0))’) Y,Z,X,BY,BZ,BX,ix,jr

enddo

enddo

stop ’ Job complete ! Field map stored in geneSectorMap.out.’

end
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Fig. 3.20 Left: map of a constant magnetic field over a 180 deg sector, 76 cm radial extent. Right:
three circular trajectories, at respectively 0.12, 0.2 and 5.52 MeV, computed using that field map
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Table 3.2 First and last few lines of the field map file geneSectorMap.out. The file starts with
an 8-line header, the first of which is effectively used by zgoubi (the following 7 are not used)
and indicates, in that order: the minimum radius of the map mesh Rmi, the radial increment dR,
the azimuthal increment dA, the axial increment dZ (null and not used in the present case of a
two-dimensional field map), in units of, respectively, cm, cm, degree, cm. The additional 7 lines
provide the user with various indications regarding numerical values used in, or resulting from, the
execution of geneSectorMap.f. The first 5 numerical data in line 5 in particular are to be reported
in zgoubi input data file under TOSCA keyword. The rest of the file is comprised of 8 columns,
the first three give the node coordinates and the next three the field component values at that node,
the last two columns are the (azimuthal and radial) node numbers, from (1,1) to (315,151) in the
present case

1.00 0.500 0.57324840764331209 0.00 ! Rmi/cm, dR/cm, dA/deg, dZ/cm

# Field map generated using geneSectorMap.f

# AT/rd, AT/deg, Rmi/cm, Rma/cm, RM/cm, NR, dR/cm, NX, RdA/cm, dA/rd :

# 3.14159265E+00 1.800E+02 1.000E+00 7.600E+01 5.000E+01 151 5.000E-01 315 5.00253607E-01 1.00050721E-02

# For TOSCA: 315 151 1 22.1 1. !IZ=1 -> 2D ; MOD=22 -> polar map ; .MOD2=.1 -> one map file

#

# R*cosA Z==0, R*sinA BY BZ BX ix jr

# cm cm cm kG kG kG

1.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 5.00000000E+00 0.00000000E+00 1 1

9.99949950E-01 0.00000000E+00 1.00049052E-02 0.00000000E+00 5.00000000E+00 0.00000000E+00 2 1

9.99799804E-01 0.00000000E+00 2.00088090E-02 0.00000000E+00 5.00000000E+00 0.00000000E+00 3 1

9.99549577E-01 0.00000000E+00 3.00107098E-02 0.00000000E+00 5.00000000E+00 0.00000000E+00 4 1

9.99199295E-01 0.00000000E+00 4.00096065E-02 0.00000000E+00 5.00000000E+00 0.00000000E+00 5 1

9.99199295E-01 0.00000000E+00 4.00096065E-02 0.00000000E+00 5.00000000E+00 0.00000000E+00 5 1

................................

-7.59391464E+01 0.00000000E+00 3.04073010E+00 0.00000000E+00 5.00000000E+00 0.00000000E+00 311 151

-7.59657679E+01 0.00000000E+00 2.28081394E+00 0.00000000E+00 5.00000000E+00 0.00000000E+00 312 151

-7.59847851E+01 0.00000000E+00 1.52066948E+00 0.00000000E+00 5.00000000E+00 0.00000000E+00 313 151

-7.59961962E+01 0.00000000E+00 7.60372797E-01 0.00000000E+00 5.00000000E+00 0.00000000E+00 314 151

-7.60000000E+01 0.00000000E+00 9.30731567E-15 0.00000000E+00 5.00000000E+00 0.00000000E+00 315 151

A gnuplot script to obtain a graph of B(X,Y), Fig. 3.20:

# gnuplot_fieldMap.gnu

set key maxcol 1 ; set key t l ; set xtics mirror ; set ytics mirror ; cm2m = 0.01

set xlabel "Y [m]"; set ylabel "X [m]"; set zlabel "B [kG] \n" rotate by 90; set zrange [:5.15]

splot "geneSectorMap.out" u ($1 *cm2m):($3 *cm2m):($5) w l lc rgb "red" notit; pause 1

(i) OBJET to define a (arbitrary) reference rigidity and initial particle coordinates2084

(ii) TOSCA, to read the field map and raytrace through (and TOSCA’s ’IL=2’2085

flag to store step-by-step particle data into zgoubi.plt)2086

(iii) FAISCEAU to print out particle coordinates in zgoubi.res execution listing2087

(iv) SYSTEM to run a gnuplot script (Tab. 3.3) once raytracing is complete2088

(v) MARKER, to define two particular “LABEL_1” type labels [16, lookup INDEX]2089

(#S_halfDipole and #E_halfDipole), to be used with INCLUDE in subsequent exer-2090

cises.2091

Three circular trajectories in a dee, resulting from the data file of Tab. 3.3 are2092

shown in Fig. 3.20. Inspecting zgoubi.res execution listing one finds the D, Y, T, Z,2093

P, S particle coordinates under FAISCEAU, at OBJET (left) and current (right) after2094

a turn in the cyclotron (unchanged, as the trajectory forms a closed orbit):2095

6 Keyword, label(s) : FAISCEAU IPASS= 12096

TRACE DU FAISCEAU2097

(follows element # 5)2098

2 TRAJECTOIRES2099

OBJET FAISCEAU2100

D Y(cm) T(mr) Z(cm) P(mr) S(cm) D-1 Y(cm) T(mr) Z(cm) P(mr) S(cm)2101

o 1 0.7746 10.011 0.000 0.000 0.000 0.0000 -0.2254 10.011 -0.000 0.000 0.000 3.145152E+01 12102

o 1 5.2610 67.998 0.000 0.000 0.000 0.0000 4.2610 67.998 -0.000 0.000 0.000 2.136220E+02 22103

(b) Concentric trajectories in the median plane.2104
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Table 3.3 Simulation input data file FieldMapSector.inc: it is set to allow a preliminary test
regarding the field map geneSectorMap.out (as produced by the Fortran program geneSectorMap,
Tab. 3.1), by computing three circular trajectories centered on the center of the map. This file also
defines the INCLUDE segment between the labels (LABEL1 type [16, Sect. 7.7]) #S_halfDipole
and #E_halfDipole

FieldMapSector.inc

! Uniform field 180 deg sector. FieldMapSector.inc.

’MARKER’ FieldMapSector_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

3 1

10.011362 0. 0. 0. 0. 0.7745802 ’a’ ! p[MeV/c]= 15.007, Brho[kG.cm]= 50.057, kin-E[MeV]=0.12.

12.924888 0. 0. 0. 0. 1. ’b’ ! kin-E[MeV]=0.2.

67.997983 0. 0. 0. 0. 5.2610112 ’c’ ! p[MeV/c]=101.926, Brho[kG.cm]=339.990, kin-E[MeV]=5.52.

1 1 1

’MARKER’ #S_halfDipole

’TOSCA’

0 2 ! IL=2 to log step-by-step coordinates, spin, etc., to zgoubi.plt (avoid, if CPU time matters).

1. 1. 1. 1. ! Normalization coefficients, for B, X, Y and Z coordinate values read from the map.

HEADER_8 ! The field map file starts with an 8-line header.

315 151 1 22.1 1. ! IZ=1 for 2D map; MOD=22 for polar frame; .MOD2=.1 if only one map file.

geneSectorMap.out

0 0 0 0 ! Possible vertical boundaries within the field map, to start/stop stepwise integration.

2

1. ! Integration step size. Small enough for orbits to close accurately.

2 ! Magnet positionning option.

0. 0. 0. 0. ! Magnet positionning.

’MARKER’ #E_halfDipole

’FAISCEAU’

’SYSTEM’ ! This SYSTEM command runs gnuplot, for a graph of the two trajectories.

1

gnuplot <./gnuplot_Zplt.gnu

’MARKER’ FieldMapSector_E ! Just for edition purposes.

’END’

A gnuplot script to obtain a graph of the orbits, Fig. 3.20:

# gnuplot_Zplt.gnu

set key maxcol 1 ; set key t r ; set xtics ; set ytics ; cm2m = 0.01 ; unset colorbox

set xlabel "X_{Lab} [m]" ; set ylabel "Y_{Lab} [m]" ; set size ratio 1 ; set polar

plot for [orbit=1:3] "zgoubi.plt" u ($19==orbit ? $22 :1/0):($10 *cm2m):($19) w l lw 2 lc pal; pause 1

The optical sequence for this exercise is given in Tab. 3.4. Compared to the2105

previous sequence (Tab. 3.3), (i) the TOSCA segment has been replaced by an2106

INCLUDE, for the mere interest of making the input data file for this simulation2107

shorter, and (ii) additional keywords are introduced, including2108

- FIT, which finds the circular orbit for a particular momentum,2109

- FAISCEAU, a means to check local particle coordinates,2110

- REBELOTE, which repeats the execution of the sequence (REBELOTE sends2111

the execution pointer back to the top of the data file) for a new momentum value2112

which REBELOTE itself defines, prior.2113

In order to compute and then plot trajectories (Fig. 3.21), zgoubi proceeds as2114

follows: orbit circles for a series of different radii taken in [10, 80] cm are searched,2115

using FIT to find the appropriate momenta. REBELOTE is used to repeat that fitting2116

on a series of different values of R; prior to repeating, REBELOTE modifies the2117

initial particle coordinate Y0 in OBJET. Stepwise particle data through the dipole2118

field are logged in zgoubi.plt, due to IL=2 under TOSCA keyword, at the first pass2119

before FIT, and at the last pass following FIT completion. A key point here: a flag,2120
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Table 3.4 Simulation input data file: optical sequence to find cyclotron closed orbits at a series of
different momenta. An INCLUDE inserts the #S_halfDipole to #E_halfDipole TOSCA segment of
the sequence of Tab. 3.3

Uniform field 180 deg. sector. Find orbits.

’MARKER’ FieldMapOrbits_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

1 1 ! Just one ion.

12.9248888074 0. 0. 0. 0. 1. ’m’ ! This initial radius yields BR=64.6244440372 kG.cm.

1

’INCLUDE’ ! A half of the cyclotron dipole.

1

FieldMapSector.inc[#S_halfDipole:#E_halfDipole]

’FAISCEAU’

’INCLUDE’ ! A half of the cyclotron dipole.

1

FieldMapSector.inc[#S_halfDipole:#E_halfDipole]

’FIT’

1

2 35 0 6. ! Vary momentum, to allow fulfilling the following constraint:

1

3.1 1 2 5 0. 1. 0 ! request same radius after a half-turn (i.e., after first 180 deg sector,

! this ensures centering of orbit on center of map).

’FAISCEAU’ CHECK ! Allows quick check of particle coordinates, in zgoubi.res: final should = initial.

’REBELOTE’ ! Repeat what precedes,

15 0.1 0 1 ! 15 times.

1

OBJET 30 10:80 ! Prior to each repeat, first change the value of parameter 30 (i.e., Y) in OBJET.

’SYSTEM’

2

gnuplot <./gnuplot_Zplt.gnu

cp gnuplot_Zplt_XYLab.eps gnuplot_Zplt_XYLab_stage1.eps

’MARKER’ FieldMapOrbits_E ! Just for edition purposes.

’END’

A gnuplot script to obtain Fig. 3.21:

Note: removing the test ’$51==1 ?’ on column 51 in zgoubi.plt, would add on the graph the orbit
as it is before each FIT.

# gnuplot_Zplt.gnu

set key maxcol 1 ; set key t r ; set xtics ; set ytics ; set size ratio 1 ; set polar ; unset colorbox

set xlabel "X_{Lab} [m] \n" ; set ylabel "Y_{Lab} [m] \n" ; cm2m = 0.01 ; sector1=4 ; sector2=8 ; pi = 4.*atan(1.)

lmnt1 = 4; lmnt2=8 ### column numer in zgoubi.plt, $42: NOEL; $51: FITLST; $49: FIT number

plot for [l=lmnt1/4:lmnt2/4] "zgoubi.plt" u ($42==4*l && $51==1 ? $22 +pi*(l-1):1/0):($10 *cm2m):($49) w p ps .3 lc pal

pause 1

Fig. 3.21 Circular trajectories
in the cyclotron mid-plane,
centered on the field map
center. The outermost orbit
is at R=80 cm by hypothesis,
thus BR = B0 × R = 0.4 T m,
Ek = 7.632 MeV. These
stepwise (R, θ) data are read
from zgoubi.plt, coordinates
(Y,X) in zgoubi polar frame
nomenclature [16, Sect.8̇.3]
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FITLST, recorded in column 51 in zgoubi.plt [16, Sect.8̇.3], is set to 1 at the last2121

pass (the last pass follows the completion of the FIT execution and uses updated FIT2122

variable values).2123

At the bottom of zgoubi input data file, a SYSTEM command produces a graph2124

of ion trajectories, by executing a gnuplot script (bottom of Tab. 3.4). Note the test2125

on FITLST, which allows selecting the last pass following FIT completion. Graphic2126

outcomes are given in Fig. 3.21.2127

Fig. 3.22 Numerical (mark-
ers) and theoretical (solid
lines) values of orbit radius,
R, and revolution period, Trev,
versus kinetic energy (top
scale) and rigidity (bottom
scale). The mesh density here
is Nθ × NR = 315 × 151.
The integration step size is
∆s = 1 cm, so ensuring con-
verged results (to ∆R/R and
∆Trev/Trev < 10−6)
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The reason why it is possible to push the raytracing beyond the 76 cm radius field2128

map extent, without loss of accuracy, is that the field is constant. Thus, referring to2129

the polynomial interpolation technique used [16, Sect. 1.4], the extrapolation out of2130

the map will leave the field value unchanged.2131

(c) Energy and rigidity dependence of orbit radius and time-of-flight.2132

The orbit radius R and the revolution time Trev as a function of kinetic energy Ek2133

and rigidity BR are obtained by a similar scan to exercise (b). The results are shown2134

in Fig. 3.22.2135

A slow increase of revolution period with energy can be observed, which is due2136

to the mass increase.2137

Note that these results are converged for the step size, to high accuracy (see (d)),2138

due to its value taken small enough, namely∆s = 1 cm. This corresponds for instance2139

to 80 steps to complete a revolution for the 120 keV, R = 12.9 cm smaller radius2140

trajectory in Fig 3.21.2141

(d) Numerical convergence: mesh density.2142

This question concerns the dependence of the numerical convergence of the2143

solution of the differential equation of motion [16, Eq. 1.2.1] upon mesh density.2144

The program used in (b) to generate a field map (Tab. 3.1) is modified to construct2145

field maps of BZ (R, θ) with various radial and azimuthal mesh densities. Changing2146
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Fig. 3.23 Convergence versus
mesh density and step size:
a graph of orbit radius R

(left axis), and revolution
period,Trev (right axis), versus
kinetic energy (top scale) and
rigidity (bottom scale). Solid
markers are for ∆s = 1 cm
and Nθ × NR = 3 × 3 node
mesh, large empty circles
are for ∆s = 10 cm and
Nθ × NR = 106 × 151 node
mesh. Solid lines are from
theory and show convergence
in the case 3 × 3 nodes and
∆s = 1 cm
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Table 3.5 Field map of a 60o constant field sector as read by TOSCA. The field map is complete,
with smallest possible NX × NR = 3 × 3 = 9 number of nodes. The first line of the header is
used by zgoubi (the following 7 are not used), namely, the minimum value of the radius in the
map, radius increment, azimuthal increment, and vertical increment (null here, as this is a single,
mid-plane map)

1.0 37.50 30.0 0. ! Rmi/cm, dR/cm, dA/deg, dZ/cm

# Field map generated using geneSectorMap.f

# AT/rd, AT/deg, Rmi/cm, Rma/cm, RM/cm, NR, dR/cm, NX, RdA/cm, dA/rd :

# 1.04719755E+00 60. 1. 76. 50. 3 37.5 3 26.1799388 0.523598776

# For TOSCA: 3 3 1 22.1 1. !IZ=1 -> 2D ; MOD=22 -> polar map ; .MOD2=.1 -> one map file

#

# R*cosA Z==0, R*sinA BY BZ BX ix jr

# cm cm cm kG kG kG

1.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 5.00000000E+00 0.00000000E+00 1 1

8.66025404E-01 0.00000000E+00 5.00000000E-01 0.00000000E+00 5.00000000E+00 0.00000000E+00 2 1

5.00000000E-01 0.00000000E+00 8.66025404E-01 0.00000000E+00 5.00000000E+00 0.00000000E+00 3 1

3.85000000E+01 0.00000000E+00 0.00000000E+00 0.00000000E+00 5.00000000E+00 0.00000000E+00 1 2

3.33419780E+01 0.00000000E+00 1.92500000E+01 0.00000000E+00 5.00000000E+00 0.00000000E+00 2 2

1.92500000E+01 0.00000000E+00 3.33419780E+01 0.00000000E+00 5.00000000E+00 0.00000000E+00 3 2

7.60000000E+01 0.00000000E+00 0.00000000E+00 0.00000000E+00 5.00000000E+00 0.00000000E+00 1 3

6.58179307E+01 0.00000000E+00 3.80000000E+01 0.00000000E+00 5.00000000E+00 0.00000000E+00 2 3

3.80000000E+01 0.00000000E+00 6.58179307E+01 0.00000000E+00 5.00000000E+00 0.00000000E+00 3 3

Modified TOSCA keyword data, in the case of a 60o sector field map (compared to Tab. 3.3, the
sole data line “3 3 1 22.1 1.” changes, from “315 151 1 22.1 1.” in that earlier 180o sector case):

’TOSCA’

0 2 ! IL=2: log step-by-step coordinates, spin, etc., in zgoubi.plt (avoid if CPU time matters).

1. 1. 1. 1. ! Normalization coefficients, for B, X, Y and Z coordinate values read from the map.

HEADER_8 ! The field map file starts with an 8-line header.

3 3 1 22.1 1. ! IZ=1 for 2D map; MOD=22 for polar frame; .MOD2=.1 if only one map file.

geneSectorMap.out

0 0 0 0 ! Possible vertical boundaries within the field map, to start/stop stepwise integration.

2

1. ! Integration step size. Small enough for orbits to close accurately.

2 ! Magnet positionning option.

