Chapter 3

Classical Cyclotron

Abstract

This chapter introduces the classical cyclotron, and the theoretical material needed for the simulation exercises. It begins with a brief reminder of the historical context, and continues with beam optics and with the principles and methods which the classical cyclotron leans on, including - ion orbit in a cyclic accelerator, - weak focusing and periodic transverse motion, - revolution period and isochronism, - voltage gap and resonant acceleration, - the cyclotron equation.

The simulation of a cyclotron dipole will either resort to an analytical model of the field: the optical element DIPOLE, or will resort to using a field map together with the keyword TOSCA to handle it and raytrace through. An additional accelerator device needed in the exercises, CAVITE, simulates a local oscillating voltage. Running a simulation generates a variety of output files, including the execution listing zgoubi.res, always, and other zgoubi.plt, zgoubi.CAVITE.out, zgoubi.MATRIX.out, etc., aimed at looking up program execution, storing data for post-treatment, producing graphs, etc. Additional keywords are introduced as needed, such as the matching procedure FIT[2]; FAISCEAU and FAISTORE which log local particle data in zgoubi.res or in a user defined ancillary file; MARKER; the 'system call' command SYSTEM; REBELOTE, a 'do loop'; and some more. This chapter introduces in addition to spin motion in accelerator magnets; dedicated simulation exercises include a variety of keywords: SPNTRK, a request for spin tracking, SPNPRT or FAISTORE, to \log spin vector components in respectively zgoubi.res or some ancillary file, and the "IL=2" flag to \log stepwise particle data, including spin vector, in zgoubi.plt file. Simulations include deriving transport matrices, beam matrix, optical functions and their transport, from rays, using MATRIX and TWISS keywords.

Notations used in the Text

$B ; B_{0}$	magnetic field; at a reference radius R_{0}
$\mathbf{B} ; B_{R} ; B_{y}$	field vector; radial component; axial component
$B R=p / q$	magnetic rigidity
$C ; C_{0}$	orbit length, $C=2 \pi R ;$ reference, $C_{0}=2 \pi R_{0}$
E	ion energy, $E=\gamma m_{0} c^{2}$
$f_{\mathrm{rev}}, f_{\mathrm{rf}}$	revolution and RF voltage frequencies
G	gyromagnetic anomaly, $G=1.7928$ for proton, -4.184 for helion
h	harmonic number, an integer, $h=f_{\mathrm{rf}} / f_{\mathrm{rev}}$
$k=\frac{R}{B} \frac{d B}{d R}$	radial field index
$m ; m_{0} ; M$	ion mass; rest mass; in units of MeV/c ${ }^{2}$
$\mathbf{p} ; p ; p_{0}$	ion momentum vector; its modulus; reference
q	ion charge
$R ; R_{0} ; R_{E}$	equilibrium orbit radius; reference, $R\left(p_{0}\right) ;$ at energy E
$R F$	Radio-Frequency
s	path variable
$T_{\mathrm{rev}}, T_{\mathrm{rf}}$	revolution and accelerating voltage periods
$\mathbf{v} ; v$	ion velocity vector; its modulus
$V(t) ; \hat{V}$	oscillating voltage; its peak value
W	kinetic energy, $W=\frac{1}{2} m v^{2}$
$\mathrm{x}, \mathrm{x}, \mathrm{y}, \mathrm{y}$,	radial and axial coordinates $\left[(*)^{\prime}=\frac{d(*)}{d s}\right]$
α	trajectory deviation, or momentum compaction
$\beta=\frac{v}{c} ; \beta_{0} ; \beta_{s}$	normalized ion velocity; reference; synchronous
$\gamma=E / m_{0} c^{2}$	Lorentz relativistic factor
$\Delta p, \delta p$	momentum offset
ε_{u}	Courant-Snyder invariant $(u: x, r, y, l, Y, Z, s$, etc. $)$
θ	azimuthal angle
ϕ	RF phase at ion arrival at the voltage gap

3.1 Introduction

Cyclotrons are the most widespread type of accelerator, today, used by thousands, with the production of isotopes as the dominant application. This chapter is devoted to the first cyclic accelerator: the early 1930s classical cyclotron which its concept limited to low energy, a few 10 s of $\mathrm{MeV} /$ nucleon. This limitation overcome a decade later by the azimuthally varying field (AVF) technique, this is the subject of the next chapter.

The classical cyclotron is based on four main principles:
(i) the use of a cylindrical-symmetry magnetic field in the gap of an electromagnet (Fig. 3.1) to maintain ions on a circular trajectory
(ii) transverse vertical confinement of the beam obtained by a slow radial decrease of the magnetic field. A technique known as weak focusing, applied over the years in all cyclic accelerators: microtron, betatron, synchrocyclotron, synchrotron. These weak focusing accelerator species all are still part of the landscape today (iii) resonant acceleration by synchronization of a fixed-frequency accelerating voltage on the quasi-constant revolution time (Fig. 3.1). and (iv) use of high voltage, to mitigate the effect of the turn-by-turn RF phase slip.

Resonant acceleration has the advantage that a small gap voltage is enough to accelerate with, in principle, no energy limitation, by contrast with the electrostatic techniques developed at the time, which required the generation of the full voltage, such as the Van de Graaf which was limited by sparking at a few tens of megavolts.

The cyclotron concept goes back to the late 1920s [1], yet it was not until the early 1930s when a cyclotron was first brought to operation [2]. The principles are summarized in Fig. 3.1: an oscillating voltage is applied on a pair of electrodes ("dees") forming an accelerating gap and placed between the two poles of an electromagnet. Ions reaching the gap during the acceleration phase of the voltage wave experience an energy boost; no field is experienced inside the dees. Under the effect of energy increase at the gap every half-revolution, they spiral out in the quasi-constant field of the dipole.

Fig. 3.1 Left: a cyclotron electromagnet, namely here that used for a model of Berkeley's 184inch cyclotron in the early 1940s [3]. Magnetic field in the gap decreases with radius. Right: a schematic of the resonant acceleration motion; gap after gap, accelerated ions spiral out (bottom) in the quasi-uniform field (top). A double-dee (or, a variant, a single-dee facing a slotted electrode) forms an accelerating gap. The fixed-frequency oscillating voltage $V(t)$ applied is a harmonic of the revolution frequency. Ions experiencing proper voltage phase at the gap, turn by turn, are accelerated. A septum electrode allows beam extraction

The first cyclotron achieved acceleration of H_{2}^{+}hydrogen ions to 80 keV [2], at Berkeley in 1931. The apparatus used a dee-shaped electrode vis-à-vis a slotted electrode forming a voltage gap, the ensemble housed in a 5 in diameter vacuum chamber and placed in the 1.3 Tesla field of an electromagnet. $\mathrm{A} \approx 12 \mathrm{MHz}$ vacuum tube oscillator provided 1 kVolt gap voltage.

One goal foreseen in developing this technology was the acceleration of protons to MeV energy range for the study of atom nucleus. And in background, a wealth of potential applications. An 11 in cyclotron followed which delivered a $0.01 \mu \mathrm{~A}$ H_{2}^{+}beam at 1.22 MeV [4], and a 27 in cyclotron later reached 6 MeV (Fig. 3.2) [5]. Targets were mounted at the periphery of the 11-inch cyclotron, disintegrations were observed in 1932. And, in 1933: 'The neutron had been identified by Chadwick in 1932. By 1933 we were producing and observing neutrons from every target bombarded by deuterons. " [5, M.S. Livingston, p. 22].

Fig. 3.2 Berkeley 27 -inch cyclotron, brought to operation in 1934, accelerated deuterons up to 6 MeV . Left: a double-dee (seen in the vacuum chamber, cover off), 22 in diameter, creates an accelerating gap: $13 \mathrm{kV}, 12 \mathrm{MHz}$ radio frequency voltage is applied for deuterons for instance (through two feed lines seen at the top right corner). This apparatus was dipped in the 1.6 Tesla dipole field of a 27 in diameter, 75 ton, electromagnet. A slight decrease of the dipole field with radius, from the center of the dipole, ensures axial beam focusing. With their energy increasing, ions spiral out from the center to eventually strike a target (red arrow). Right: ionization of the air by the extracted beam (1936); the view also shows the vacuum chamber squeezed between the pole pieces of the electromagnet [3]

Fig. 3.3 Berkeley 184 in diameter, 4,000 ton cyclotron during construction [3]. The coil windings around both of the magnetic poles are clearly visible. Following the invention of longitudinal focusing it was actually operated as a synchrocyclotron, in 1946. The man on the right gives the scale

A broad range of applications were foreseen: "At this time biological experiments were started. [...] Also at about this same time the first radioactive tracer experiments on human beings were tried [...] simple beginnings of therapeutic use, coming a little bit later, in which neutron radiation was used, for instance, in the treatment of cancer. [...] Another highlight from 1936 was the first time that anyone tried to make artificially a naturally occurring radio-nuclide. (a bismuth isotope) [5, McMillan, p. 26].