0. 0. 0. 0. ! Magnet positionning.
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these is simply a matter of modifying the quantities dR (radius increment ∆R) and2147

R dA (R times the azimuth increment ∆θ) in the program of Tab. 3.1. The field maps2148

geneSectorMap.out so generated for various (dR, RdA) couples may be saved under2149

different names, and used separately.2150

Table. 3.5 shows the complete, 9 line, TOSCA field map, in the case of a 60o2151

sector covered in Nθ × NR =
60o

∆θ
× 75 cm

∆R
=

360o

120o
× 75 cm

37.5cm
= 3 × 3 nodes. Six2152

sectors are now required to cover the complete cyclotron dipole: zgoubi input data2153

need be changed accordingly, namely stating TOSCA - possibly via an INCLUDE -2154

six times, instead of just twice in the case of a 180 degree sector.2155

The result to be expected: with a mesh reduced to as low as Nθ × NR = 3 × 3,2156

compared to Nθ × NR = 106× 151, radius and time-of-flight should however remain2157

unchanged. This shows in Fig. 3.23 which displays both cases, over a Ek : 0.12 →2158

5 MeV energy span (assuming protons). The reason for the absence of effect of the2159

mesh density is that the field is constant. As a consequence the field derivatives in the2160

Taylor series based numerical integrator are all zero [16, Sect. 1.2]: only BZ is left2161

in evaluating the Taylor series, however BZ is constant. Thus R remains unchanged2162

when pushing the ion by a step ∆s, and the cumulated path length - the closed orbit2163

length - and revolution time - path length over velocity - end up unchanged. Note:2164

this will no longer be the case when a radial field index is introduced in order to2165

cause vertical focusing, in subsequent exercises.2166

(e) Numerical convergence: integration step size2167

Figure 3.23 displays two cases of step sizes, ∆s ≈ 1 cm and ∆s = 10 cm.2168

It has been shown (Fig. 3.22) that ∆s ≈ 1 cm is small enough that the numerical2169

integration is converged, agreement with theoretical expectation is quite good.2170

The difference on the value of R, in the case ∆s ≈ 10 cm, appears to be weak,2171

only noticeable at the scale of the graph for R values small enough that the number2172

of steps over one revolution goes as low as 2πR/∆s ≈ 2π×14.5/10 ≈ 9. The change2173

in time-of-flight due to the larger step size amounts to a relative 10−3.2174

Step size is critical in the numerical integration, the reason is that the coefficients2175

of the Taylor series that yield the new position vector R(M1) and velocity vector2176

v(M1), from an initial location M0 after a ∆s push, are the derivatives of the velocity2177

vector [16, Sect. 1.2] and may take substantial values if v(s) changes quickly. In2178

such case, taking too large a ∆s value makes the high order terms significant and2179

the Taylor series truncation [16, Eq. 1.2.4] is fatal to the accuracy (regardless of a2180

possible additional issue of radius of convergence of the series).2181

(f) Numerical convergence:
δR

R
(∆s)2182

Issues faced are the following:2183

- the increase of δR(∆s)/R at large ∆s has been addressed above;2184

- a small ∆s is liable to cause an increase of δR(∆s)/R, due to computer accuracy:2185

truncation of numerical values at a limited number of digits may cause a ∆s push to2186

result in no change in R(M1) (position) and u(M1) (normed velocity) quantities [16,2187

Eq. 1.2.4].2188
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A detailed answer to the question, including graphs, is left to the reader, the2189

method is the same as in (e).2190

3.2 Modeling a Cyclotron Dipole: Using an Analytical Field Model2191

2192

This exercise introduces the analytical modeling of a dipole, using DIPOLE [16,2193

lookup INDEX], and compares outcomes to the field map case of exercise 3.1. The2194

exercise is not entirely solved, however all the material needed for that is provided,2195

and indications are given to complete it.2196

(a) Analytical modeling.2197

DIPOLE keyword provides an analytical model of the field to simulate a sector2198

dipole with index, namely [16, lookup INDEX]2199

BZ = F (θ)B0

[

1 + k

(
R − R0

R0

)
+ k ′

(
R − R0

R0

)2

+ k ′′
(

R − R0

R0

)3
]

(3.35)

R0 is a reference radius, B0 = BZ (R0)|F≡1 is a reference field value, k is the field2200

index and k’, k” are homogeneous to its first and second derivative with respect to2201

R (Eq. 3.11). F (θ) is an azimuthal form factor, defined by the fringe field model,2202

presumably taking the value 1 in the body of the dipole. In the present case a2203

hard-edge field model is considered, so that2204

F =
{

1 inside

0 outside
the dipole magnet (3.36)

Fig. 3.24 Parameters used
to define the geometry of a
dipole magnet with index,
using DIPOLE. In the text,
ACENT is noted ACN [16,
Fig. 9]
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Setting up the input data list under DIPOLE (Table 3.6) requires close inspection2205

of Fig. 3.24, which details the geometrical parameters such as the full angular2206

opening of the field region that DIPOLE comprises, AT; a reference angle ACN2207

to allow positioning the effective field boundaries at ω+ and ω−; field and indices;2208

fringe field regions at ACN − ω+ (entrance) and ACN − ω− (exit); wedge angles,2209

etc.2210

A 60 deg sector is used here for convenience, it is detailed in Table 3.6 (Table 3.72211

provides the definition of a 180 deg sector, for possible comparisons with the present2212

three-sector assembly).2213

In setting up DIPOLE data the following values have been accounted for:2214

- R0 = 50 cm, an arbitrary value (consistent with other exercises), more or less2215

half the dipole extent,2216

- B0 = BZ (R0) = 5 kG, as in the previous exercise. Note in passing, R0 = 50 cm2217

thus corresponds to BR = 0.25 T m, Ek = 2.988575 MeV proton kinetic energy,2218

- radial field index k = 0 for the time being (constant field at all (R, θ)),2219

- a hard-edge field model for F (Eq. 3.36). In that manner for instance, two2220

consecutive 60 deg sectors form a continuous 120 deg sector.2221

A graph of BZ (R, θ) can be produced by computing constant radius orbits, for a2222

series of energies ranging in 0.12 − 5.52 MeV for instance. DIPOLE[IL=2] causes2223

logging of step by step particle data in zgoubi.plt, including particle position and2224

magnetic field vector; these data can be read and plotted, to yield similar results to2225

Fig. 3.20.2226

(b) Concentric trajectories in the median plane.2227

The optical sequence of Exercise 3.1-b (Tab. 3.4) can be used, by just changing2228

the INCLUDE to account for a 180o DIPOLE (instead of TOSCA), namely2229

’INCLUDE’2230

12231

3* 60degSector.inc[#S_60degSectorUnifB:#E_60degSectorUnifB]2232

wherein 60degSector.inc is the name of the data file of Tab. 3.6 and2233

[#S_60degSectorUnifB:#E_60degSectorUnifB]2234

is the DIPOLE segment as defined in the latter. Note that the segment represents a2235

60o DIPOLE, thus it is included 3 times.2236

The additional keywords in that modified version of the Tab. 3.4 file include2237

- FIT, which finds the circular orbit for a particular momentum,2238

- FAISTORE to print out particle data once FIT is completed,2239

- REBELOTE, which repeats the execution of the sequence (REBELOTE sends2240

the execution pointer back to the top of the data file) for a new momentum value2241

which REBELOTE itself defines.2242

For the rest, follow the same procedure as for exercise 3.1-b. The results are the2243

same, Fig. 3.21.2244

(c) Energy and rigidity dependence of orbit radius and time-of-flight.2245
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The orbit radius R and the revolution time Trev as a function of kinetic energy Ek2246

and rigidity BR are obtained by a similar scan to exercise (b). The procedure is the2247

same as in exercise 3.1-c. Results are expected to be the same as well (Fig. 3.22).2248

A comparison of revolution periods can be made using the simulation file of2249

Table 3.6 which happens to be set for a momentum scan and yields Fig. 3.25, to2250

be compared to Fig. 3.22: DIPOLE and TOSCA produce the same results as long2251

as both methods are converged, from the integration step size stand point (small2252

enough), and regarding TOSCA from field map mesh density stand point in addition2253

(dense enough).2254

(d) Numerical convergence: integration step size;
δR

R
(∆s).2255

This question concerns the dependence of the numerical convergence of the2256

solution of the differential equation of motion upon integration step size.2257

Follow the procedure of exercise 3.1-e: a similar outcome to Fig. 3.23 is expected2258

- ignoring mesh density with the present analytical modeling using DIPOLE.2259

The
δR

R
dependence upon the integration step size ∆s is commented in exer-2260

cise 3.1-e and holds regardless of the field modeling method (field map or analytical2261

model).2262

(e) Pros and cons.2263

Using a field map is a convenient way to account for complicated one-, two- or2264

three-dimensional field distributions.2265

However, using an analytical field model rather, ensures greater accuracy of the2266

integration method.2267

CPU-time wise, one or the other method may be faster, depending on the problem.2268

Fig. 3.25 A scan of radius-
dependent revolution fre-
quency. An analytical model
of a cyclotron dipole is used,
featuring uniform field (no
radial gradient, at this point)
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Table 3.6 Simulation input data file 60degSector.inc: analytical modeling of a dipole magnet,
using DIPOLE. That file defines the labels (LABEL1 type [16, Sect. 7.7]) #S_60degSectorUnifB
and #E_60degSectorUnifB, for INCLUDEs in subsequent exercises. It also realizes a 60-sample
momentum scan of the cyclotron orbits, from 200 keV to 5 MeV, using REBELOTE

Note: this file is available in zgoubi sourceforge repository at
https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/book/zgoubiMaterial/cyclotron_classical/ProbMdlAnal/

60degSector.inc

! Cyclotron, classical. Analytical model of dipole field. File name: 60degSector.inc

’MARKER’ ProbMdlAnal_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! 200keV proton.

2

1 1 ! Just one ion.

12.9248888074 0. 0. 0. 0. 1. ’m’ ! Closed orbit coordinates for D=p/p_0=1

1 ! => 200keV proton. R=Brho/B=64.624444037[kG.cm]/5[kG].

’PARTICUL’ ! Optioanl - using PARTICUL is a way to get the time-of-flight computed,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’FAISCEAU’ ! Local particle coordinates.

’MARKER’ #S_60degSectorUnifB ! Label should not exceed 20 characters.

’DIPOLE’ ! Analytical modeling of a dipole magnet.

2 ! IL=2, only purpose is to logged trajectories in zgoubi.plt, for further plotting.

60. 50. ! Sector angle AT; reference radius R0.

30. 5. 0. 0. 0. ! Reference azimuthal angle ACN; BM field at R0; indices, N, N’, N’’.

0. 0. ! EFB 1 is hard-edge,

4 .1455 2.2670 -.6395 1.1558 0. 0. 0. ! hard-edge only possible with sector magnet.

30. 0. 1.E6 -1.E6 1.E6 1.E6 ! Entrance face placed at omega+=30 deg from ACN.

0. 0. ! EFB 2.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

-30. 0. 1.E6 -1.E6 1.E6 1.E6 ! Exit face placed at omega-=-30 deg from ACN.

0. 0. ! EFB 3 (unused).

0 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.E6 -1.E6 1.E6 1.E6 0.

2 10 ! ’2’ is for 2nd degree interpolation. Could also be ’25’ (5*5 points grid) or 4 (4th degree).

1. ! Integration step size. Small enough for orbits to close accurately.

2 0. 0. 0. 0. ! Magnet positionning RE, TE, RS, TS. Could be instead non-zero, e.g.,

! 2 RE=50. 0. RS=50. 0., as long as Yo is amended accordingly in OBJET.

’MARKER’ #E_60degSectorUnifB ! Label should not exceed 20 characters.

’FAISCEAU’ ! Local particle coordinates.

’FIT’ ! Adjust Yo at OBJET so to get final Y = Y0 -> a circular orbit.

1 nofinal

2 30 0 [12.,65.] ! Variable : Yo.

1 2e-12 199 ! constraint; default penalty would be 1e-10; maximu 199 calls to function.

3.1 1 2 #End 0. 1. 0 ! Constraint: Y_final=Yo.

’FAISTORE’ ! Log particle data here, to zgoubi.fai,

zgoubi.fai ! for further plotting (by gnuplot, below).

1

’REBELOTE’ ! Momentum scan, 60 samples.

60 0.2 0 1 60 different rigidities; log to video ; take initial coordinates as found in OBJET.

1 ! Change parameter(s) as stated next lines.

OBJET 35 1:5.0063899693 ! Change relative rigity (35) in OBJET; range (0.2 MeV to 5 MeV).

’SYSTEM’

1 ! 2 SYSTEM commands follow.

/usr/bin/gnuplot < ./gnuplot_TOF.gnu & ! Launch plot by ./gnuplot_TOF.gnu.

’MARKER’ ProbMdlAnal_E ! Just for edition purposes.

’END’

A gnuplot script, gnuplot_TOF.gnu, to obtain Fig. 3.25:

# gnuplot_TOF.gnu

set xlabel "R [m]"; set ylabel "T_{rev} [{/Symbol m}s]"; set y2label "f_{rev} [MHz]"

set xtics mirror; set ytics nomirror; set y2tics nomirror; set key t l ; set key spacin 1.2

nSector=6; Hz2MHz=1e-6; M=938.272e6; c=2.99792458e8; B=0.5; freqNonRel(x)= Hz2MHz* c**2*B/M/(2.*pi)

set y2range [7.58:7.63] ; set yrange[1/7.63:1/7.58]

plot \

"zgoubi.fai" u 10:($15 *nSector) axes x1y1 w lp pt 5 ps .6 lw 2 linecolor rgb "blue" tit "T_{rev}" ,\

"zgoubi.fai" u 10:(1/($15*nSector)) axes x1y2 w lp pt 6 ps .6 lw 2 linecol rgb "red" tit "f_{rev}" ,\

freqNonRel(x) axes x1y2 w l lw 2. linecolor rgb "black" tit "f_{rev},T_{rev} (non rel.)" ; pause 1
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Table 3.7 A 180o version of a DIPOLE sector, where the foregoing quantities AT = 60o , ACN =

ω+ = −ω−
= 30o have been changed to AT = 180o , ACN = ω+ = −ω−

= 90o - a file used
under the name 180degSector.inc in further exercises

Note: this file is available in zgoubi sourceforge repository at
https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/book/zgoubiMaterial/cyclotron_classical/ProbMdlAnal/

! 180degSector.inc

’MARKER’ #S_180degSectorUnifB ! Label should not exceed 20 characters.

’DIPOLE’ ! Analytical modeling of a dipole magnet.

2

180. 50. ! Sector angle 180deg; reference radius 50cm.

90. 5. 0. 0. 0. ! Reference azimuthal angle; Bo field at R0; indices, N, N’, N’’.

0. 0. ! EFB 1 is hard-edge,

4 .1455 2.2670 -.6395 1.1558 0. 0. 0. ! hard-edge only possible with sector magnet.

90. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 2.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

-90. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 3.

0 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.E6 -1.E6 1.E6 1.E6 0.

2 10.

0.5 ! Integration step size. Small enough for orbits to close accurately.

2 0. 0. 0. 0. ! Magnet positionning RE, TE, RS, TS. Could be isntead non-zero, e.g.,

! 2 RE=50. 0. RS=50. 0., as long as Yo is amended accordingly in OBJET.

’MARKER’ #E_180degSectorUnifB ! Label should not exceed 20 characters.

3.3 Resonant Acceleration2269

The field map and TOSCA [16, lookup INDEX] model of a 180o sector is used2270

here (an arbitrary choice, the analytical field modeling DIPOLE would do as well),2271

the configuration is that of Fig. 3.5 with a pair of sectors.2272

An accelerating gap between the two dees is simulated using CAVITE[IOPT=3],2273

PARTICUL is added in the sequence in order to specify ion species and data,2274

necessary for CAVITE to operate. Acceleration at the gap does not account for the2275

particle arrival time in the IOPT=3 option: whatever the later, CAVITE boost will2276

be the same as longitudinal motion is an unnecessary consideration, here).2277

The input data file for this simulation is given in Tab. 3.8. It is resorted to2278

INCLUDE, twice in order to create a double-gap sequence, using the field map model2279

of a 180o sector. The INCLUDE inserts the magnet itself, i.e., the #S_halfDipole to2280

#E_halfDipole TOSCA segment of the sequence of Tab. 3.3. Note: the theoretical2281

field model of Tab. 3.6, segment #S_60degSectorUnifB to #E_60degSectorUnifB2282

(to be INCLUDEd 3 times, twice), could be used instead: exercise 3.2 has shown2283

that both methods, field map and analytical field model, deliver the same results.2284

Particle data are logged in zgoubi.fai at both occurrences of CAVITE, under the2285

effect of FAISTORE[LABEL=cavity], Tab. 3.8. This is necessary in order to access2286

the evolution of parameters as velocity, time of flight, etc. at each half-turn, given2287

that each half-turn is performed at a different energy2288

(a) Accelerate a proton.2289

A proton with initial kinetic energy 20 keV is launched on its closed orbit radius,2290

R0 = p/qB = 4.087013 cm. It accelerates over 25 turns due to the presence to2291

REBELOTE[NPASS=24], placed at the end of the sequence. The energy range,2292

20 keV to 5 MeV, and the acceleration rate: 0.1 MeV per cavity, 0.2 MeV per turn,2293

determine the number of turns, NPASS+1 = (5 − 0.02)/0.2 ≈ 25. The accelerated2294
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trajectory spirals out in the fixed magnetic field, it is plotted in Fig. 3.26, reading2295

data from zgoubi.plt.2296

Fig. 3.26 Twenty five turn
spiral trajectory of a proton
accelerated in a uniform 0.5 T
field from 20 keV to 5 MeV
at a rate of 200 kV per turn
(a 100 kV gap voltage). The
vertical thick line material-
izes the gap, the upper half
(red) corresponds to the first
occurrence of CAVITE in
the sequence (Tab. 3.8), the
lower half (blue) corresponds
to the second occurrence of
CAVITE
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(b) Momentum and energy.2297

Proton momentum p and total energy E as a function of kinetic energy, from2298

raytracing (turn-by-turn particle data are read from zgoubi.fai, filled up due to FAI-2299

STORE) are displayed in Fig. 3.27, together with theoretical expectations, namely,2300

p(Ek) =
√

Ek(Ek + 2M) and E = Ek + M .2301
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Fig. 3.27 Energy dependence of, left: proton momentum p (left axis) and total energy E (right
axis) and of, right: proton normalized velocity β = v/c. Markers: from raytracing; solid lines:
theoretical expectation

(c) Velocity.2302

Proton normalized velocity β = v/c as a function of kinetic energy from raytracing2303

is displayed in Fig. 3.27, together with theoretical expectation, namely, β(Ek) =2304

p/(Ek + M).2305
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Table 3.8 Simulation input data file: accelerating a proton in a double-dee cyclotron, from 20 keV
to 5 MeV, at a rate of 100 kV per gap, independent of RF phase (longitudinal motion is frozen - see
question (e) dealing with CAVITE[IOPT=7] for unfrozen motion). Note that particle data are logged
in zgoubi.fai (under the effect of FAISTORE) at both occurrences of CAVITE. The INCLUDE file
FieldMapSector.inc is taken from Tab. 3.3

Cyclotron, classical. Acceleration: 20 keV -> 6 MeV.

’MARKER’ ProbAccelGap_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

1 1 ! Just one ion.

4.087013 0. 0. 0. 0. 0.3162126 ’o’ ! D=0.3162126 => Brho[kG.cm]= 20.435064, kin-E[keV]= 20.

1

’PARTICUL’ ! Usage of CAVITE requires partical data,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’FAISTORE’ ! Store particle data, turn-by-turn.

zgoubi.fai cavity ! Log coordinates at any occurence of LABEL1=cavity, in zgoubi.fai.

1

’INCLUDE’ ! Insert a 180 deg sector field map.

1

FieldMapSector.inc[#S_halfDipole:#E_halfDipole]

’FAISCEAU’ ! Particle coordinates before RF gap.

’CAVITE’ cavity ! Accelerating gap.

3 ! dW = qVsin(phi), independent of time (phi forced to constant).

0. 0. ! Unused.

100e3 1.57079632679 ! Peak voltage 100 kV; RF phase = pi/2.

’INCLUDE’ ! Insert a 180 deg sector field map.

1

FieldMapSector.inc[#S_halfDipole:#E_halfDipole]

’FAISCEAU’ ! Particle coordinates before RF gap.

’CAVITE’ cavity ! Accelerating gap.

3 ! dW = qVsin(phi), independent of time (phi forced to constant).

0. 0. ! Unused.

100e3 1.57079632679 ! Peak voltage 100 kV; RF phase = pi/2.

’REBELOTE’ ! Repeat NPASS=24 times, for a total of 25 turns; K = 99: coordinates at end of

24 0.1 99 ! previous pass are used as initial coordinates for the next pass.

’FAISCEAU’ ! Local particle coordinates logged in zgoubi.res.

’SYSTEM’

2 ! 2 SYSTEM command follow:

/usr/bin/gnuplot < ./gnuplot_Zplt_XYLab.gnu & ! plot trajectories;

/usr/bin/gnuplot < ./gnuplot_awk_Zfai_dTT.gnu & ! dC/C, dbta/bta, dT/T graph.

’MARKER’ ProbAccelGap_E ! Just for edition purposes.

’END’

Two gnuplot scripts, to obtain respectively Fig. 3.26: and Fig. 3.28:

The awk command in gnuplot_awk_Zfai_dTT.gnu takes care of a 1-row shift so to subtract next
turn data from currant turn ones.

# gnuplot_Zplt_XYLab.gnu

set xtics ; set ytics ; set xlabel "X_{Lab} [m]" ; set ylabel "Y_{Lab} [m]"

set size ratio 1 ; set polar ; cm2m = 0.01 ; pi = 4.*atan(1.)

set arrow from 0, 0 to 0, 0.67 nohead lc "red" lw 6; set arrow from 0, -0.75 to 0, 0 nohead lc "blue" lw 6

noel_1=6 ; noel_2=11 # 1st CAVITE is element noel_1; 2nd CAVITE is noel_2. Col. $42 in zgoubi.plt is element numb.

plot for [nl=noel_1:noel_2:5] "zgoubi.plt" u ($42==noel_1? $22:$22+pi ):($10 *cm2m) w p pt 5 ps .2 lc rgb "black"

# gnuplot_awk_Zfai_dTT.gnu

set xtics nomirror; set ytics mirror; set xlabel "E_k [MeV]";

set ylabel "{/Symbol Db}/{/Symbol b}, {/Symbol D}C/C, {/Symbol D}T_{rev}/T_{rev}"; set logscale y; set yrange [:3]

# zgoubi.fai columns: $25: energy; $14: path length; $23: kinetic E; $29: mass; $15: tim

plot "< awk ’/#/ {next;} { if(prev14>0 && prev25>0) print prev24, ($14 -prev14)/prev14 , prev24} \

{ prev14 = $14; prev24 = $24; prev25=$25 }’ < zgoubi.fai" u 1:2 w p pt 5 lc rgb "black" tit "{/Symbol D}C/C" ,\

"< awk ’/#/ {next;} { if(prev14>0 && prev25>0) print prev24, ( -sqrt(prev25**2-$29**2)/prev25 + \

sqrt($25**2-$29**2)/$25 )/(sqrt(prev25**2-$29**2)/prev25) , prev24} { prev14 = $14; prev24 = $24; prev25=$25 }’ \

< zgoubi.fai" u 1:2 w p pt 6 ps 1.5 lc rgb "red" tit "d{/Symbol b}/{/Symbol b}" ,\

"< awk ’/#/ {next;} { if(prev14>0 && prev25>0) print prev24, ($14 -prev14)/prev14- ( -sqrt(prev25**2-$29**2)/prev25 \

+ sqrt($25**2-$29**2)/$25 )/(sqrt(prev25**2-$29**2)/prev25) , prev24} { prev14 = $14; prev24 = $24; prev25=$25 }’ \

< zgoubi.fai" u 1:2 w p pt 8 ps 1.5 lc rgb "blue" tit "{/Symbol D}T/T=dC/C-d{/Symbol b}/{/Symbol b}" ,\

"< awk ’/#/ {next;} { if(prev14>0 && prev15>0) print prev24, ($15-prev15)/prev15 , prev24} { prev14 = $14; \

prev24 = $24; prev15=$15 }’ < zgoubi.fai" w l lw 2 lc rgb "blue" tit "theor. {/Symbol D}T/T"
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Fig. 3.28 Relative variation
of velocity ∆β/β (empty cir-
cles), circumference ∆C/C
(solid disks) and revolution
time ∆T/T (triangles), as
a function of energy, from
raytracing. Theoretical ex-
pectation for the latter is also
displayed (solid line), for
comparison
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(d) Relative velocity, orbit length and time of flight.2306

The relative increase in velocity is smaller than the relative increase in orbit length2307

as energy increases (this is what Fig. 3.28 shows). Thus the relative variation of the2308

revolution time, Eq. 3.23, is positive; in other words the revolution time increases2309

with energy, the revolution frequency decreases. Raytracing outcomes are displayed2310

in Fig. 3.28, they are obtained using the gnuplot script given in Tab. 3.8. Note that2311

the path length difference (taken as the difference of homologous quantities in a2312

common line) is always between the two CAVITEs (particle data are logged at the2313

two occurrences of CAVITE), crossed successively, which is half a turn. Same for2314

the difference between homologous velocity data on a common line, it corresponds2315

to two successive crossings of CAVITE, i.e., half a turn. The graph includes the2316

theoretical δTrev/Trev (Eq. 3.23) for comparison with raytracing; some difference2317

appears in the low velocity regime, this may be due to the large ∆β step imparted by2318

the 100 kV acceleration at the gaps.2319

(e) Harmonic h=3 RF.2320

The input data file for this simulation is given in Tab. 3.9. The RF is on harmonic2321

h=3 of the revolution frequency. It has been tuned to ensure acceleration up to 3 MeV.2322

The accelerating gap between the two dees is simulated using CAVITE[IOPT=7]: by2323

contrast with the previous exercise (where CAVITE[IOPT=3] is used), the RF phase2324

at ion arrival at the gap is now accounted for.2325

Repeating questions (b-d) is straightforward, changing what needs be changed in2326

Tab. 3.9 input data file.2327
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Table 3.9 Simulation input data file: accelerating a proton in a double-dee cyclotron, from 20 keV
to 5 MeV, using harmonic 3 RF. The INCLUDE file is taken from Tab. 3.6

Cyclotron, classical. Analytical model of dipole field.

’OBJET’

64.62444403717985 ! 200keV proton.

2

1 1 ! Just one ion.

12.924888 0. 0. 0. 0. 1. ’m’ ! D=1 => 200keV proton. R=Brho/B=64.624444037[kG.cm]/5[kG].

1

’PARTICUL’ ! This is required for spin motion to be computed,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’INCLUDE’

1 ! Include a first 180 deg sector.

./180degSector.inc[#S_180degSectorUnifB:#E_180degSectorUnifB]

’CAVITE’

7

0 22862934.0

285e3 -0.5235987755982988

’INCLUDE’

1 ! Include a second 180 deg sector.

./180degSector.inc[#S_180degSectorUnifB:#E_180degSectorUnifB]

’CAVITE’

7

0 22862934.0 ! RF = 3/T_rev.

285e3 -3.665191429188092 ! Peak voltage; synchronous phase.

’REBELOTE’

26 0.4 99 ! 26+1 turn tracking.

’END’

3.4 Spin Dance2328

The DIPOLE analytical field model of exercise 3.2 (Tab. 3.6) is used here, as2329

opposed to using a field map and TOSCA, as it allows more straightforward changes2330

in the field, if desired.2331

(a) Spin transport.2332

Spin transport is obtained by adding SPNTRK. PARTICUL is necessary in order2333

to get the Thomas-BMT equation of motion solved [16, Sect. 2]. This results in2334

the input data file given in Tab. 3.10 (excluding FIT and REBELOTE keywords,2335

introduced for the purpose of the following question (b)).2336

The use of SPNTRK results in the following outcome (an excerpt from zgoubi.res2337

execution listing):2338

4 Keyword, label(s) : SPNTRK2339

Spin tracking requested.2340

Particle mass = 938.2721 MeV/c22341

Gyromagnetic factor G = 1.7928472342

Initial spin conditions type 1 :2343

All particles have spin parallel to X AXIS2344

PARAMETRES DYNAMIQUES DE REFERENCE :2345

BORO = 64.624 kG*cm2346

beta = 0.020644112347

gamma = 1.000213162348

gamma*G = 1.79322950942349

POLARISATION INITIALE MOYENNE DU FAISCEAU DE 1 PARTICULES :2350

<SX> = 1.0000002351

<SY> = 0.0000002352

<SZ> = 0.0000002353

<S> = 1.0000002354

Spin coordinates are logged in zgoubi.res execution listing using SPNPRT. Five2355

sample passes around the cyclotron (four iterations by REBELOTE) result in the2356

following outcomes in zgoubi.res, under SPNPRT:2357

26 Keyword, label(s) : SPNPRT2358

INITIAL FINAL2359

SX SY SZ |S| SX SY SZ |S| GAMMA2360

m 1 1.000000 0.000000 0.000000 1.000000 0.268269 0.963344 0.000000 1.000000 1.00022361

m 1 1.000000 0.000000 0.000000 1.000000 0.268599 0.963252 0.000000 1.000000 1.00022362

m 1 1.000000 0.000000 0.000000 1.000000 0.268949 0.963154 0.000000 1.000000 1.00032363

m 1 1.000000 0.000000 0.000000 1.000000 0.269319 0.963051 0.000000 1.000000 1.00032364

m 1 1.000000 0.000000 0.000000 1.000000 0.269710 0.962942 0.000000 1.000000 1.00032365
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Table 3.10 Simulation input data file: add spin to the cyclotron simulation of Tab. 3.6. The present
input file INCLUDEs six copies of the 60 degree sector DIPOLE defined therein

Cyclotron, classical. Analytical model of dipole field. Spin transport.

’MARKER’ ProbAddSpin_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

1 1 ! Just one ion.

12.9248888074 0. 0. 0. 0. 1. ’m’ ! D=1 => 200keV proton. R=Brho/B=64.624444037[kG.cm]/5[kG].

1

’PARTICUL’ ! This is required to get the time-of-flight,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’SPNTRK’ ! Request spin tracking.

1 ! All spins launched longitudinal (parallel to OX axis).

’INCLUDE’

1

6* ./60degSector.inc[#S_60degSectorUnifB:#E_60degSectorUnifB] ! 6 * 60 degree sector.

’FAISCEAU’ ! Local particle coordinates.

’FIT’ ! Adjust Yo at OBJET so to get final Y = Y0 -> a circular orbit.

1 nofinal

2 30 0 [12.,65.] ! Variable : Yo.

1 2e-12 199 ! constraint; default penalty would be 1e-10; maximu 199 calls to function.

3.1 1 2 #End 0. 1. 0 ! Constraint: Y_final=Yo.

’FAISCEAU’ ! Allows checking that Y = Y0 and T = T0 = 0, here.

’SPNPRT’ ! Local spin data, logged in zgoubi.res.

’FAISTORE’ ! Log particle data here, to zgoubi.fai,

zgoubi.fai ! for further plotting of spin coordinates (by gnuplot, below).

1

’REBELOTE’ ! Momentum scan, 60 samples.

60 0.2 0 1 60 different rigidities; log to video ; take initial coordinates as found in OBJET.

1 ! Change parameter(s) as stated next lines.

OBJET 35 1:5.0063899693 ! Change relative rigity (35) in OBJET; range (0.2 MeV to 5 MeV).

’SYSTEM’

1 ! 2 SYSTEM commands follow.

/usr/bin/gnuplot < ./gnuplot_Zfai_spin.gnu &

’MARKER’ ProbAddSpin_E ! Just for edition purposes.

’END’

A gnuplot script to obtain Fig. 3.29:
The file zgoubi.1cm is a copy of zgoubi.fai obtained for a ∆s = 1 cm run; zgoubi.fai is for
∆s = 0.5 cm.

# gnuplot_Zfai_spin.gnu

set xlabel "G{/Symbol g}"; set ylabel "Spin precession angle {/Symbol q}_{sp} / 2{/Symbol p}"

set y2label "relative difference num./theor"; set logscale y2

set xtics; set ytics nomirror; set y2tics; am = 938.27208; G = 1.79284735; pi = 4.*atan(1.); set key t c spacin 1.5

plot \

"zgoubi.fai" u ($31*$25/$29):(((4.*pi -atan($21/$20)))/(2.*pi)) w lp pt 4 ps .7 tit "{/Symbol q}_{sp}/2{/Symbol p}" ,\

"zgoubi.1cm" u ($31*$25/$29):(abs((4*pi-atan($21/$20))/pi*180-$31*$25/$29*360.)) axes x1y2 w lp pt 8 ps .7 tit "1 cm",\

"zgoubi.fai" u ($31*$25/$29):(abs((4.*pi -atan($21/$20))/pi*180-$31*$25/$29*360.)) axes x1y2 w lp pt 8 ps .7 tit "5 mm"

(b) Spin precession.2366

Proton case is considered, simulation is performed using Tab. 3.10 input data file.2367

Initial spin is parallel to the X axis (longitudinal). The particle is raytraced on the2368

circular closed orbit over one revolution, for a particular momentum. Particle data2369

resulting from a FIT (FIT forces orbit closure, by varying the initial Y0) are logged2370

in zgoubi.fai, by FAISTORE. The computation is repeated using REBELOTE in the2371

very manner that the energy scan was done in exercise 3.2, over an energy range2372

12 keV→5 MeV.2373

Figure 3.29 (obtained using the gnuplot script given in Tab. 3.10) displays the2374

resulting energy dependence of the spin precession, θsp(E), together with its differ-2375

ence to theoretical expected θsp(E) = G E
M

× 2π = Gγ × 2π (proton gyromagnetic2376

anomaly G = 1.792847).2377
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Fig. 3.29 Gγ dependence
of the spin precession angle
over a revolution around the
cyclotron, in the moving
frame (left axis), and relative
difference to Gγ for the
two integration step sizes
∆s = 0.5 and 1 cm (right axis),
Markers are from raytracing,
solid lines are to guide the eye
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(c) Spin tune.2378

Two protons are injected with longitudinal initial spin Si ‖ OX axis and respective2379

energies 12 keV and 5.52 MeV, thus the following OBJET (a slight modification to2380

Tab. 3.10 data):2381

’OBJET’2382

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.2383

22384

2 12385

12.9248888074 0. 0. 0. 0. 1. ’m’ ! D=1 => 200keV proton. R=Brho/B=64.624444037[kG.cm]/5[kG].2386

67.997983 0. 0. 0. 0. 5.2610112 ’o’ ! p[MeV/c]=101.926, Brho[kG.cm]=339.990, kin-E[MeV]=5.52.2387

1 12388

FAISCEAU following FIT (Tab. 3.10) allows to control that momentum and2389

trajectory radius are matched, which means coordinates at OBJET and current co-2390

ordinates at FAISCEAU are equal. Inspection of zgoubi.res execution listing shows2391

for instance, after 4 turns:2392

OBJET FAISCEAU2393

D Y(cm) T(mr) Z(cm) P(mr) S(cm) D-1 Y(cm) T(mr) Z(cm) P(mr) S(cm)2394

1.0000 12.925 0.000 0.000 0.000 0.0000 0.0000 12.925 0.000 0.000 0.000 3.248379E+022395

5.2610 67.998 0.000 0.000 0.000 0.0000 4.2610 67.998 -0.000 0.000 0.000 1.708976E+032396

A graphic of the projection of the spin motion on the longitudinal axis, over a2397

few turns, from the ray tracing, is given in Fig. 3.30, together with the longitudinal2398

component as of the parametric equations of motion2399

{
SX = Ŝ cos(Gγθ)
SY = Ŝ sin(Gγθ) (3.37)

The motion amplitude is Ŝ = sin φ, with φ the angle that the spin vector makes with2400

the vertical precession axis. In this simulation S is launched parallel to OX, thus2401

φ = π/2 and Ŝ = 1.2402

Now, checking the spin precession:2403

Placing both FAISCEAU and SPNPRT commands right after the first dipole2404

sector allows checking the spin precession and its relationship to particle rotation,2405

for simplicity right after the first pass through that first sector, as follows. FAISCEAU2406

and SPNPRT (Tab. 3.10) yield, respectively:2407

OBJET FAISCEAU2408

D Y(cm) T(mr) Z(cm) P(mr) S(cm) D-1 Y(cm) T(mr) Z(cm) P(mr) S(cm)2409

1.0000 12.925 0.000 0.000 0.000 0.0000 0.0000 12.925 0.000 0.000 0.000 3.248379E+022410

5.2610 67.998 0.000 0.000 0.000 0.0000 4.2610 67.998 -0.000 0.000 0.000 1.708976E+032411
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Fig. 3.30 Longitudinal spin component motion (left vertical axis), observed in the moving frame,
case of 0.2 MeV energy, R=12.924888 cm (left graph), and of 5.52 MeV energy, R=67.998 cm (right
graph). Markers are from ray tracing, the solid line is the theoretical expectation (Eq. 3.37). The
right vertical axis (triangle markers; solid line is to guide the eye) shows the absolute difference
between both. The oscillation is as expected slightly faster at 5.52 MeV: frequencies are in the ratio
γ(5.52 MeV)/γ(0.2 MeV) = 1.00566

INITIAL FINAL --- angles ---2412

SX SY SZ |S| SX SY SZ |S| GAMMA |Si,Sf| (Z,Sf)2413

(deg.) (deg.)2414

m 1 1.000000 0.000000 0.000000 1.000000 -0.302266 -0.953224 0.000000 1.000000 1.0002 -107.594 90.0002415

o 1 1.000000 0.000000 0.000000 1.000000 -0.312396 -0.949952 0.000000 1.000000 1.0059 -108.204 90.0002416