Berkeley's 184 in cyclotron, the largest (Fig. 3.3), commissioned in 1941, was to accelerate Deuterons to 100 MeV for meson production. It's magnet however was diverted to the production of uranium for the atomic bomb during the second world war years [1]. Re-started in 1946, as a consequence of the discovery of phase focusing the accelerator was actually operated as a synchrocyclotron (an accelerator species addressed in Chap. 7).

Limitation in energy

The understanding of the dynamics of ions in the classical cyclotron took some time, and brought two news, a bad one and a good one,
(i) the bad one first: the energy limitation. A consequence of the loss of isochronism resulting from the relativistic increase of the ion mass so that "[...] it seems useless to build cyclotrons of larger proportions than the existing ones [...] an accelerating chamber of 37 in radius will suffice to produce deuterons of 11 MeV energy which is the highest possible [...]" [6], or in a different form: "If you went to graduate school in the 1940s, this inequality $(-1<k<0)$ was the end of the discussion of accelerator theory" [7].
(ii) the good news now: the energy limit which results from the mass increase can be removed by splitting the magnetic pole into valley and hill field sectors. This is the azimuthally varying field (AVF) cyclotron technology, due to L.H. Thomas in 1938 [8]. It took some years to see effects of this breakthrough (Fig. 3.4). The AVF is the object of Chap. 4.

With the progress in magnet computation tools, in computer speed and in beam dynamics simulations, the AVF cyclotron ends up being essentially as simple to design and build: it has in a general manner supplanted the classical cyclotron in all energy domains (Fig. 3.4).

3.2 Basic Concepts and Formulæ

The cyclotron was conceived as a means to overcome the technological difficulty of a long series of high electrostatic voltage electrodes in a linear layout, by, instead, repeated recirculation through a single accelerating gap in synchronism with an oscillating voltage (Fig. 3.5). As the accelerated bunch spirals out in the uniform magnetic field, the velocity increase comes with an increase in orbit length; the

Fig. 3.4 Evolution of the number of the various cyclotron species, over the years [9]. From the 1950s on the AVF cyclotron rapidly supplanted the 1930s' classical cyclotron

Fig. 3.5 Resonant acceleration: in an $h=1$ configuration an ion bunch meets an oscillating field \mathbf{E} across gap A, at time t, at an accelerating phase; it meets again, half a turn later, at time $t+T_{\text {rev }} / 2$, the accelerating phase across gap A', and so on: the magnetic field recirculates the bunch through the gap, repeatedly. Higher harmonic allows more bunches: the next possibility in the present configuration is $\mathrm{h}=3$, and 3 bunches, 120 degrees apart, in synchronism with \mathbf{E}

Fig. 3.6 An ion which reaches the double-dee gap at the RF phase $\omega_{\mathrm{rf}} t=\phi_{A}$ or $\omega_{\mathrm{rf}} t=\phi_{B}$ is accelerated. If it reaches the gap at $\omega_{\mathrm{rf}} t=\phi_{C}$ it is decelerated
net result is a slow increase of the revolution period $T_{\text {rev }}$ with energy, yet, with appropriate fixed $f_{\mathrm{rf}} \approx h / T_{\text {rev }}$ the revolution motion and the oscillating voltage can be maintained in sufficiently close synchronism, $T_{\mathrm{rev}} \approx T_{\mathrm{rf}} / h$, that the bunch will transit the voltage gap at an accelerating phase (Fig. 3.6) over a large enough number of turns that it acquires a significant energy boost.

The orbital motion quantities: radius R, ion rigidity $B R$, revolution frequency $f_{\text {rev }}$, satisfy

$$
\begin{equation*}
B R=\frac{p}{q}, \quad 2 \pi f_{\mathrm{rev}}=\omega_{\mathrm{rev}}=\frac{v}{R}=\frac{q B}{m}=\frac{q B}{\gamma m_{0}} \tag{3.1}
\end{equation*}
$$

These relationships hold at all γ, so covering the classical cyclotron domain $(v \ll c$, $\gamma \approx 1$) as well as the isochronous cyclotron (in which the ion energy increase is commensurate with its mass). To give an idea of the revolution frequency, in the limit $\gamma=1$, for protons, one has $f_{\mathrm{rev}} / B=q / 2 \pi m=15.25 \mathrm{MHz} / \mathrm{T}$.