SPNPRT tells that,2417

- case of the first particle, tagged ’m’ above; its energy is 200 keV, γ = 1.00021315,2418

its spin tune is νsp = Gγ = 1.7932292419

The computed value of the ’(Si, Sf )’ angle between initial and final spin vectors is2420

-107.594 (truncated), negative as spin precession has the sign of proton rotation.2421

Theoretical expectation is Gγα = −107.59377 deg. The resulting spin components2422

are, as above, SX = cos(−107.59377) = −0.302266 and SY = sin(−107.59377) =2423

−0.9532235.2424

- case of the second particle, tagged ’o’; its energy is 5.52 MeV, γ = 1.00588315,2425

its spin tune is νsp = Gγ = 1.8033942426

The computed value of ’(Si, Sf )’ is -108.204 (truncated). Theoretical expectation is2427

Gγα = −108.20370 deg.2428

Now, accounting for particle rotation in order to get spin coordinates in the2429

laboratory frame:2430

- the FAISCEAU outcome above shows that, after crossing the 60 deg sector the2431

angles of the two particles have the value T = 0, which is expected as they are2432

launched with zero incidence, and as DIPOLE uses a polar coordinate system [16]2433

with particle coordinates computed in the moving (rotating) frame. The latter has2434

also undergone a -60 deg rotation, clockwise, which is therefore the implicit rotation2435

of the particles in the laboratory frame. The spin precession in the laboratory frame2436

results, namely,2437

- case of the first particle: (1 + Gγ)α = −167.59377 deg.2438

- case of the second particle: (1 + Gγ)α = −168.20370 deg.2439

(d) Spin dance.2440
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A 200 keV proton is injected with its initial spin vector at 80 degrees from the2441

vertical axis. The input data file for this simulation is given in Tab. 3.11, together2442

with a gnuplot script for the animation. The latter plots three things, concurrently:2443

- the circular trajectory of the particle in the (X,Y) plane: this is the curve at Z=02444

in Fig. 3.31, a set of points {(R cos(−X), R sin(−X), 0)} resulting from the step by2445

step integration. Note that X is counted positive clockwise in zgoubi.fai (consistently2446

with the definition of DIPOLE parameters, Fig. 9 in [16]), hence “-X” the rotation2447

angle;2448

- the spin vector: its foot is attached to the particle (the previous set of points),2449

whereas its tip is at {(SX cos(−X) − SY sin(−X), SX sin(−X) + SY cos(−X), SZ },2450

with SX, SY, SZ the spin vector components in the moving frame as read from2451

zgoubi.fai. SZ is constant as the precession axis is parallel to the Z axis. The2452 (
cos(−X) − sin(−X)
sin) − X) cos(−X)

)
rotation applied to the (SX, SY ) vector accounts for the trans-2453

formation from the moving frame to the laboratory frame;2454

- the cycloidal shape trajectory of the tip of the spin vector (the previous set of2455

points).2456

A frozen view of that spin dance, over about 2.5 proton revolutions around the2457

ring, is given in Fig. 3.31.2458

Fig. 3.31 Dance - frozen, here - of the spin of a 200 keV proton over 2.5 turns around the cyclotron.
The circle on the left, or bottom closed curve on the right, is the trajectory of the proton. The
cycloidal curve represents the motion of the spin vector tip in the moving frame
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Table 3.11 Simulation input data file: spin dance, 20 turns around a uniform field cyclotron. The
INCLUDE file 60degSector.inc is taken from Tab. 3.6

Note: this animation (input data file & gnuplot script) is available in zgoubi sourceforge repository
at

https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/book/zgoubiMaterial/cyclotron_classical/ProbAddSpin/spinDance/

Cyclotron, classical. Spin dance.

’MARKER’ ProbAddSpinDance_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

1 1 ! Just one ion.

12.9248888074 0. 0. 0. 0. 1. ’m’ ! D=1 => 200keV proton. R=Brho/B=64.624444037[kG.cm]/5[kG].

1

’PARTICUL’ ! This is required to get the time-of-flight,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’SPNTRK’ ! Request spin tracking.

4.1 ! All spins are initially

0.984807753012 0. 0.173648177667 ! at 10 degrees to X axis.

’FAISCEAU’

’INCLUDE’

1

6* ./60degSector.inc[#S_60degSectorUnifB:#E_60degSectorUnifB] ! 6 * 60 degree sector.

’REBELOTE’ ! Multiturn:

19 0.2 99 19 additional passes.

’SYSTEM’

1

gnuplot < ./gnuplot_Zplt_SDance.gnu

’MARKER’ ProbAddSpinDance_E ! Just for edition purposes.

’END’

A gnuplot script to obtain the spin dance in Fig. 3.31. Note a “mag” factor, aimed at
artificially increasing the amplitude of the vector tip oscillation in this graphic:

set xlabel "X_{Lab}"; set ylabel "Y_{Lab}"; set zlabel "S_Z"; set xtics; set ytics; set ztics #unset ztics

set zrange [0:]; set xrange [-25:25]; set yrange [-25:25]; set xyplane 0

dip1=7; dip2=22; dd=3 # positining of 1st and last dipoles in zgoubi.dat sequence, and increment

# magnifies apparent spin tilt speed up graphic pi/3 z norm

mag = 10. ; speedUp=1 ; pi3 = 4.*atan(1.)/3 ; nz=0.18

# JUST 2D, PROJECTED IN (X,Y) PLANE, FIRST:

set size ratio -1

do for [i=1:239]{ plot \

for [dip=dip1:dip2:dd] "zgoubi.plt" every 1::::speedUp*i u ($19==1 && $42==dip? $10*cos(-$22-pi3*(dip-6.)/3.) :1/0): \

($10*sin(-$22-pi3*(dip-6.)/3.)) w l lw 3 notit ,\

for [dip=dip1:dip2:dd] "zgoubi.plt" every 1::::speedUp*i u ($19==1 && $42==dip? $10*cos(-$22-pi3*(dip-6.)/3.) \

+mag*(cos(-$22-pi3*(dip-6.)/3.)*$33-sin(-$22-pi3*(dip-6.)/3.)*$34) :1/0): \

($10*sin(-$22-pi3*(dip-6.)/3.) +mag*(sin(-$22-pi3*(dip-6.)/3.)*$33+cos(-$22-pi3*(dip-6.)/3.)*$34)) w l notit }

unset size

# 3D, NEXT:

do for [i=1:239]{ splot \

for [dip=dip1:dip2:dd] "zgoubi.plt" every speedUp*i::::speedUp*i u ($19==1&& $42==dip? $10*cos(-$22-pi3*(dip-6)/3):1/0):\

($10*sin(-$22-pi3*(dip-6)/3)):($1*0):(mag*(cos(-$22-pi3*(dip-6)/3)*$33-sin(-$22-pi3*(dip-6)/3)*$34)): \

(mag*(sin(-$22-pi3*(dip-6)/3)*$33+cos(-$22-pi3*(dip-6)/3)*$34)):($35/nz) w vectors notit ,\

for [dip=dip1:dip2:dd] "zgoubi.plt" every 1::::speedUp*i u ($19==1 && $42==dip? $10*cos(-$22-pi3*(dip-6)/3) :1/0): \

($10*sin(-$22-pi3*(dip-6)/3)):($1*0):($19==1&&$42==dip? $10*cos(-$22-pi3*(dip-6)/3):1/0):($10*sin(-$22-pi3*(dip-6)/3)): \

($1*0) w l lw 3 notit ,\

for [dip=dip1:dip2:dd] "zgoubi.plt" every 1::::speedUp*i u ($19==1 && $42==dip? $10*cos(-$22-pi3*(dip-6)/3)+mag*( \

cos(-$22-pi3*(dip-6)/3)*$33-sin(-$22-pi3*(dip-6)/3)*$34):1/0):($10*sin(-$22-pi3*(dip-6)/3)+mag*(sin(-$22-pi3*(dip-6)/3) \

*$33+cos(-$22-pi3*(dip-6)/3)*$34)):($35/nz):($19==1&&$42==dip? $10*cos(-$22-pi3*(dip-6)/3 +mag*(cos(-$22-pi3*(dip-6)/3) \

*$33 -sin(-$22-pi3*(dip-6)/3)*$34)) :1/0): ($10*sin(-$22-pi3*(dip-6)/3) +mag*(sin(-$22-pi3*(dip-6)/3)*$33+cos(-$22-pi3* \

(dip-6)/3) *$34)):($35/nz) w l lw 3 notit }

(e) Deuteron.2459

The input data file set up for questions (b-e) can be used mutatis mutandis, as2460

follows.2461

Raytracing a different particle requires changing the reference rigidity, BORO,2462

under OBJET, and changing particle data, under PARTICUL. That reference rigidity2463

is to be determined from the field value in the dipole model (namely, B0 = 5 kG).2464
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Particle data for these two particles are (respectively mass (MeV/c2), charge (C),

G factor):

deuteron : 1875.612928 1.602176487 × 10−19 − 0.14301

3He2+ : 2808.391585 3.204352974 × 10−19 − 0.14301

3.5 Synchronized Spin Torque2465

The simulation input data file of exercise 3.4-(d) can be used here, with a few2466

addenda or modifications, as follows:2467

(i) the initial ion coordinate D (rigidity relative to the reference BORO=64.6244440)2468

under OBJET has to be calculated for the four energies concerned;2469

(ii) the closed orbit radius at 0.2, 108.412, 118.878 and 160.746 MeV has to be2470

found; calculation is straightforward given that the field considered here is vertical,2471

uniform, namely, BZ=constant=5 kG, ∀R, so that R = Bρ/BZ ; otherwise a FIT2472

procedure can be used to find the orbit radius, given the rigidity, as done already2473

in various exercises [16, lookup “closed orbit”], that could help for instance in the2474

presence of a radial index, or field defects;2475

(iii) initial spins are set vertical for convenience, but this is not mandatory;2476

(iv) the multiturn tracking is set to a few 10s of turns, in order to allow a few spin2477

precessions;2478

(v) particle data through DIPOLEs are saved step-by-step all the way in zgoubi.plt2479

by means of IL=2 (the integration step size is 1 cm (Tab. 3.6), thus zgoubi.plt may2480

end up bulky);2481

(vi) turn-by-turn data are saved in zgoubi.fai by means of FAISTORE;2482

(vii) SPINR is added at the end of the sequence, to impart on spins the requested2483

X-tilt.2484

This results in the updated simulation input data file given in Tab. 3.12.2485

The oscillatory motion of the vertical spin component as the ion orbits around the2486

ring, is displayed in Fig. 3.32. The spin points upward, parallel to the vertical axis at2487

start; SPINR kick is 10 deg in the present case. At Gγ = 2 the spin always finds itself2488

back in the (Y,Z) transverse plane after one proton orbit, this synchronism causes2489

the cumulated spin tilt at SPINR to take the value N × 10 deg (with N the number of2490

orbits). Thus after 18 proton orbits, 36 spin precessions, the spin points downward;2491

it takes 36 orbits, or 226.194 rad, to complete an oscillation. If Gγ moves away from2492

an integer, the spin tilts with bounded amplitude, within the limits of a cone.2493

Additional graphs and details are obtained using the simulation file of Tab. 3.13.2494

This file simulates spin motion in three different cases, Gγ = 1.79322, Gγ = 2,2495

integer, yielding an integer number of spin precessions over one proton orbit around2496

the cyclotron, and Gγ = 2.5, half-integer, yielding a half-integer number of spin2497

precessions over one proton orbit. Outcomes are given in Fig. 3.33 which shows the2498

spin motion projected on the (X,Y) plane (horizontal), and on a sphere, step-by-step.2499

The spin kick by SPINR is 20 deg in this case. If Gγ = 1.793229, far from an integer,2500

S, initially vertical, remains at a bounded angle to the vertical axis, X-kicked from2501

one circle to another, turn after turn; if Gγ = 2 the spin vector flips by 20 degree in2502

the (Y,Z) plane at SPINR, turn after turn; if Gγ = 2.5, half-integer, the spin vector2503
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Table 3.12 Simulation input data file: superimposition of a turn-by-turn localized 10 deg X-rotation
of the spin (using SPINR[φ = 0, µ = 10]), on top of Thomas-BMT 2πGγ Z-precession. The
INCLUDE file 60degSector.inc is taken from Tab. 3.6

Cyclotron, classical. Synchronous spin kick.

’MARKER’ ProbAddSpinTorque_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

4 1

12.9248888074 0. 0. 0. 0. 1. ’m’ ! D=1 => 200keV proton. R=Brho/B=64.624444037[kG.cm]/5[kG].

3.0947295453790e2 0. 0. 0. 0. 23.9439548880185 ’m’ ! Ggamma=2

3.2492145208941e2 0. 0. 0. 0. 25.1392067607172 ’m’ ! Ggamma=2.02

3.8177333586897e2 0. 0. 0. 0. 29.5378429599586 ’m’ ! Ggamma=2.1

1 1 1 1

’PARTICUL’ ! This is required for spin motion to be computed,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’SPNTRK’ ! Request spin tracking.

4.1

0. 0. 1. ! Initial spin vector is defined here.

’FAISTORE’

zgoubi.fai

1

’INCLUDE’

1

6* ./60degSector.inc[#S_60degSectorUnifB:#E_60degSectorUnifB] ! 6 * 60 degree sector.

’FAISCEAU’

’SPINR’

1 ! Spin rotation,

0. 10. 1 about the X-axis, by 10 or 20 dgrees as the case may be.

’REBELOTE’ ! Multiturn ray-tracing.

39 0.2 99

’SYSTEM’

1

gnuplot < ./gnuplot_Zplt_spinTilt.gnu

’MARKER’ ProbAddSpinTorque_E ! Just for edition purposes.

’END’

Fig. 3.32 SZ motion ver-
sus orbital angle, while the
ion orbits on a circle. SZ

is constant over a turn and
then undergoes a disconti-
nuity upon the 10 deg X-tilt,
hence the step function. At
Gγ = 2 it takes 36 turns, or
226.194 rad, to complete an
oscillation. A graph obtained
using zpop: menu 7; 1/1 to
open zgoubi.plt; 2/[6,23] for
SZ versus θ; 7 to plot 0 50 100 150 200 250
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undergoes a half-integer number of precessions over one orbit around the cyclotron,2504

it jumps and alternates between vertical, and the surface of the 20 degree Z-axis2505

cone.2506
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Table 3.13 Simulation input data file: a similar simulation to 3.12, for different Gγ values, namely
1.79322, 2 and 2.5. The spin kick at SPINR has been changed to 20 deg. Regarding the use of
OBJET[IEX] option: IEX=-9 allows inhibiting the tracking for the particle(s) concerned, all the
rest left unchanged; it is necessary here to have at least one particle with IEX=1, for proper operation
of the gnuplot scripts. The INCLUDE file 60degSector.inc is taken from Tab. 3.6

Cyclotron, classical. Synchronized spin kick in a uniform field

’MARKER’ ProbAddSpinSphere_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

3 1

12.924889 0. 0. 0. 0. 1. ’o’ ! Ggamma=1.793229 -> 0.200MeV;

309.47295 0. 0. 0. 0. 23.943951797 ’i’ ! Ggamma=2 -> 108.411628MeV;

608.30878 0. 0. 0. 0. 47.064911290 ’h’ ! Ggamma=2.5 -> 370.082556MeV.

1 1 1 ! For any particle: set to 1 to enable ray-tracing, or to -9 to ignore.

’PARTICUL’ ! This is required for spin motion to be computed,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’SPNTRK’ ! Request spin tracking.

4.1 ! All initial spins taken parallel to Z axis.

0. 0. 1.

’SPNPRT’ PRINT

’INCLUDE’

1

6* ./60degSector.inc[#S_60degSectorUnifB:#E_60degSectorUnifB] ! 6 * 60 degree sector.

’FAISCEAU’

’SPINR’

1 ! Spin rotation,

0. 20. 1 about the X-axis, by 20 degree here.

’REBELOTE’ ! REBELOTE[K=99] for multiturn ray-tracing,

39 0.2 99 ! 39+1 turns total.

’SYSTEM’

3

gnuplot <./gnuplot_Zspnprt_spinOscillation.gnu

gnuplot < ./gnuplot_Zplt_spinTilt.gnu

gnuplot <./gnuplot_Zplt_spinTilt_3D.gnu

’END’

’MARKER’ ProbAddSpinSphere_E ! Just for edition purposes.