The cyclotron design sets the constant RF frequency $f_{\mathrm{rf}}=\omega_{\mathrm{rf}} / 2 \pi$ at an intermediate value of $h f_{\text {rev }}$ along the acceleration cycle. The energy gain, or loss, by the ion when transiting the gap, at time t, is

$$
\begin{equation*}
\Delta W(t)=q \hat{V} \sin \phi(t) \quad \text { with } \phi(t)=\omega_{\mathrm{rf}} t-\omega_{\mathrm{rev}} t+\phi_{0} \tag{3.2}
\end{equation*}
$$

with ϕ its phase with respect to the RF signal at the gap (Fig. 3.6), $\phi_{0}=\phi(t=0)$, and $\omega_{\text {rev }} t$ the orbital angle. Assuming constant field B, the increase of the revolution period with ion energy satisfies

$$
\begin{equation*}
\frac{\Delta T_{\mathrm{rev}}}{T_{\mathrm{rev}}}=\gamma-1 \tag{3.3}
\end{equation*}
$$

The mis-match so induced between the RF and cyclotron frequencies is a turn-by-turn cumulative effect and sets a limit to the tolerable isochronism defect, $\Delta T_{\text {rev }} / T_{\text {rev }} \approx$ $2-3 \%$, or highest velocity $\beta=v / c \approx 0.22$. This results for instance in a practical limitation to $\approx 25 \mathrm{MeV}$ for protons, and $\approx 50 \mathrm{MeV}$ for D and α particles, a limit however dependent on energy gain per turn.

Over time multiple-gap accelerating structures where developed, whereby a "multiple- Δ " electrode pattern substitutes to a "double-D". An example is GANIL C0 injector with its 4 accelerating gaps and $h=4$ and $h=8$ RF harmonic operation [10].

3.2.1 Fixed-Energy Orbits, Revolution Period

In a laboratory frame ($\mathrm{O} ; \mathrm{x}, \mathrm{y}, \mathrm{z}$), with $(\mathrm{O} ; \mathrm{x}, \mathrm{z})$ the bend plane (Fig. 3.7), assume $\left.\mathbf{B}\right|_{y=0}=\mathbf{B}_{y}$, constant. An ion is launched from the origin with a velocity

$$
\mathbf{v}=\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)=(v \sin \alpha, 0, v \cos \alpha)
$$

at an angle α from the z-axis. Solving

Fig. 3.7 Circular motion of an ion in the plane normal to a uniform magnetic field B. The orbit is centered at $x_{C}=-v \cos \alpha / \omega_{\mathrm{rev}}$, $z_{C}=v \sin \alpha / \omega_{\text {rev }}$, its radius is $v / \omega_{\mathrm{rev}}$

with $\mathbf{B}=\left(0, B_{y}, 0\right)$ yields the parametric equations of motion

$$
\left\{\begin{array}{l}
x(t)=\frac{v}{\omega_{\mathrm{rev}}} \cos \left(\omega_{\mathrm{rev}} t-\alpha\right)-\frac{v \cos \alpha}{\omega_{\mathrm{rev}}} \tag{3.5}\\
y(t)=\mathrm{constant} \\
z(t)=\frac{v}{\omega_{\mathrm{rev}}} \sin \left(\omega_{\mathrm{rev}} t-\alpha\right)+\frac{v \sin \alpha}{\omega_{\mathrm{rev}}}
\end{array}\right.
$$

a circular trajectory of radius $R=v / \omega_{\text {rev }}$ centered at $\left(x_{C}, z_{C}\right)=\left(-\frac{v \cos \alpha}{\omega_{\text {rev }}}, \frac{v \sin \alpha}{\omega_{\text {rev }}}\right)$.
Stability of the cyclic motion - The initial velocity vector defines a reference closed orbit in the median plane of the cyclotron dipole; a small perturbation in α or v results in a new orbit in the vicinity of the reference. An axial velocity component v_{y} on the other hand, causes the ion to drift away from the reference, vertically, linearly with time, as there is no axial restoring force. The next Section will investigate the necessary field property to ensure both horizontal and vertical confinement of the cyclic motion in the vicinity of a reference orbit in the median plane.