’END’

A gnuplot script to produce spin components versus turn, reading from zgoubi.SPNPRT.Out,
Fig. 3.33:

# gnuplot_Zspnprt_spinOscillation.gnu

set xlabel "turn"; set ylabel "S_X, S_Y, S_Z"; set key b l ; nbtrj=3 # number of trajectories tracked

do for [it=1:nbtrj] { unset label; set label sprintf("particle %3.5g",it) at 10, 0.8

plot [] [-1:1] \

’zgoubi.SPNPRT.Out’ every nbtrj::(it+2) u ($22):($13) w lp lw .3 pt 4 ps .8 lc rgb "red" ,\

’zgoubi.SPNPRT.Out’ every nbtrj::(it+2) u ($22):($14) w lp lw .3 pt 6 ps .8 lc rgb "blue" ,\

’zgoubi.SPNPRT.Out’ every nbtrj::(it+2) u ($22):($15) w lp lw .3 pt 8 ps .8 lc rgb "black" ; pause .5

set terminal postscript eps blacktext color enh

set output sprintf(’gnuplot_Zspnprt_spinOsc_trj%i.eps’,it); replot; set terminal X11; unset output }

A gnuplot script to produce 2D spin motion projection of Fig. 3.33:

# gnuplot_Zplt_spinTilt.gnu

set xlabel "S_X"; set ylabel "S_Y"; set size ratio -1; set xrange [-1:1]; set yrange [-1:1]; set key t l

nbtrj=3 # number of trajectories tracked

do for [it=1:nbtrj] { unset label; set label sprintf("particle %i",it) at -.9, .8

plot ’zgoubi.plt’ u ($19==it? $33 :1/0):($34) w lp lw .3 ps .2 lc rgb "blue"; pause .5

set terminal postscript eps blacktext color enh

set output sprintf(’gnuplot_Zplt_SX-SY_trj%i.eps’,it); replot; set terminal X11; unset output }

A gnuplot script to produce the projection on a sphere of Figs. 3.33:

# gnuplot_Zplt_spinTilt_3D.gnu

set xlabel "X"; set ylabel "Y"; set zlabel "Z"; set xrange [-1:1]; set yrange [-1:1]; set zrange [-1:1]

set xyplane 0; set view equal xyz; set view 49, 339; unset colorbox

set urange [-pi/2:pi/2]; set vrange [0:2*pi]; set parametric; R = 1. # radius of sphere

nbtrj=3 # number of trajectories tracked

do for [it=1:nbtrj] { unset label; set label sprintf(" particle %i",it) at -1, .9, 1.

splot R*cos(u)*cos(v),R*cos(u)*sin(v),R*sin(u) w l lw .2 lc rgb "cyan" notit ,\

’zgoubi.plt’ u ($19==it? $33 :1/0):($34):($35) w lp lw .2 ps .4 lc palette ; pause .5

set terminal postscript eps blacktext color enh

set output sprintf(’gnuplot_Zplt_S3D_trj%i.eps’,it); replot; set terminal X11; unset output }
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E = 200 keV Gγ = 2 Gγ = 2.5
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Fig. 3.33 Top row: spin coordinates versus turn; middle row: projection in the median plane (the
segment between two consecutive circles materializes the location of the X-kick by SPINR); bottom
row: projection on a sphere.Gγ = 1.793229: far from an integer, S remains within a cone of reduced
aperture. Gγ = 2: the spin vector oscillates between up and down orientations, by 20 deg steps; it
takes 180/20=9 orbits for the X-precession at SPINR to flip the spin; Gγ = 2.5: the spin vector finds
itself back in the (Y,Z) plane at the location of SPINR, after one orbit and a half-integer number
of precessions; it alternates between vertical and 20 deg from vertical, after each orbit around the
cyclotron

3.6 Weak Focusing2507

(a) Add a field index.2508

To the first order in R, in the median plane (Z=0) and noting R = R0 + dR,2509

BZ (R0) = B0, BZ (R) = B, the field writes (Sect. 3.2.2) B(R) = B0 + dR ∂B
∂R

��
R0

. With2510

k =
R0

B0

∂B
∂R

(Eq. 3.11) this yields2511

B(R) = B0 +
B0

R0
k dR (3.38)
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Assume the earlier 200 keV conditions as a reference, thus take2512

R0 = 12.9248888 cm as the 200 keV radius, whereas B0 = B(R0) = 5 kG.2513

Take k = −0.03, a slow decrease of the field with R - proper to ensure appropriate2514

vertical focusing with marginal impact on the radial extent of the cyclotron. For2515

instance, with that index value the 5 MeV orbit is at a radius of 75.75467 cm (see2516

OBJET in Tab. 3.3) (giving B = 0.3235 T along the orbit), whereas if k=0 then2517

R = 75.75467 cm is the 6.8463 MeV orbit radius (B = 0.3788 T).2518

The field map is generated using a similar Fortran program to that of exercise 3.12519

(see Tab. 3.1), mutatis mutandis, namely, introducing a reference radius R0 and2520

field index k. The resulting program is given in Tab. 3.14, it can be compiled and2521

executed, as is, excerpts of the field data file so obtained are given in Tab. 3.15, a2522

graph BZ (R, θ) is given in Fig. 3.34. The orbit radius is assessed for three different2523

energies, and appears to be in accord with theoretical expectation (Fig. 3.34-right).2524

Comparison with Fig. 3.20-right shows the effect of the negative index on the radial2525

distribution of the orbits, including a radius about 20% greater in the 5 MeV range.2526

The input data file to find these trajectories is given in Tab. 3.16:2527

- the file defines an INCLUDE segment, #S_60degSectorIndx to #E_60degSectorIndx,2528

used in subsequent exercises;2529

- the file is set to allow a preliminary test regarding the field map geneSec-2530

torMapIndex.out (as produced by the program given in Tab. 3.14), by computing2531

three circular trajectories centered on the center of the map, at respectively 20 keV,2532

200 keV (the reference energy for the definition of the gradient index k) and 5 MeV2533

(a large radius);2534

- note that once the FIT procedure is completed, zgoubi continues in sequence,2535

so raytracing the 3 ions through the field map with, this time, IL set to 2 under2536

TOSCA for stepwise particle data to be logged in zgoubi.plt.2537
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Fig. 3.34 Left: field map of a 60 deg magnetic sector with radial index, 76 cm radial extent. The
field decreases from the center of the ring (at (XLab,YLab) = (0, 0)). Right: three circular arc of
trajectories over a sextant, at respectively from left to right: 0.02 MeV, 0.2 MeV (energy on the
reference radius) and 5 MeV
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Table 3.14 A Fortran program which generates a 60o mid-plane field map with non-zero transverse
field k. The field map it produces is logged in geneSectorMapIndex.out

C geneSectorMapIndex.f program

implicit double precision (a-h,o-z)

parameter (pi=4.d0*atan(1.d0), BY=0.d0, BX=0.d0, Z=0.d0)

open(unit=2,file=’geneSectorMapIndex.out’) ! Field map storage file.

C------------ Hypotheses :

AT = 60.d0 /180.d0*pi ! Angular extent of field map. Can be changed 360, 60 deg, etc.).

B0 = 5.d0 ;R0 = 12.9248888074d0 ! field at R0 (kG); 200keV radius (cm), B(R0)=B0=5kG.

ak = -0.03d0 ! Field index, defined at R0.

Rmi=1.d0; Rma=76.d0; RM=50.d0 ! cm. Radial extent of field map; reference radius to define mesh.

dR = 0.5d0 ; NR = NINT((Rma - Rmi)/dR)+1 ! R-distance between nodes in mesh. Number of R-nodes.

C RdA=RM*dA is the distance between two nodes along R=RM arc,

RdA = 0.5d0 ! given angle increment dA (dA is the "Delta theta" quantity in the main text).

NX= NINT(RM*AT /RdA) +1 ; RdA= RM*AT / DBLE(NX -1) ! exact mesh step at RM, corresponding to NX.

dA = RdA / RM ; A1 = 0.d0 ; A2 = AT ! corresponding delta_angle.

C----------------------------------------------

write(2,*) Rmi,dR,dA/pi*180.d0,dZ,

>’ ! Rmi/cm, dR/cm, dA/deg, dZ/cm’

write(2,*) ’# Field map generated using geneSectorMapIndex.f ’

write(2,fmt=’(a)’) ’# AT/rd, AT/deg, Rmi/cm, Rma/cm, RM/cm,’

>//’ NR, dR/cm, NX, RdA/cm, dA/rd : ’

write(2,fmt=’(a,1p,5(e16.8,1x),2(i3,1x,e16.8,1x),e16.8)’)

>’# ’,AT, AT/pi*180.d0,Rmi, Rma, RM, NR, dR, NX, RdA, dA

write(2,*) ’# For TOSCA: ’,NX,NR,’ 1 22.1 1. !IZ=1 -> 2D ; ’

>//’MOD=22 -> polar map ; .MOD2=.1 -> one map file’

write(2,*) ’# ’

write(2,*) ’# R*cosA Z==0, R*sinA’

>//’ BY BZ BX ix jr’

write(2,*) ’# cm cm cm ’

>//’ kG kG kG ’

do jr = 1, NR

R = Rmi + dble(jr-1)*dR

BZ = B0 + B0/R0 * ak * (R - R0)

do ix = 1, NX

A = A1 + dble(ix-1)*dA ; X = R * sin(A) ; Y = R * cos(A)

write(2,fmt=’(1p,6(e16.8),2(1x,i0))’) Y,Z,X,BY,BZ,BX,ix,jr

enddo

enddo

stop ’ Job complete ! Field map stored in geneSectorMapIndex.out.’

end
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Table 3.15 First and last few lines of the field map file geneSectorMapIndex.out. The file starts
with an 8-line header, the first one of which is effectively used by zgoubi, the following 7 are just
comments

1. 0.5 0.57142857142857140 0. ! Rmi/cm, dR/cm, dA/deg, dZ/cm

# Field map generated using geneSectorMapIndex.f

# AT/rd, AT/deg, Rmi/cm, Rma/cm, R0/cm, NR, dR/cm, NX, RdA/cm, dA/rd :

# 1.04719755E+00 6.0E+01 1.0E+00 7.60E+01 1.29248888E+01 151 5.0E-01 106 4.98665501E-01 9.97331001E-03

# For TOSCA: 106 151 1 22.1 1. !IZ=1 -> 2D ; MOD=22 -> polar map ; .MOD2=.1 -> one map file

#

# R*cosA Z==0, R*sinA BY BZ BX ix jr

# cm cm cm kG kG kG

1.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 5.13839448E+00 0.00000000E+00 1 1

9.99950267E-01 0.00000000E+00 9.97314468E-03 0.00000000E+00 5.13839448E+00 0.00000000E+00 2 1

9.99801073E-01 0.00000000E+00 1.99452974E-02 0.00000000E+00 5.13839448E+00 0.00000000E+00 3 1

9.99552432E-01 0.00000000E+00 2.99154662E-02 0.00000000E+00 5.13839448E+00 0.00000000E+00 4 1

9.99204370E-01 0.00000000E+00 3.98826594E-02 0.00000000E+00 5.13839448E+00 0.00000000E+00 5 1

................................

4.05947602E+01 0.00000000E+00 6.42500229E+01 0.00000000E+00 4.26798081E+00 0.00000000E+00 102 151

3.99519665E+01 0.00000000E+00 6.46516850E+01 0.00000000E+00 4.26798081E+00 0.00000000E+00 103 151

3.93051990E+01 0.00000000E+00 6.50469164E+01 0.00000000E+00 4.26798081E+00 0.00000000E+00 104 151

3.86545219E+01 0.00000000E+00 6.54356779E+01 0.00000000E+00 4.26798081E+00 0.00000000E+00 105 151

3.80000000E+01 0.00000000E+00 6.58179307E+01 0.00000000E+00 4.26798081E+00 0.00000000E+00 106 151

A gnuplot script to obtain Fig. 3.34:

# PLOT THE FIELD MAP:

set xtics mirror ; set ytics mirror ; set xlabel "X_{Lab} [m]" ; set ylabel "Y_{Lab} [m]" ; cm2m = 0.01

set zrange [:5.15] ; set view 66, 192 ; unset colorbox

splot "geneSectorMapIndex.out" u ($1 *cm2m):($3 *cm2m):($5) w p lc palette notit ; pause 1

# PLOT THREE TRAJECTORIES

set xtics ; set ytics ; set xlabel "X_{Lab} [m]" ; set ylabel "Y_{Lab} [m]" ; cm2m = 0.01 ; set size ratio 1

plot for [trj=1:3] \

"zgoubi.plt" u ($19==trj ? $10*cm2m*cos($22) :1/0):($10*cm2m*sin($22)) w p pt 7 ps .6 notit ; pause 1
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Table 3.16 Simulation input data file FieldMapSectorIndex.inc: a file to test trajectories for a
field map with radial index. This file also defines the INCLUDE segment between the LABEL_1s
#S_60degSectorIndx and #E_60degSectorIndx

FieldMapSectorIndex.inc

! Uniform field sector with index. INCLUDE file FieldMapSectorIndex.inc

’MARKER’ FieldMapSectorIdx_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

3 1

4.003593 0. 0. 0. 0. 0.3162126 ’o’ ! p[MeV/c]= 6.126277, Brho[kG.cm]=20.435, kin-E[MeV]=0.02.

12.92488 0. 0. 0. 0. 1. ’o’ ! Reference ; p[MeV/c]=193.739, Brho[kG.cm]=BORO, kin-E[MeV]=0.2.

75.75467 0. 0. 0. 0. 5.0063900 ’o’ ! p[MeV/c]=969.934, Brho[kG.cm]=323.535, kin-E[MeV]=5.

1 1 1

’MARKER’ #S_60degSectorIndx

’TOSCA’

0 2 ! IL=2 to log step-by-step coordinates, spin, etc., in zgoubi.plt (avoid, if CPU time matters).

1. 1. 1. 1. ! Normalization coefficients, for B, X, Y and Z coordinate values read from the map.

HEADER_8 ! The field map file starts with an 8-line header.

106 151 1 22.1 1. ! IZ=1 for 2D map; MOD=22 for polar frame; .MOD2=.1 if only one map file.

geneSectorMapIndex.out

0 0 0 0 ! Possible vertical boundaries within the field map, to start/stop stepwise integration.

2

1.0 ! Integration step size. Small enough for orbits to close accurately.

2 ! Magnet positionning option.

0. 0. 0. 0. ! Magnet positionning.

’MARKER’ #E_60degSectorIndx

’FIT2’ ! This matching procedure finds the closed orbit radius.

3 nofinal

2 30 0 [2.,10.] ! Variable : Y_0, trajectory 1

2 40 0 [10.,15.] ! Variable : Y_0, trajectory 2

2 50 0 [50.,80.] ! Variable : Y_0, trajectory 3

3 1e-20 9999 ! Penalty; max numb of calls to function

3.1 1 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0, trajectory 1

3.1 2 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0, trajectory 2

3.1 3 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0, trajectory 3

! Carry on with coordinates as found, yet with IL=2 under TOSCA so to log trajectories in zgoubi.plt.

’TOSCA’

0 2 ! IL=2: log step-by-step coordinates, spin, etc., in zgoubi.plt (avoid if CPU time matters).

1. 1. 1. 1. ! Normalization coefficients, for B, X, Y and Z coordinate values read from the map.

HEADER_8 ! The field map file starts with an 8-line header.

106 151 1 22.1 1. ! IZ=1 for 2D map; MOD=22 for polar frame; .MOD2=.1 if only one map file.

geneSectorMapIndex.out

0 0 0 0 ! Possible vertical boundaries within the field map, to start/stop stepwise integration.

2

1.0 ! Integration step size. Small enough for orbits to close accurately.

2 ! Magnet positionning option.

0. 0. 0. 0. ! Magnet positionning.

’FAISCEAU’ ! Local particle coordinates logged in zgoubi.res.

’SYSTEM’ ! This SYSTEM command runs gnuplot, for a graph of the two trajectories.

1

gnuplot <./gnuplot_Zplt.gnu

’MARKER’ FieldMapSectorIdx_E ! Just for edition purposes.

’END’
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(b) R-dependence of orbit rigidity.2538

The method is similar to exercise 3.1-(b) (see Tab. 3.4.): FIT finds the closed orbit2539

radius R for a given ion rigidity, and REBELOTE is used to repeat for a series of2540

different momenta, 20 here. The input data file for this exercise is given in Tab. 3.17,2541

it includes a 21 ion 1-turn raytracing, in sequence with the previous 21-orbit finding.2542

Raytracing outcomes for k = −0.03, R0 = R(E = 200 keV) = 12.924888 cm,2543

B0 = B(R0) = 0.5 T are given in Fig. 3.35, together with theoretical expectation2544

(with B(R) from Eq. 3.7)2545

Rigidity BR(R) = B0

(
1 +

R − R0

R0
k

)
R (3.39)
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Fig. 3.35 Case of field index k=-0.03. Left: closed orbits at a series of different rigidities. Right:
comparison of Bρ(R) from raytracing outcomes (markers) and from theory (solid line, Eq. 3.39)

(c) Paraxial motion.2546

A proton with energy 1 MeV is considered, here. DIPOLE [16, lookup INDEX]2547

is used rather than a field map, so to allow to freely change the k index value (using2548

TOSCA instead would require computing a new field map when changing k).2549

The input data for a 60 deg sector are given in Tab. 3.18, essentially a copy of2550

the uniform dipole field case of Tab. 3.6 in which the index value k = −0.03 has2551

been added (line 3 under DIPOLE). The input data sequence for multiturn trajectory2552

computation around the cyclotron is given in Tab. 3.19: in a first stage, orbit finding2553

is performed by FIT, for 1 MeV energy; in a subsequent second stage, 4 protons with2554

their initial horizontal coordinates taken on the closed orbit, and differing by their2555

initial vertical take-off angle, are tracked over 120 sectors, i.e., 20 turns around the2556

ring.2557

Fig. 3.36 displays the vertical sine motion. Stronger index (k closer to -1) results2558

in stronger vertical focusing, hence more oscillations as expected from Eq. 3.18 and2559

smaller motion amplitude as expected from Eq. 3.17. The latter can be written2560
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Table 3.17 Simulation input data file: scan orbits for momentum dependence. Two problems are
stacked, executed in sequence: in a first stage FIT finds a closed orbit, whose coordinates are logged
in initialRs.fai file when FIT is completed, following what REBELOTE repeats for an additional 20
momenta; in a second stage OBJET grabs the 21-set of ion coordinates from initialRs.fai and these
ions are raytraced over 6 sectors, i.e., one full turn. The INCLUDE file FieldMapSectorIndex.inc is
taken from Tab. 3.16

Uniform field sector with index. Scan orbits.

’MARKER’ scanSectorIdx_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

1 1 ! Just one ion.

4.0039 0. 0. 0. 0. 0.3162126 ’o’ ! p[MeV/c]= 6.126277, Brho[kG.cm]=20.435, kin-E[MeV]=0.02.

1

’FAISCEAU’ ! Local particle coordinates logged in zgoubi.res.

’INCLUDE’

1

./FieldMapSectorIndex.inc[#S_60degSectorIndx:#E_60degSectorIndx]

’FIT’ ! This matching procedure finds the closed orbit radius.

1 nofinal

2 30 0 [3.,80.] ! Variable : Y_0

1 1e-15 99 ! Penalty; max numb of calls to function

3.1 1 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0

’FAISTORE’

initialRs.fai ! Log coordinates in initialRs.fai.

1

’REBELOTE’ ! A do-loop. Repeat the above, after changing particle rigidity to a new value.

20 0.2 0 1 ! 20 diffrnt rigidities; I/O options; coordinates as from OBJET; changes follow:

1 ! Parameter 35 to be changed, in OBJET: relative momentum, namely,

OBJET 35 0.3162126:5.0063900 ! for energy scan from 0.02 MeV to 5 MeV.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

3

1 999 1

1 999 1

1. 1. 1. 1. 1. 1. 1. ’*’

0. 0. 0. 0. 0. 0. 0.

0

initialRs.fai

’FAISCEAU’ ! Local particle coordinates logged in zgoubi.res.

’INCLUDE’

1

6* ./FieldMapSectorIndex.inc[#S_60degSectorIndx:#E_60degSectorIndx] ! INCLUDE 6 times.

’SYSTEM’

2

gnuplot <./gnuplot_Zplt_orbits.gnu ! Plot orbits around the cyclotron.

gnuplot <./gnuplot_Zplt_scanBrho.gnu ! Plot R(Brho).

’MARKER’ scanSectorIdx_E ! Just for edition purposes.

’END’

A gnuplot script to obtain orbits, Fig. 3.35:

set xtics ; set ytics ; set xlabel "X_{Lab} [m]" ; set ylabel "Y_{Lab} [m]" ; cm2m = 0.01; set polar; set size ratio 1

unset colorbox; pi = 4.*atan(1.); TOSCA1=12; dT=3 # number of 2nd TOSCA & increment in zgoubi.plt listing

plot for [trj=2:21] \

"zgoubi.plt" u ($19==trj ? $22+($42-TOSCA1)/dT*pi/3 :1/0):($10*cm2m ):($19) w l lw 2 lc palette notit ; pause 1

A gnuplot script to obtain Bρ(R), Fig. 3.35:

set xtics ; set ytics nomirror ; set y2tics; set xlabel "R [m]" ; set ylabel "B{/Symbol r} [T m]"

B0=0.5; R0=12.924888e-2; k=-0.03; Brho(x)= B0* (1.+ (x-R0)/R0* k )*x ; kGcm2Tm=1e-3; cm2m = 0.01

plot for [trj=2:21] \

"zgoubi.plt" u ($19==trj? $10*cm2m :1/0):($40*(1.+$2)*kGcm2Tm) w p pt 6 ps 1.2 notit ,\

Brho(x) axes x1y2 w l lw 2 lc rgb "black" tit "theor." ; pause 1
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Table 3.18 Simulation input data file sectorWithIndex.inc: definition of a dipole with index, case
of analytical field modeling, namely here k=-0.03 and reference radius R0 = 50 cm. Definition of
the [#S_60degSectorWIdx:#E_60degSectorWIdx] segment

# sectorWithIndex.inc

’MARKER’ #S_60degSectorWIdx ! Label should not exceed 20 characters.

’DIPOLE’ ! Analytical modeling of a dipole magnet.

2 ! IL=2, only purpose is to logged trajectories in zgoubi.plt, for further plotting.

60. 50. ! Sector angle AT; reference radius.

30. 5. -0.03 0. 0. ! Reference azimuthal angle ACN; BM field at R0; indices, N (=k=-0.03) at R0=50cm.

0. 0. ! EFB 1 is hard-edge,

4 .1455 2.2670 -.6395 1.1558 0. 0. 0. ! hard-edge only possible with sector magnet.

30. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 2.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

-30. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 3 (unused).

0 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.E6 -1.E6 1.E6 1.E6 0.

4 10.

0.5 ! Integration step size. Small enough for orbits to close accurately.

2 0. 0. 0. 0. ! Magnet positionning RE, TE, RS, TS.

’MARKER’ #E_60degSectorWIdx ! Label should not exceed 20 characters.

’END’

Z(s) = P0
R0√
−k

sin

√
−k

R0
(s − s0) and Ẑ = P0

R0√
−k

(3.40)

Note that this vertical oscillation results in a modulation of the field along the2561

trajectory (see question (d) of this exercise) which results in a radial oscillation, a2562

second order Y-Z coupling effect (extremely weak), displayed in Fig. 3.37.2563
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Fig. 3.36 Vertical sine motion over a few turns around the cyclotron, at 1 MeV. Vertical take-off
angles are P0 = 0, 0.1, 0.2, 0.3 mrad. Left: k=-0.03, νZ =

√
0.03 ≈ 0.173 oscillations per turn;

right: for k=-0.2, νZ =
√

0.2 ≈ 0.447 oscillations per turn

(d) Magnetic field.2564

The magnetic field experienced by 1 MeV protons with four different take-off2565

angles P0 (Fig. 3.36), along their respective trajectories, case of an index value2566

k = −0.03, is displayed in Fig. 3.38. It is essentially constant as expected.2567
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Table 3.19 Simulation input data file: scan orbits for momentum dependence; the file actually
stacks two simulations, executed in sequence; the second simulation uses data produced by the first
one, as follows. The first part of the file finds the closed orbits, they depend on the vertical excursion
and are not exactly zero, due to the field index; closed orbit coordinates so found are logged in
initialRs.fai when FIT is completed. The second part of the file starts at the second occurrence of
OBJET which reads initial particle coordinates from initialRs.fai and tracks these particles through
a sequence of 120 sector dipoles, i.e., 20 turns. The [#S_60degSectorWIdx:#E_60degSectorWIdx]
segment of Tab. 3.18 is INCLUDEd, here

Uniform field sector with index. Scan orbits.

’MARKER’ 1MeVVMotion_S ! Just for edition purposes.

! First stage: find closed orbit at 1 MeV, for some k value.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

1.1

1 1 1 4 1 1

0. 1. 0. 0.1 0. 1.

30.107900 0. 0. 0. 0. 2.2365445724 ’m’ ! 1 MeV proton -> Brho/Brho_ref = 2.2365445724.

’INCLUDE’

1

./sectorWithIndex.inc[#S_60degSectorWIdx:#E_60degSectorWIdx] ! DIPOLE case R0=50cm k=-0.03.

’FIT’ ! This matching procedure finds the closed orbit radius.

1 nofinal

2 40 0 .9 ! Variable : Y_0. Variation can be up to 90%.

1 1e-15 99 ! Penalty; max numb of calls to function.

3.1 1 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0.

’FAISTORE’

initialRs.fai ! Log coordinates in initialRs.fai.

1

! Second stage: raytrace the four particles over 20 turns.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

3

1 999 1

1 999 1

1. 1. 1. 1. 1. 1. 1. ’*’

0. 0. 0. 0. 0. 0. 0.

0

initialRs.fai

’FAISCEAU’ ! Local particle coordinates logged in zgoubi.res.

’INCLUDE’

1

120 * sectorWithIndex.inc[#S_60degSectorWIdx:#E_60degSectorWIdx] ! INCLUDE 120 sectors (20 turns).

’FAISCEAU’ ! Local particle coordinates logged in zgoubi.res.

’SYSTEM’

2

gnuplot <./gnuplot_Zplt_1MeVVMotion.gnu

gnuplot <./gnuplot_Zplt_1MeVBField.gnu

’MARKER’ 1MeVVMotion_E ! Just for edition purposes.

’END’

A gnuplot script to obtain Figs. 3.36, 3.37:

# gnuplot_Zplt_1MeVVMotion.gnu

set xtics ; set ytics ; set xlabel "s [m]" ; set ylabel "Z [m]" ; cm2m = 0.01; unset colorbox ; set xrange [:36]

plot for [trj=4:1:-1] \

"zgoubi.plt" u ($19==trj && $42>10? $14*cm2m :1/0):($12*cm2m ):($19) w l lw 2 tit "P[mrad]=0.".(trj-1) ; pause 1

A gnuplot script to obtain Fig. 3.38:

# gnuplot_Zplt_1MeVBField.gnu

set xtics; set ytics; set xlabel "s [m]"; set ylabel "Y [m]"; cm2m = 0.01; unset colorbox

plot for [trj=4:1:-1] \

"zgoubi.plt" u ($19==trj && $42>10? $14*cm2m :1/0):($10*cm2m ):($19) w l lw 2 tit "P[mrad]=0.".(trj-1) ; pause 1
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Fig. 3.37 Horizontal motion at 1 MeV, 20 turns around the cyclotron, for vertical take-off angles
P0 = 0, 0.1, 0.2, 0.3 mrad. Left: k=-0.03, νR =

√
1 + 0.03 ≈ 1.015 oscillations per turn; right:

for k=-0.2, νR =
√

1 + 0.2 ≈ 1.095 oscillations per turn

Fig. 3.38 Magnetic field
experienced by 1 MeV protons
with four different take-off
angles P0 (Fig. 3.36), along
their respective trajectories.
Case k = −0.03. The stepwise
structure of these BZ (s)
curves is due to the fact that
field variations are at the limit
of computer truncation related
accuracy
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3.7 Loss of Isochronism2568

In order to scan Trev(R) for different k values, DIPOLE [16, lookup INDEX] is2569

used here, as it allows to easily vary k and subsequently find the closed orbit using2570

FIT. The method of exercise 3.6 is employed to obtain a scan. The input data file2571

of Tab. 3.17 is a good starting point to do this exercise, changing the INCLUDE2572

to account for DIPOLE instead of a field map modeling using TOSCA: the proper2573

INCLUDE formatting can be reproduced from Tab. 3.19. IL under DIPOLE may2574

be set at IL=0 as zgoubi.plt is not used here. Introduce FAISTORE to store local2575

particle data after FIT (that includes time of flight, the quantity of interest here,2576

which requires PARTICUL[PROTON] following OBJET).2577

The new input data file so built for this simulation, is given in Tab. 3.20.2578

This input data file is run for four different k values, namely, under DIPOLE (cf.2579

Tab. 3.18), the line “30. 5. -0.03 0. 0.” is successively changed to

{
30. 5. 0 0. 0.
30. 5. − 0.5 0. 0.
30. 5. − 0.95 0. 0.

.2580

The corresponding zgoubi.fai files are saved under dedicated copies for plotting, see2581

“gnuplot script gnuplot_Zfai_scanTrev.gnu” at the bottom of Tab. 3.20.2582

The results of these Trev scans are displayed in Fig. 3.39. In the case k = 0 the2583

loss of isochronism is only due to the relativistic change of the mass, a non-zero k2584
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Table 3.20 Simulation input data file: scan revolution time. The
[#S_60degSectorWIdx:#E_60degSectorWIdx] segment of Tab. 3.18 is INCLUDEd, here

Uniform field sector with index. Scan orbits.

’MARKER’ isoChroLoss_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

1 1 ! Just one ion.

4.0039 0. 0. 0. 0. 0.3162126 ’o’ ! p[MeV/c]= 6.126277, Brho[kG.cm]=20.435, kin-E[MeV]=0.02.

1

’PARTICUL’ ! Necessary as time of flight computation is needed,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’INCLUDE’

1

./sectorWithIndex.inc[#S_60degSectorWIdx:#E_60degSectorWIdx] ! DIPOLE case R0=50cm k=-0.03.

’FIT2’ ! This matching procedure finds the closed orbit radius.

1 nofinal

2 30 0 [0.5,80.] ! Variable : Y_0

1 1e-15 99 ! Penalty; max numb of calls to function

3.1 1 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0

’FAISCEAU’ ! Local particle coordinates logged in zgoubi.res.

’FAISTORE’

zgoubi.fai

1

’REBELOTE’ ! A do-loop. Repeat the above, after changing particle rigidity to a new value.

20 0.2 0 1 ! 20 diffrnt rigidities; I/O options; coordinates as from OBJET; changes follow:

1 ! Parameter 35 to be changed, in OBJET: relative momentum, namely,

OBJET 35 0.3162126:5.00639 ! Acceleration to 5MeV. Commented here, for use in subsequent exercises.

! OBJET 35 0.3162126:2.2365445724 ! Substitute to previous, for energy scan from 0.02 MeV to 1 MeV.

’SYSTEM’

1

gnuplot <./gnuplot_Zfai_scanTrev.gnu ! Plot revolution time.

’MARKER’ isoChroLoss_E ! Just for edition purposes.

’END’

A gnuplot script to obtain Fig. 3.39:

# gnuplot_Zfai_scanTrev.gnu

set xtics ; set ytics nomirror ; set y2tics; set xlabel "R [m]" ; set ylabel "T_{rev} [{/Symbol m}s]"

cm2m = 0.01; nSec=6; set y2label "T_{rev} at k=0[{/Symbol m}s]" ; set key c r

plot "zgoubi_k0.fai" u ($10 *cm2m):($15 * nSec) w lp pt 4 ps 1.2 lc rgb "black" tit "k=0" ,\

"zgoubi_k0.fai" u ($10 *cm2m):($15 * nSec) axes x1y2 w lp pt 4 ps 1.2 lc rgb "black" notit ,\

"zgoubi_k0.03.fai" u ($10 *cm2m):($15 * nSec) w lp pt 7 ps 1.2 tit "k=-03" ,\

"zgoubi_k0.5.fai" u ($10 *cm2m):($15 * nSec) w lp pt 8 ps 1.2 tit "k=-5" ,\

"zgoubi_k0.95.fai" u ($10 *cm2m):($15 * nSec) w lp pt 9 ps 1.2 tit "k=-95" ; pause 1

augments the effect. The loss of isochronism is the cause of the ≈ 20 MeV proton2585

energy limit of the classical cyclotron.2586
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Fig. 3.39 A scan of the revolution time, from 0.02 to 1 MeV, and its dependence on the field index
k. The right vertical axis only concerns the case k = 0 where the change in revolution time is weak
and only due to the mass increase (in Trev = 2π γm0/qB). The right graph shows, up to 5 MeV,
the relatively important contribution of the focusing index, even a weak k=-0.03, compared to the
effect of the mass increase (k=0 curve). Markers are from raytracing, solid lines are from theory

3.8 Ion Trajectories2587

A zgoubi data file is set up for computation of particle trajectories, taking a2588

field value on reference radius of B0(R0) = 0.5 T, and reference energy 200 keV2589

(proton). These hypotheses determine the reference radius value. DIPOLE [16,2590

lookup INDEX] is used (Tab. 3.21), for its greater flexibility in changing magnet2591

parameters, field and radial field index amongst other, compared to using TOSCA2592

and a field map.2593

(a) Transverse motion.2594

It first has to be checked that there is consistency between initial orbital radius2595

Y0 in OBJET at 200 keV proton energy and the value of the reference radius R0 in2596

DIPOLE (Eq. 3.35). Its theoretical value is R0 = BORO/5[kG] = 12.924889 cm, a2597

closed orbit finding using FIT can be performed, or it can be referred to the solutions2598

of earlier exercises, to check agreement with raytracing outcomes.2599

(b) Wave numbers at 1 and 5 MeV.2600

These considerations result in the input data file given in Tab. 3.22, to compute2601

multiturn trajectories. ; note that R0 = 12.924889 cm therein, whereas a value of2602

R0 = 50 cm may be taken instead in other exercises. Field index derivatives k ′, k ′′, ...2603

are taken null in the present exercise.2604

Three particles with paraxial radial and axial motions are raytraced over a few2605

turns. Their starting radius is the closed orbit radius for the respective energies, while2606

a 0.1 mrad take-off angle is imparted to each particle both vertically and horizontally.2607

The value of the focusing index kE at an energy E can be expressed in terms of

DIPOLE data which are, the index value k at R0 (Eq. 3.11), reference radius R0, and

field B0 = BZ (R0), namely,

kE =
RE

BE

∂B

∂R
=

R0 + ∆R

B0 + ∆B

∂B

∂R
≈ k

1 + ∆R/R0

1 + k∆R/R0
≈ k

[
1 + (1 − k)∆R

R0

]
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Table 3.21 Input data file 60DegSectorR200.inc: it defines DIPOLE as a sequence seg-
ment comprised between the “LABEL_1” type labels [16, Sect. 7.7] #S_60DegSectorR200 and
#E_60DegSectorR200. DIPOLE here, has an index k = −0.03, reference radius R0 ≡ R0(Ek =

200 keV) = 12.924888 cm and B0 = B(R0) = 0.5 T. Note that (i) this file can be run on its own: it
has been designed to provide the transport MATRIX of that DIPOLE; (ii) for the purpose of some
of the exercises, IL=2 under DIPOLE, optional, causes the printout of particle data in zgoubi.plt,
at each integration step (this is at the expense of CPU time, and memory volume)

60DegSectorR200.inc

’OBJET’

64.62444403717985 ! 200keV proton.

5

0.01 0.001 0.01 0.001 0. 0.0001

12.9248888074 0. 0. 0. 0. 1. ! 200keV. R=Brho/B=*/.5.

’DIPOLE’ #S_60DegSectorR200 ! Analytical modeling of a dipole magnet.

2 ! IL=2, purpose: log stepwise particle data in zgoubi.plt. Avoid if unused: I/Os take CPU time.

60. 12.924888 ! Sector angle AT; reference radius R0.

30. 5. -0.03 0. 0. ! Reference azimuthal angle ACN; BM field at R0; indices, N, N’, N’’.

0. 0. ! EFB 1 is hard-edge,

4 .1455 2.2670 -.6395 1.1558 0. 0. 0. ! hard-edge only possible with sector magnet.

30. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 2.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

-30. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 3 (unused).

0 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.E6 -1.E6 1.E6 1.E6 0.

4 10.

0.5 ! Integration step size. Small enough for orbits to close accurately.

2 0. 0. 0. 0. ! Magnet positionning RE, TE, RS, TS.

’FAISCEAU’ #E_60DegSectorR200

’MATRIX’

1 0

’END’

Table 3.22 Simulation input data file: raytrace a few turns around the cyclotron, three particles with
different momenta, and 0.1 mrad horizontal and vertical take-off angles. The INCLUDE segment
is taken from Tab. 3.21

’MARKER’ ProbProjTraj_S

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

3 1

12.924888 0.1 0. 0.1 0. 1. ’o’ ! A particle with kin-E=0.2 MeV and 0.1 mrad take-off angles.

30.107898 0.1 0. 0.1 0. 2.2365445 ’m’ ! p[MeV/c]=433.306, Brho[kG.cm]=144.535, kin-E[MeV]=1.

75.754671 0.1 0. 0.1 0. 5.0063900 ’o’ ! p[MeV/c]=969.934, Brho[kG.cm]=323.535, kin-E[MeV]=5.

1 1 1

’INCLUDE’

1

6* 60DegSectorR200.inc[#S_60DegSectorR200:#E_60DegSectorR200] ! 6 sectors for an overall 360 deg.

’REBELOTE’

9 0.1 99 ! There will be a total of 9+1=10 tunrs.

’SYSTEM’

1

gnuplot < ./gnuplot_Zplt_traj.gnu ! Plot the projected Y(s) and Z(s) motions.

’MARKER’ ProbProjTraj_E

’END’

A gnuplot script to obtain Fig. 3.41:

# gnuplot_Zplt_traj.gnu

set xtics nomirror; set x2tics; set ytics; set xlabel ’s /C_E ’; set ylabel ’Y [cm]’

set palette defined ( 1 "red", 2 "blue", 3 "black" ) ; unset colorbox

array R[3]; R[1]=0.12924888; R[2]=0.301078986; R[3]=0.75754671; pi = 4.*atan(1.); cm2m = 0.01

sector1=3 # number (NOEL) of 1st DIPOLE in \zgoubi,res (col. 42 in zgoubi.plt)

# in zgoubi.plt, col. 19: particle number; col. 42: keyword number; col. 14: distance; col. 10: Y ; col. 12: YZ

plot for [sector=1:6] for [trj=1:3] ’zgoubi.plt’ u ($19==trj && $42==sector1+2*(sector-1)? $14*cm2m/(2.*pi*R[$19]) :1/0) \

:($10*cm2m-R[trj]):($19) w p ps .2 lc palette notit ; pause 1

set ylabel ’Z [cm]’; plot for [sector=1:6] for [trj=1:3] ’zgoubi.plt’ u ($19==trj && $42==sector1+2*(sector-1)? $14*cm2m \

/(2.*pi*R[$19]) :1/0):($12):($19) w p ps .2 lc palette notit ; pause 1
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Fig. 3.40 In DIPOLE field
model (Eq. 3.35), ∂B

∂R
is

constant: this graph shows the
linear decrease of the field
BZ (R) (Eq. 3.38), obtained
from the raytracing of particles
circulating in the median plane
on orbits spanning a 0.2 to
5 MeV energy range
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with ∆R assumed small, ∂B/∂R = kB/RE an energy independent quantity, and the2608

index E denoting a quantity taken at the reference energy. The latter property is2609

illustrated in Fig. 3.40, produced using the input data file of Tab. 3.23.2610

Table 3.23 Simulation input data file for a magnetic field scan. The INCLUDE segment is taken
from Tab. 3.21

Field and derivative dB/dR, as a finction of R

’MARKER’ ProbProjTrajB_S

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2

1 1 ! Just one ion.