3.2.2 Weak Focusing

In the early accelerated turns in a classical cyclotron (central region of the electromagnet, energy up to tens of $\mathrm{keV} / \mathrm{u}$), the accelerating electric field provides vertical focusing for particles with proper RF phase [11, Sect. 8], whereas a flat magnetic field with uniformity $d B / B<10^{-4}$ is sufficient to maintain isochronism. Beyond this low energy region however, at greater radii, a magnetic field gradient must be introduced to ensure transverse stability: field must decrease with R.

Fig. 3.8 Moving frame ($M_{0} ; s, x, y$) along the reference circular orbit. The curvature $1 / R_{0}$ is constant along the orbit and ($M_{0} ; s, x, y$) can be considered equivalent to the cylindrical frame $\left(C ; \theta, R_{0}, y\right)$

Ion coordinates in the following are defined in the moving frame ($M_{0} ; s, x, y$) (Fig. 3.8), which moves along the reference orbit (radius R_{0}), with its origin M_{0} the projection of ion location M on the reference orbit; the s axis is tangent to the latter, the x axis is normal to s, the y axis is normal to the bend plane. Median-plane symmetry of the field is assumed, thus the radial field component $\left.B_{R}\right|_{y=0}=0$ at all R (Fig. 3.9).

Consider small motion excursions $x(t)=r(t)-R_{0} \ll R_{0}$; introduce Taylor expansion of the field components,

$$
\begin{gather*}
B_{y}\left(R_{0}+x\right)=B_{y}\left(R_{0}\right)+\left.x \frac{\partial B_{y}}{\partial R}\right|_{R_{0}}+\left.\frac{x^{2}}{2!} \frac{\partial^{2} B_{y}}{\partial R^{2}}\right|_{R_{0}}+\ldots \approx B_{y}\left(R_{0}\right)+\left.x \frac{\partial B_{y}}{\partial R}\right|_{R_{0}} \\
B_{R}(0+y)=y \underbrace{\left.\frac{\partial B_{R}}{\partial y}\right|_{0}}_{=\left.\frac{\partial B y}{\partial R}\right|_{R_{0}}}+\left.\frac{y^{3}}{3!} \frac{\partial^{3} B_{R}}{\partial y^{3}}\right|_{0}+\left.\ldots \approx y \frac{\partial B_{y}}{\partial R}\right|_{R_{0}} \tag{3.7}
\end{gather*}
$$

Using these, and noting $(\dot{*})=d(*) / d t$, the linear approximation of the differential equations of motion in the moving frame writes

$$
\begin{gather*}
F_{x}=m \ddot{x}=-q v B_{y}(R)+\frac{m v^{2}}{R_{0}+x} \approx-q v\left(B_{y}\left(R_{0}\right)+\left.\frac{\partial B_{y}}{\partial R}\right|_{R_{0}} x\right)+\frac{m v^{2}}{R_{0}}\left(1-\frac{x}{R_{0}}\right) \\
\rightarrow m \ddot{x}=-\frac{m v^{2}}{R_{0}^{2}}\left(\left.\frac{R_{0}}{B_{0}} \frac{\partial B_{y}}{\partial R}\right|_{R_{0}}+1\right) x \tag{3.8}\\
F_{y}=m \ddot{y}=q v B_{R}(y)=\left.q v \frac{\partial B_{R}}{\partial y}\right|_{y=0} ^{y+\text { higher order } \rightarrow m \ddot{y}=q v \frac{\partial B_{y}}{\partial R} y}
\end{gather*}
$$

Fig. 3.9 Axial motion stability requires proper shaping of field lines: B_{y} has to decrease with radius. The Laplace force pulls a positive charge with velocity pointing out of the page, at I, toward the median plane. Increasing the field gradient (k closer to - 1 , gap opening up faster) increases the focusing

Fig. 3.10 Geometrical focusing: take $\mathrm{k}=0$; two circular trajectories which start from $r=R_{0} \pm \delta R$ (solid lines, going counter-clockwise) undergo exactly one oscillation around the reference orbit $r=R_{0}$. A negative k (triangles), for axial focusing, decreases the radial convergence; a positive k (square markers) increases the radial convergence - and increases vertical divergence

Note $B_{y}\left(R_{0}\right)=B_{0}$ and introduce

$$
\begin{equation*}
\omega_{R}^{2}=\omega_{\mathrm{rev}}^{2}\left(1+\frac{R_{0}}{B_{0}} \frac{\partial B_{y}}{\partial R}\right), \quad \omega_{y}^{2}=-\omega_{\mathrm{rev}}^{2} \frac{R_{0}}{B_{0}} \frac{\partial B_{y}}{\partial R} \tag{3.9}
\end{equation*}
$$

substitute in Eqs. 3.8, this yields

Fig. 3.11 Radial motion stability. Trajectory arcs at $p=m v$ are represented: case of $k=0$ (thin black lines), of $-1<k<0$ (thick blue lines), and of $k=-1$ (dashed concentric circles). k decreasing towards -1 reduces the geometrical focusing, increases axial focusing. The resultant of the Laplace and centrifugal forces, $F_{t}=-q v B+m v^{2} / r$, is zero at I , motion is stable if F_{t} is toward I at i, i.e. $q v B_{i}<$ $m v^{2} / R_{i}$, and toward I as well at e, i.e. $q v B_{e}>m v^{2} / R_{e}$

$$
\begin{equation*}
\ddot{x}+\omega_{R}^{2} x=0 \quad \text { and } \quad \ddot{y}+\omega_{y}^{2} y=0 \tag{3.10}
\end{equation*}
$$

A restoring force (linear terms in x and $\mathrm{y}, \mathrm{Eq} .3 .10$) arises from the radially varying field, characterized by a field index

$$
\begin{equation*}
k=\left.\frac{R_{0}}{B_{0}} \frac{\partial B_{y}}{\partial R}\right|_{R=R_{0}, y=0} \tag{3.11}
\end{equation*}
$$

Radial stability: radially this force adds to the geometrical focusing (curvature term " 1 " in ω_{R}^{2}, Eq. 3.9, Fig. 3.10). In the weakly decreasing field $B(R)$ an ion with momentum $p=m v$ moving in the vicinity of the R_{0}-radius reference orbit experiences in the moving frame a resultant force $F_{t}=-q v B+m \frac{v^{2}}{r}$ (Fig. 3.11) of which the (outward) component $f_{c}=m \frac{v^{2}}{r}$ decreases with r at a higher rate than the decrease of the Laplace (inward) component $f_{B}=-q v B(r)$. In other words, radial stability requires $B R$ to increase with $R, \frac{\partial B R}{\partial R}=B+R \frac{\partial B}{\partial R}>0$, this holds in particular at R_{0}, thus $1+k>0$.

Axial stability requires a restoring force directed toward the median plane. Referring to Fig. 3.9, this means $F_{y}=-a \times y$ (with a a positive quantity) and thus $B_{R}<0$, at all $(r, y \neq 0)$. This is achieved by designing a guiding field which decreases with radius, $\frac{\partial B_{R}}{\partial y}<0$. Referring to Eq. 3.11 this means $k<0$.

From these radial and axial constraints the condition of "weak focusing" for transverse motion stability around the circular equilibrium orbit results, namely,

$$
\begin{equation*}
-1<k<0 \tag{3.12}
\end{equation*}
$$

Note regarding the geometrical focusing: the focal distance associated with the curvature of a magnet of arc length \mathcal{L} is obtained by integrating $\frac{d^{2} x}{d s^{2}}+\frac{1}{R_{0}^{2}} x=0$ and identifying with the focusing property $\Delta x^{\prime}=-x / f$, namely,

$$
\begin{equation*}
\Delta x^{\prime}=\int \frac{d^{2} x}{d s^{2}} d s \approx \frac{-x}{R^{2}} \int d s=\frac{-x \mathcal{L}}{R^{2}}, \text { thus } f=\frac{R^{2}}{\mathcal{L}} \tag{3.13}
\end{equation*}
$$

Isochronism: the axial focusing constraint, B decreasing with R, contributes breaking the isochronism (in addition to the effect of the mass increase) by virtue of $\omega_{\mathrm{rev}} \propto B$.