12.924888 0.1 0. 0.1 0. 1. ’o’ ! A particle with kin-E=0.2 MeV and 0.1 mrad take-off angles.

1

’INCLUDE’

1 ! IL=2 is necessary under DIPOLE, for step-by-step log of particle data in zgoubi.plt.

60DegSectorR200.inc[#S_60DegSectorR200:#E_60DegSectorR200] ! One sector is enough.

’FIT’

1

2 30 0 [12,80] ! Vary particle’s Y0 at OBJET, to have it match its D (=Brho/BORO).

1 1e-20

3.1 1 2 #End 0. 1. 0 ! Consrain Y_final=Y0.

’REBELOTE’

25 0.1 0 1 ! Scan parameter 35 (relative rigidity, D) in OBJET.

1

OBJET 35 1:5.00639 ! Scan relative rigidity D from 1 (200 keV) to 5.0063900 (5 MeV).

’SYSTEM’

1

gnuplot < ./gnuplot_Zplt_field.gnu ! Plot B(R), as read fron zgoubi.plt.

’MARKER’ ProbProjTrajB_E

’END’

A gnuplot script to obtain Fig. 3.40:

# gnuplot_Zplt_field.gnu

set xtics nomirror; set x2tics; set ytics; set xlabel ’s /C_E ’; set ylabel ’Y [cm]’

set palette defined ( 1 "red", 2 "blue", 3 "black" ) ; unset colorbox

array R[3]; R[1]=0.12924888; R[2]=0.301078986; R[3]=0.75754671; pi = 4.*atan(1.); cm2m = 0.01

sector1=3 # number (NOEL) of 1st DIPOLE in \zgoubi,res (col. 42 in zgoubi.plt)

# in zgoubi.plt, col. 19: particle number; col. 42: keyword number; col. 14: distance; col. 10: Y ; col. 12: YZ

plot for [i=1:6] for [trj=1:3]

’zgoubi.plt’ u ($19==trj && $42==sector1 +2*(i-1) ? $14*cm2m /(2.*pi*R[$19]) :1/0) \

:($10*cm2m-R[trj]):($19) w p ps .2 lc palette notit ; pause 1

set ylabel ’Z [cm]’ ;

plot for [i=1:6] for [trj=1:3]

’zgoubi.plt’ u ($19==trj && $42==sector1 +2*(i-1) ? $14*cm2m \

/(2.*pi*R[$19]) :1/0):($12):($19) w p ps .2 lc palette notit ; pause 1
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Fig. 3.41 Radial (left) and axial (right) paraxial motion around respectively the 200 keV (smallest
amplitude), 1 MeV (intermediate) and 5 MeV (greatest amplitude) closed orbit (the latter is circular,
in the median plane, with radius respectively R200 keV = 12.924888 cm, R1 MeV = 30.107898 cm
and R5 MeV = 75.754671 cm). The horizontal axis in this graph is s/CE : path length over closed
orbit circumference at energy E, the vertical axis is the motion excursion

The resulting radial and axial motions over 10 turns are displayed in Fig. 3.41,2611

which also illustrates, for paraxial motion at some reference energy, the energy2612

dependence of the focusing strength (or wave number) and of the motion amplitude.2613

Table 3.24 Wave numbers, from numerical raytracing (columns denoted “ray-tr.”), from theory,
and from discrete Fourier transform (’DFT’ cols.) from a multi-turn tracking

νR = νZ =

E (MeV) kE ray-tr.
√

1 + k DFT ray-tr.
√
−k DFT

0.2 -0.03 0.98520 0.9849 0.98513 0.17320 0.1732 0.17321
1 -0.07279 0.96187 0.96292 0.96291 0.26980 0.26979 0.26981
5 -0.20586 0.89083 0.89115 0.89115 0.45326 0.45371 0.45371

An estimate of the wave numbers can be obtained as the inverse of the number of

turns per oscillation, namely,

νR =
CE

∆sM

����
E

and νZ =
CE

∆sM

����
E

with ∆sM the measured distance between two consecutive maxima in the sinusoid2614

of concern in Fig. 3.41, CE the closed orbit length for the energy of concern. Both2615

quantities are obtained from motion records in zgoubi.plt. This yields the values2616

of Tab. 3.24, where they are compared with the theoretical expectations, namely2617

(Eq. 3.18), νR =
√

1 + k and νZ =
√
−k.2618

The maximum amplitude of the oscillation is obtained from zgoubi.plt records as2619

well, this yields the results of Tab. 3.25. For comparison, the theoretical values are2620

(Eqs. 3.16, 3.17 with respectively x0 = 0, x ′
0
= T0 and y0 = 0, y′

0
= P0) Ŷ = T0

RE√
1+k

2621

and Ẑ = P0
RE√
−k

. wherein RE denotes the closed orbit radius at energy E (for the2622

record: RE ≡ R0 at energy E = 200 keV, in the foregoing).2623
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Table 3.25 Maximum amplitude of the oscillation, from raytracing (columns denoted “ray-tr.”)
and from theory. RE is the closed orbit radius for the energy of concern,T0 = P0 = 0.1 mrad is the
trajectory angle at the origin, positions at the origin are zero

Ŷ Ẑ

E (MeV) k ray-tr. T0
RE√
1+k

ray-tr. P0
RE√
−k

(MeV) (×10−5) (×10−5)

0.2 -0.03 1.3123 1.3125 7.4622 7.4624
1 -0.072787 3.1270 3.1267 1.1160 1.1160
5 -0.20586 8.5010 8.5008 1.6697 1.6697

(c) Comparison with theory.2624

Figure 3.42 shows the difference between numerical and theoretical vertical mo-2625

tion excursion, using an ad hoc gnuplot script. An integration step size ∆s = 2 cm is2626

used in the numerical integration.2627

Fig. 3.42 Vertical excursion
of a 1 MeV trajectory over
20 turns (left vertical axis),
and difference with theoretical
expectation as per Eq. 3.17
(right vertical axis). The plot
shows two sinusoidal curves: a
segmented one, thicker, from
numerical integration, and a
thinner one, superimposed,
from Eq. 3.17
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(d) A scan of energy dependence of wave numbers.2628

A scan of the wave numbers over 200 keV−5 MeV energy range, computing tunes2629

with MATRIX, is performed using the input data file given in Tab. 3.26 (essentially2630

a copy of the input data file of Tab. 3.23, with an INCLUDE accounting for 62631

DIPOLEs [16, lookup INDEX]).2632

OBJET[KOBJ=5] generates 13 particles with paraxial horizontal, vertical and2633

longitudinal sampling, proper to allow the computation of the first order transport2634

coefficients and wave numbers by MATRIX. REBELOTE repeats MATRIX com-2635

putation for a series of different particle rigidities. It is preceded by FIT which finds2636

the closed orbit. MATRIX includes a PRINT command, which causes the transport2637

coefficients (and various other outcomes of MATRIX computation) to be logged2638

in zgoubi.MATRIX.out. This allows producing the graphic in Fig. 3.43 - using the2639

gnuplot script given at the bottom of Tab. 3.26.2640
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Table 3.26 Simulation input data file: for this wave number scan, the INCLUDE segment is taken
from Tab. 3.21

Field and derivative dB/dR, as a finction of R

’MARKER’ ProbMATRIX_S

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

5 ! Define 13 particles for MATRIX computation.

.001 .01 .001 .01 .001 .00001 ! Sampling of the initial coordinates.

12.924888 0. 0. 0. 0. 1. ! Reference: p[MeV/c]=193.739, Brho[kG.cm]=BORO, kin-E[MeV]=0.2.

’INCLUDE’

1 ! IL=2 is necessary under DIPOLE, for step-by-step log of particle data in zgoubi.plt.

6* 60DegSectorR200.inc[#S_60DegSectorR200:#E_60DegSectorR200] ! Six 60 degree sectors.

’FIT’

1

2 30 0 [12,80] ! Vary particle’s Y0 at OBJET, to have it match its D (=Brho/BORO).

1 1e-10

3.1 1 2 #End 0. 1. 0 ! Consrain Y_final=Y0.

’MATRIX’

1 11 PRINT ! PRINT: log computation outcome data to zgoubi.MATRIX.out, for further plotting.

’REBELOTE’

25 0.1 0 1 ! Scan parameter 35 (particle 1’s D) in OBJT.

1

OBJET 35 1:5.00639

’SYSTEM’

1

gnuplot < ./gnuplot_MATRIX_Qxy.gnu

’MARKER’ ProbMATRIX_E

’END’

A gnuplot script to obtain Fig. 3.43:

# gnuplot_MATRIX_Qxy.gnu

set xlab "kin. E [MeV]";set ylab "{/Symbol n}_x, ({/Symbol n}_x^2+{/Symbol n}_y^2)^{1/2}";set y2label "{/Symbol n}_y"

set key t l maxrow 1; set xtics; set ytics nomirror; set y2tics nomirror

BORO = 64.62444403717985; am = 938.27203e6; c = 2.99792458e8; BrhoRef = BORO *1e-3; eV2MeV = 1e-6

plot "zgoubi.MATRIX.out" u ((sqrt(($47*BrhoRef*c)**2 + am*am)-am)*eV2MeV):($56) w lp pt 5 lt 1 lw .5 lc rgb "red" \

tit "{/Symbol n}_x " , \

"zgoubi.MATRIX.out" u ((sqrt(($47*BrhoRef*c)**2 + am*am)-am)*eV2MeV):($57) axes x1y2 w lp \

pt 6 lt 3 lw .5 lc rgb "blue" tit "{/Symbol n}_y " ,\

"zgoubi.MATRIX.out" u ((sqrt(($47*BrhoRef*c)**2 + am*am)-am)*eV2MeV):(sqrt($56**2+$57**2)) \

w lp pt 7 lt 1 lw .5 lc rgb "black" t " ({/Symbol n}_x^2+{/Symbol n}_y^2)^{1/2}";pause 1

Fig. 3.43 A scan of the energy
dependence of the horizontal
and vertical wave numbers.
Markers are from raytracing,
solid lines are from theory
(Eq. 3.18). The figure also
shows that the raytracing
yields ν2

R
+ ν2

y = 1, ∀E , as
expected
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3.9 RF Phase at the Accelerating Gap2641

According to Sect. 3.2.3 (Fig. 3.13), the RF is taken about half-way of the ac-2642

celerating range, namely, referring to Fig. 3.39, Trev = 0.131 µs and frf = 1/Trev =2643

7.633 MHz.2644

An input data file for this simulation is given in Tab. 3.27.2645

In a similar way to the diagrams in Fig. 3.13, the resulting B(R) curve is given in2646

Fig. 3.44, the resulting ∆W(φ) curve in Fig. 3.45.2647

Table 3.27 Simulation input data file: accelerating a proton to get the evolution of RF phase The
[#S_60degSectorWIdx:#E_60degSectorWIdx] segment of Tab. 3.18 is INCLUDEd, here

Cyclotron, classical. Acceleration to 6.02 MeV.

’MARKER’ ProbRFPhase_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference: 200keV (assuming proton).

2

1 1 ! Just one ion.

12.629892 0. 0. 0. 0. 1. ’m’ ! Injection energy 200keV, proton.

1

’PARTICUL’ ! Particle data are necessary as CAVITE is used,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’INCLUDE’

1

3* sectorWithIndex.inc[#S_60degSectorWIdx:#E_60degSectorWIdx] ! Three 60 deg sectors. R0=50cm, k=-0.03.

’FAISTORE’ ! Log particle coordinates at each turn.

zgoubi.fai

1

’CAVITE’ GAP1

7 PRINT ! PRINT: log CAVITE computational dat to zgoubi.CAVITE.out.

0.00 7.63358778626e6 ! f_rf= 1/T_rev, T_rev at about middle of acceleration range.

100e3 -1.57079632679 ! Peak voltage;, relative phase of 1st cavity.

’INCLUDE’

1

3* sectorWithIndex.inc[#S_60degSectorWIdx:#E_60degSectorWIdx] ! Three 60 deg sectors. R0=50cm, k=-0.03.

’CAVITE’ GAP1

7 PRINT ! PRINT: log CAVITE computational dat to zgoubi.CAVITE.out.

0.00 7.63358778626e6 ! f_rf= 1/T_rev, T_rev at about middle of acceleration range.

100e3 +1.57079632679 ! Peak voltage;, relative phase of 1st cavity.

’FAISCEAU’ ! Local particle coordinates logged in zgoubi.res.

’REBELOTE’ ! K = 99 : coordinates at end of previous pass are used as initial

42 1.1 99 ! coordinates for the next pass ; idem for spin components.

’SYSTEM’

1 ! 1 SYSTEM command follows.

/usr/bin/gnuplot < ./gnuplot_CAVITE.gnu & ! Plot phase, as read from zgoubi.CAVITE.out.

’MARKER’ ProbRFPhase_E ! Just for edition purposes.

’END’

A gnuplot to obtain the accelerated orbit of Fig. 3.45:

# gnuplot_CAVITE.gnu

set xlabel "RF phase [rad]" ; set ylabel "{/Symbol D}W [MeV]"; set xtics ;set ytics mirror

plot ’zgoubi.CAVITE.Out’ u ($11):($2 - ($6-50)/10000.) w lp notit ; pause 2

More turns are performed by changing the arguments under REBELOTE in the2648

input data file (Tab. 3.27), from 42 to 75 in the present case. The resulting energy gain2649

of the proton as a function of RF phase is shown Fig. 3.46. A first graph in Fig. 3.472650

shows the evolution of its relative rigidity, namely D-1 as a function of distance, with2651

D = Bρ(s)/BORO and BORO=64.624444 kG cm the reference rigidity as defined2652

under OBJET; a second graph shows its orbital radius as a function of distance.2653
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Fig. 3.44 Radial dependence
of the magnetic field over
the acceleration range. The
field is 0.5 T at a reference
radius R0 = 0.5 m, the slope
results from the index k =

−0.03. A graph obtained
using zpop: menu 7; 1/1 to
open zgoubi.plt; 2/[2,32] for
BZ versus Y ; 7 to plot
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Fig. 3.45 Span in phase
of the energy gain ∆W =

qV̂ sinφ over the acceleration
range 200 keV to 5 MeV. The
vertical separation of the two
∆W (φ) branches on the left
(∆φ < 0 above and ∆φ > 0
underneath) is artificial (a “-
($6-50)/10000.” “trick” in the
gnuplot script of Tab. 3.27),
for the sake of clarity - they
actually superimpose
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Fig. 3.46 Span in phase of the
energy gain ∆W = qV̂ sinφ
over an acceleration and
deceleration cycle, starting
from 200 keV. The vertical
separation of∆W (φ) branches
at the left and right ends is
artificial
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0 50 100 150 200

0.5

1.

1.5

2.

2.5

3.

3.5

4.

4.5
Zgoubi|Zpop                                                                         1-D     vs.    s     (m)      

0 50 100 150 200

0.2

0.3

0.4

0.5

0.6

0.7

Zgoubi|Zpop                                                                        Y  (m)  vs.    s   (m) 

Fig. 3.47 Left: relative rigidity offset of the proton as a function of distance around the ring,
accelerating over half the path, and subsequently decelerating back to the initial energy, under the
effect of the cumulated phase-shift. Right: increase first and decrease next of the orbital radius as a
function of azimuthal distance

3.10 The Cyclotron Equation2654

Cyclotron model settings of exercise 3.3 are considered in questions (a) to (c),2655

first: two dees, double accelerating gap, uniform field B = 0.5 T. The analytical field2656

modeling DIPOLE [16, lookup INDEX] is used.2657

(a) Simulation data file.2658

Acceleration is over the energy range [0.2, 20]MeV, the maximum of cos(φ)2659

(Fig. 3.14) is placed at Ek = Ek,m = 10 MeV.2660

The cyclotron equation (Eq. 3.26) can be written under the form2661

cos φ = cos φi −
π

qV̂

[
ωr f

2Mωrev
(E2 − E2

i ) − (E − Ei)
]

(3.41)

where the index i denotes injection parameters, φ is the phase of the RF at particle2662

arrival at the accelerating gap, V̂ is the peak gap voltage, E = Ek + M is the total2663

energy with M the rest mass. The value of Ek at the maximum of cos φ is drawn2664

from d(cos φ)/dEk = 0, namely2665

Ek,m =

(
ωrev

ωr f
− 1

)
M (3.42)

Taking Ek,m = 10 MeV one gets

ωrev

ωr f
≈ 1 + 0.106578, fr f ≈ 0.989454ωrev/2π = 7.542209 MHz

The corresponding input data file is given in Tab. 3.28. Figure 3.48 shows the

case of two particles accelerated at a rate of 400 kV per turn, one resulting from an

initial phase at the gap of φi = π/2 and reaches 20 MeV in about 52 turns, the other

resulting from an initial phase φi = 3π/4 and reaches 20 MeV in about 64 turns. In

the latter case, the π/4 phase shift results from an initial path length offset
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Table 3.28 Simulation input data file: the cyclotron equation (Eq. 3.26). This requires a uni-
form field, for that the [#S_60degSectorUnifB:#E_60degSectorUnifB] segment of Tab. 3.6 is IN-
CLUDEd, here. Note the PRINT instruction under CAVITE: it causes a print out of CAVITE
computational data in zgoubi.CAVITE.out, during the ray tracing, including RF phase and ion
energy which can then be plotted (gnuplot script below, called by SYSTEM, and Fig. 3.48). The
second particle under OBJET is launched on the closed orbit, its initial phase at the voltage gap
is π/2. The first and third particles leave with an initial longitudinal shift δs = ∓10.26647 cm at
OBJET resulting in π/4 and 3π/4 initial phase at the voltage gap

Cyclotron, classical. Acceleration to 6.02 MeV.

’MARKER’ ProbCycloEq_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference: 200keV (assuming proton).

2

3 1 ! A single particle.

12.924888 0. 0. 0 -10.266476 1. ’2’ ! Path length offset +pi/4, initial phase at gap: phi_rf=pi/2-pi/4.

12.924888 0. 0. 0. 0. 1. ’1’ ! Initial phase at gap is phi_rf=pi/2.

12.924888 0. 0. 0. 10.266476 1. ’2’ ! Path length offset +pi/4, initial phase at gap: phi_rf=pi/2+pi/4.

1 1 1

’PARTICUL’ ! Particle data are necessary as CAVITE is used,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’INCLUDE’

1

3 *./60degSector.inc[#S_60degSectorUnifB:#E_60degSectorUnifB] ! Uniform field, no index.

’CAVITE’ GAP1

7 PRINT ! PRINT: log CAVITE computational dat to zgoubi.CAVITE.out.

0.00 7.54220925334568e6 ! f_rf= 1/T_rev, T_rev at about middle of acceleration range.

200e3 -1.57079632679 ! Peak voltage;, relative phase of 1st cavity.

’INCLUDE’

1

3 *./60degSector.inc[#S_60degSectorUnifB:#E_60degSectorUnifB] ! Uniform field, no index.

’CAVITE’ GAP1

7 PRINT ! PRINT: log CAVITE computational dat to zgoubi.CAVITE.out.

0.00 7.54220925334568e6 ! f_rf= 1/T_rev, T_rev at about middle of acceleration range.

200e3 +1.57079632679 ! Peak voltage;, relative phase of 1st cavity.

’FAISTORE’ ! Log particle coordinates at each turn.

zgoubi.fai

1

’REBELOTE’ ! K = 99 : coordinates at end of previous pass are used as initial

135 1.1 99 ! coordinates for the next pass ; idem for spin components.

’SYSTEM’

1 ! 1 SYSTEM command follows.

/usr/bin/gnuplot < ./gnuplot_CAVITE.gnu & ! Plot Ek versus phase, as read from zgoubi.CAVITE.out.

’MARKER’ ProbCycloEq_E ! Just for edition purposes.

’END’

A gnuplot script to obtained Fig. 3.49:

# gnuplot_CAVITE.gnu

set xlabel "E_k [MeV]" ; set ylabel "cos({/Symbol f})"; set xtics; set ytics mirror

pi = 4. * atan(1.); E0 = 938.2720813; qV=400e-3; Ei=0.2; E_km = 10 # locate max of cos(phi) at 10 MeV

omgR = 1. / (1. + E_km/E0); mxTurn=80

plot [0.2:20] [-1.1:1.8] for [i=2:1:-1] \

’zgoubi.CAVITE.Out’ u ($5==i && $6<mxTurn? $10 :1/0):(cos($11)) w p pt i+4 ps .5 notit ,\

cos(pi/2.) +pi*(1.-omgR *(1.+(x+Ei)/(2*E0))) *(x-Ei)/(.5*qV) w l lw 2 lc rgb "blue" \

tit "V/gap=200kV, {/Symbol f}_0={/Symbol p}/2" ,\

cos(3*pi/4.)+pi*(1.-omgR *(1.+(x+Ei)/(2*E0))) *(x-Ei)/(.5*qV) w l lw 2 lc rgb "red" \

tit " {/Symbol f}_0={/Symbol 3p}/4" ,\

δs = βcTrf/4 = 10.26647 cm

as specified under OBJET (βc = 0.020648c is the proton velocity at Ei = 200 keV),2666

yielding δφ = ωrfδs / βc = π/4. A third curve in the figure is for to 200 kV voltage2667

and initial phase at gap φ = π/2, in that case cos(φ) reaches the value of 1 at about2668

4 MeV, 32 turns, and the particle starts decelerating.2669

(b) Energy-phase relationship.2670
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Fig. 3.48 Proton energy
versus turn, case of (Tab. 3.28)
voltage 400 kV/turn, two
protons with initial phase
respectively π/2 (δs = 0) and
3π/4 (δs = 10.26647 cm),
which make it up to 20 MeV
and beyond. The third case
case, voltage 200 kV/turn,
initial phase π/2 (δs = 0),
features a maximum energy of
4 MeV and deceleration from
there on. A graph obtained
using zpop: menu 7; 1/5 to
read from zgoubi.fai; 2/[39,2]
for Y versus turn
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A graph of the energy-phase relationship obtained by ray tracing, for φi =
3π
4 and2671

π
2 at the three different gap voltages V̂ = 100, 200 and 400 kV, is given in Fig. 3.49,2672

together with theoretical expectations (Eq. 3.26).2673

Fig. 3.49 A graph of the
energy dependence of the
arrival phase at the voltage
gap, for a few different values
of gap voltage V̂ and initial
phase φi . Markers are from
raytracing, using the input data
file of Tab. 3.28 repeatedly for
the various values of V̂ and
φi . Superimposed solid lines
are from theory (Eq. 3.26 and
Fig. 3.14)
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3.11 Cyclotron Extraction2674

(a) Distance between turns.2675

Simulation input data of exercise 3.3, Tab. 3.8, can be referred to as a guidance2676

to build the present simulation file.2677

A proton is accelerated in 26 turns, in a uniform field B0 = 0.5 T, from 20 keV2678

(rigidity BORO×D = 0.064624444×0.3162126 = 0.0204350634608 T m, injection2679

radius Y0 = BR/B0 = 4.08701269216 cm) to 5.02 MeV. The RF phase is ignored2680
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thus CAVITE[IOPT=3] is used, with a 100 kV gap voltage. The input data file for2681

this simulation is given in Tab. 3.29.2682

Table 3.29 Simulation input data file: accelerating a proton to check evolution of∆R/R, in a dipole
field with index. The #S_180degSectorUnifB to #E_180degSectorUnifB segment of Tab. 3.6 is
INCLUDEd

Cyclotron extraction. Uniform field.

’MARKER’ ProbdRRUnifB_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference: 200keV (assuming proton).

2

1 1 ! A single particle.

4.08701 0. 0. 0. 0. 0.3162126 ’o’ ! p[MeV/c]= 6.126277, Brho[kG.cm]=20.435, kin-E[MeV]=0.02.

1

! 4.003593 0. 0. 0. 0. 0.3162126 ’o’ ! Brho[kG.cm]=20.435, kin-E[MeV]=0.02, case of field with index.

’PARTICUL’ ! Particle data are necessary as CAVITE is used,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’INCLUDE’

1

./180degSector.inc[#S_180degSectorUnifB:#E_180degSectorUnifB] ! one 180 deg sector, uniform field.

’FAISTORE’

zgoubi.fai ! Log current particle coordinates, in zgoubi.fai.

1

’CAVITE’ cavity ! Accelerating gap.

3 ! In this option, dW = qVsin(phi_s), independent of time.

0. 0.

100e3 1.57079632679

’INCLUDE’

1

./180degSector.inc[#S_180degSectorUnifB:#E_180degSectorUnifB] ! one 180 deg sector, uniform field.

’FAISCEAU’ ! Particle coordinates before gap.

’CAVITE’ cavity ! Accelerating gap.

3 ! In this option, dW = qVsin(phi_s), independent of time.

0. 0.

100e3 1.57079632679

’REBELOTE’ ! K = 99 : coordinates at end of previous pass are used as initial

25 1.1 99 ! coordinates for the next pass ; idem for spin components.

’FAISCEAU’ ! Local particle coordinates logged in zgoubi.res.

’SYSTEM’

2 ! 1 SYSTEM command follows.

/usr/bin/gnuplot < ./gnuplot_Zplt_UnifB.gnu & ! Plot accelerated orbits.

/usr/bin/gnuplot < ./gnuplot_Zfai_dRR.gnu & ! Plot delta_R(R).

’MARKER’ ProbdRRUnifB_E ! Just for edition purposes.

’END’

A gnuplot script to obtain the accelerated orbit of Fig. 3.50:

# gnuplot_Zplt_UnifB.gnu

set xtics ; set ytics ; set xlabel "X_{Lab} [m]" ; set ylabel "Y_{Lab} [m]"

set size ratio 1 ; set polar ; cm2m = 0.01 ; pi = 4.*atan(1.)

set arrow from 0, 0 to 0.7, 0 nohead linecolor "red" lw 6; set arrow from 0, 0 to -0.65, 0 nohead linecolor "blue" lw 6

noel_1=5 ; noel_2=10 # 1st DIPOLE is element $42=noel_1; 4th DIPOLE is $42=noel_2. $42=column number in zgoubi.plt.

plot "zgoubi.plt" u ($42< noel_2? $22 +pi/3.*(($42-noel_1)/2) :1/0):($10 *cm2m) w p pt 5 ps .2 lc rgb "black" notit ,\

"zgoubi.plt" u ($42>=noel_2? $22+pi+pi/3.*(($42-noel_2)/2) :1/0):($10 *cm2m) w p pt 5 ps .2 lc rgb "black" notit; pause 1

A gnuplot script to obtain the turn separation curves of Fig. 3.50. In this script, zgoubi.fai2 is a
copy of zgoubi.fai (see exercise3.3) in which the first particle data line (particle data at the first
pass) has been removed. This allows drawing the difference ∆R between two successive passes,
using the “paste” command (see Tab. 3.8 for a similar 1-row shift using awk commands):

# gnuplot_Zfai_dRR.gnu

set xtics; set ytics mirror; set key maxrow 2 ; set xlabel "R [cm]" ; set ylabel "{/Symbol D}R [cm]"

set key r c; set logscale y; unset colorbox

plot [8:65] "<paste zgoubi.fai2 zgoubi.fai" u ($10):($10-$63) w p pt 7 ps 1.5 lc rgb "black" tit "num." ,\

"zgoubi.fai2" u ($10):($10/2./($38-1)) w l lc rgb "red" tit "theory" ; pause 1
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The accelerated orbit and the distance∆R between turns are displayed in Fig. 3.50.2683

Theoretical expectation (Eq. 3.27) in the case of slow acceleration (typically, the fixed2684

energy closed orbit configuration of Fig. 3.21) is also displayed, for comparison.2685
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Fig. 3.50 Left: accelerated orbit from 20 keV to 5.02 MeV, at a rate of 200 keV per turn over 26
turns, in a uniform field. The thick horizontal line (colored) figures the accelerating gap. Right: the
resulting dependence of orbit separation ∆R on radius, from raytracing (markers) and from theory
(solid line); the theoretical curve assumes small dE (adiabatic acceleration, concentric orbits),
which is not quite the case here with ∆E = 200 keV/turn
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Fig. 3.51 Left: accelerated orbit from 20 keV to 5.02 MeV, at a rate of 200 keV per turn over 26
turns, in a dipole field with index. The thick horizontal line (colored) figures the accelerating gap.
Right: the resulting dependence of orbit separation ∆R on radius, observed at the second gap

(b) Beam losses.2686

Indications to solve this exercise:2687

- a beam with Gaussian momentum distribution and rms momentum spread2688

δp/p = 10−3 can be defined using MCOBJET,2689

- use REBELOTE to accelerate over a given number of turns,2690

- an extraction septum placed half-way between two successive turns can be2691

simulated using COLLIMA, placed after REBELOTE (the execution pointer will2692
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quietly continue beyond REBELOTE do-loop once the latter is completed). COL-2693

LIMA counts particles stopped. FAISTORE (or FAISCNL) can be placed after2694

COLLIMA, to log particle data: particles stopped by COLLIMA have their IEX tag2695

set to IEX=-4 [16, lookup COLLIMA].2696

Change the value of NPASS under REBELOTE for a different number of accel-2697

erated turns, and COLLIMA positioning data accordingly.2698

(c) Change the field index.2699

The cyclotron model of Tab. 3.21 is used here, reference field B0 = 5 kG on the2700

200 keV orbit, and field index k=-0.03. A proton is accelerated over 26 turns, from2701

20 keV to 5.02 MeV, as in question (a). The 20 keV closed orbit radius (taken as the2702

injection radius) differs from question (a) due to the index k=-0.03, and can be found2703

using a FIT procedure (Tab. 3.30); it comes out to be Y0 = 4.0040586 cm.2704

The input data file for this exercise is given in Tab. 3.31.2705

Table 3.30 Simulation input data file: finding the 20 keV injection radius in the presence of a
non-zero index k, using FIT The INCLUDE segment is taken from Tab. 3.21

Cyclotron, classical. Find injection radius for k=-0.03

’OBJET’

64.62444403717985 ! Reference: 200keV (assuming proton).

2

1 1 ! A single particle.

4.0040586 0. 0. 0. 0. 0.3162126 ’o’ ! p[MeV/c]= 6.126277, Brho[kG.cm]=20.435, kin-E[MeV]=0.02.

1

! 4.003593 0. 0. 0. 0. 0.3162126 ’o’ ! Brho[kG.cm]=20.435, kin-E[MeV]=0.02, case of field with index.

’PARTICUL’

PROTON

’INCLUDE’

1

./60DegSectorR200.inc[#S_60DegSectorR200:#E_60DegSectorR200] ! One 60 deg sectors with index.

’FIT’

1 ! 1 variable:

1 30 0 1. ! variable is Y0 (parameter 30) under OBJET (keyword 1 in the sequence).

2 ! 2 constraints:

3.1 1 2 #End 0. 1. 0 ! constraint 1: final Y = Y0.

3 1 3 #End 0. 1. 0 ! constraint 2: final T = 0.

’END’

The resulting proton trajectory is displayed in Fig. 3.51 (the gnuplot script given in2706

Tab. 3.31 is used). The greatly different accelerated orbit in this case, compared to the2707

uniform field case in (a) (Fig. 3.50), results from a modulation of the distance between2708

turns, which is an effect of the oscillation motion undergone by the accelerated orbit2709

(around the local on-momentum half-circle orbit arc). This effect may be exploited2710

to increase extraction efficiency, by causing such a radial modulation as to maximize2711

turn separation at the location of the septum [17].2712

(d) Optimize extraction.2713

The modulation is minimized (or enhanced possibly, at the last turn, for minimized2714

losses at extraction) by optimizing the injection conditions (x0, x
′
0
).2715
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Table 3.31 Simulation input data file: accelerating a proton to check evolution of ∆R/R, in a
dipole field with index. The [#S_60DegSectorR200:#E_60DegSectorR200] segment of Tab. 3.21
is INCLUDEd

Cyclotron extraction. Field with index.

’MARKER’ ProbdRRIdx_S ! Just for edition purposes.

’OBJET’

64.62444403717985 ! Reference: 200keV (assuming proton).

2

1 1 ! A single particle.

4.0040586 0. 0. 0. 0. 0.3162126 ’o’ ! p[MeV/c]= 6.126277, Brho[kG.cm]=20.435, kin-E[MeV]=0.02.

1

! 4.003593 0. 0. 0. 0. 0.3162126 ’o’ ! Brho[kG.cm]=20.435, kin-E[MeV]=0.02, case of field with index.

’PARTICUL’ ! Particle data are necessary as CAVITE is used,

PROTON ! otherwise, by default \zgoubi\ only requires rigidity.

’INCLUDE’

1

3* ./60DegSectorR200.inc[#S_60DegSectorR200:#E_60DegSectorR200] ! Three 60 deg sectors with index.

’FAISTORE’

zgoubi.fai ! Log current particle coordinates, in zgoubi.fai.

1

’CAVITE’ cavity ! Accelerating gap.

3 ! In this option, dW = qVsin(phi_s), independent of time.

0. 0.

100e3 1.57079632679

’INCLUDE’

1

3* ./60DegSectorR200.inc[#S_60DegSectorR200:#E_60DegSectorR200] ! Three 60 deg sectors with index.

’FAISCEAU’ ! Particle coordinates before gap.

’CAVITE’ cavity ! Accelerating gap.

3 ! In this option, dW = qVsin(phi_s), independent of time.

0. 0.

100e3 1.57079632679

’REBELOTE’ ! K = 99 : coordinates at end of previous pass are used as initial

25 1.1 99 ! coordinates for the next pass ; idem for spin components.

’FAISCEAU’ ! Local particle coordinates logged in zgoubi.res.

’SYSTEM’

2 ! 1 SYSTEM command follows.

/usr/bin/gnuplot < ./gnuplot_Zplt.gnu & ! Plot accelerated orbits.

/usr/bin/gnuplot < ./gnuplot_Zfai_DR.gnu & ! Plot delta_R(R).

’MARKER’ ProbdRRIdx_E ! Just for edition purposes.

’END’

A gnuplot script to obtain the accelerated orbit of Fig. 3.51:

# gnuplot_Zplt.gnu

set xtics ; set ytics ; set xlabel "X_{Lab} [m]" ; set ylabel "Y_{Lab} [m]"

set size ratio 1 ; set polar ; cm2m = 0.01 ; pi = 4.*atan(1.)

set arrow from 0, 0 to 0.8, 0 nohead linecolor "red" lw 6; set arrow from 0, 0 to -0.85, 0 nohead linecolor "blue" lw 6

noel_1=4 ; noel_2=12 # 1st DIPOLE is element $42=noel_1; 4th DIPOLE is $42=noel_2. $42=column number in zgoubi.plt.

plot "zgoubi.plt" u ($42< noel_2? $22 +pi/3.*(($42-noel_1)/2) :1/0):($10 *cm2m) w p pt 5 ps .2 lc rgb "black" notit ,\

"zgoubi.plt" u ($42>=noel_2? $22+pi+pi/3.*(($42-noel_2)/2) :1/0):($10 *cm2m) w p pt 5 ps .2 lc rgb "black" notit; pause 1

A gnuplot script to obtain the turn separation curves of Fig. 3.51. In this script, zgoubi.fai2 is a
copy of zgoubi.fai in which the first particle data line (particle data at the first pass) has been
removed. This allows drawing the difference ∆R between two successive passes, using the “paste”
command - see Tab. 3.8 for a similar 1-row shift using awk commands:

# gnuplot_Zfai_DR.gnu

set xtics; set ytics mirror; set key maxrow 2 ; set xlabel "R [cm]" ; set ylabel "{/Symbol D}R [cm]"

set key r c; set logscale y; unset colorbox

plot "<paste zgoubi.fai2 zgoubi.fai" u ($10):($10-$63):($10) w p pt 7 ps 1.5 lw .1 lc palette notit ; pause 1
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3.12 Acceleration and Extraction of a 6-D Polarized Bunch2716

This simulation can be set up using material drawn from previous exercises. It is2717

not fully developed here, guidelines are given.2718

The cyclotron simulation hypotheses of exercise 3.10-a are considered, the input2719

data file for this exercise can be built from that of Tab. 3.28, with a few modifications,2720

namely:2721

- downstream of REBELOTE, add a 1 meter DRIFT: an embryo of an “high2722

energy line” into which the bunch is steered at extraction;2723

- that DRIFT is preceded by CHANGREF to center the current reference frame on2724

the final coordinates Y and T of the accelerated orbit; the latter have to be determined2725

by prior raytracing;2726

- add histograms (to be logged in zgoubi.res) for observation of transverse and2727

longitudinal particle coordinate densities in the bunch at extraction. This uses HISTO,2728

as many times as needed.2729
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