Paraxial Transverse Coordinates

Introduce the path variable s as the independent variable in Eq. 3.10 and neglect the transverse velocity components $\left(1+\frac{x}{R_{0}} \approx 1, y \ll 0\right)$ so that

$$
\begin{equation*}
d s=\left[r^{2}(s) d \theta^{2}+d r^{2}+d y^{2}\right]^{1 / 2} \approx|\mathbf{v}| d t \tag{3.14}
\end{equation*}
$$

thus the equations of motion in the moving frame (Eq. 3.10) take the form

$$
\begin{equation*}
\frac{d^{2} x}{d s^{2}}+\frac{1+k}{R_{0}^{2}} x=0 \quad \text { and } \quad \frac{d^{2} y}{d s^{2}}-\frac{k}{R_{0}^{2}} y=0 \tag{3.15}
\end{equation*}
$$

Given $-1<k<0$ the motion is that of a harmonic oscillator, in both planes, with respective restoring constants $(1+k) / R_{0}^{2}$ and $-k / R_{0}^{2}$, both positive quantities. The solution is a sinusoidal motion,

$$
\left\{\begin{align*}
r(s)-R_{0} & =x(s)=x_{0} \cos \frac{\sqrt{1+k}}{R_{0}}\left(s-s_{0}\right)+x_{0}^{\prime} \frac{R_{0}}{\sqrt{1+k}} \sin \frac{\sqrt{1+k}}{R_{0}}\left(s-s_{0}\right) \tag{3.16}\\
r^{\prime}(s) & =x^{\prime}(s)=-x_{0} \frac{\sqrt{1+k}}{R_{0}} \sin \frac{\sqrt{1+k}}{R_{0}}\left(s-s_{0}\right)+x_{0}^{\prime} \cos \frac{\sqrt{1+k}}{R_{0}}\left(s-s_{0}\right)
\end{align*}\right.
$$

$$
\left\{\begin{array}{l}
y(s)=y_{0} \cos \frac{\sqrt{-k}}{R_{0}}\left(s-s_{0}\right)+y_{0}^{\prime} \frac{R_{0}}{\sqrt{-k}} \sin \frac{\sqrt{-k}}{R_{0}}\left(s-s_{0}\right) \tag{3.17}\\
y^{\prime}(s)=-y_{0} \frac{\sqrt{-k}}{R_{0}} \sin \frac{\sqrt{-k}}{R_{0}}\left(s-s_{0}\right)+y_{0}^{\prime} \cos \frac{\sqrt{-k}}{R_{0}}\left(s-s_{0}\right)
\end{array}\right.
$$

Radial and axial wave numbers can be introduced,

$$
\begin{equation*}
v_{R}=\frac{\omega_{R}}{\omega_{\mathrm{rev}}}=\sqrt{1+k} \quad \text { and } \quad v_{y}=\frac{\omega_{y}}{\omega_{\mathrm{rev}}}=\sqrt{-k} \tag{3.18}
\end{equation*}
$$

i.e., the number of sinusoidal oscillations of the paraxial motion about the reference circular orbit over a turn, respectively radial and axial. Both are less than 1: there is less than one sinusoidal oscillation in a revolution. In addition, as a result of the revolution symmetry of the field,

$$
\begin{equation*}
v_{R}^{2}+v_{y}^{2}=1 \tag{3.19}
\end{equation*}
$$

$\left\{\begin{array}{l}\mathrm{p}_{0} \\ \mathrm{p}=\mathrm{p}_{0}+\Delta \mathrm{p}\end{array}\right.$ is at radius $\left\{\begin{array}{l}R_{0} \text { with } B_{0} R_{0}=\frac{p_{0}}{q} \\ R \text { with } B R=\frac{p}{q}\end{array}\right.$, where $\left\{\begin{array}{l}B=B_{0}+\left(\frac{\partial B}{\partial x}\right)_{0} \Delta x+\ldots \\ R=R_{0}+\Delta x\end{array}\right.$
On the other hand

$$
B R=\frac{p}{q} \Rightarrow\left[B_{0}+\left(\frac{\partial B}{\partial x}\right)_{0} \Delta x+\ldots\right]\left(R_{0}+\Delta x\right)=\frac{p_{0}+\Delta p}{q}
$$

which, neglecting terms in $(\Delta x)^{2}$, and given $B_{0} R_{0}=\frac{p_{0}}{q}$, leaves $\Delta x\left[\left(\frac{\partial B}{\partial x}\right)_{0} R_{0}+B_{0}\right]=$ $\frac{\Delta p}{q}$. With $k=\frac{R_{0}}{B_{0}}\left(\frac{\partial B}{\partial x}\right)_{0}$ this yields

Fig. 3.12 The equilibrium radius at location A is R_{0}, momentum is p_{0}, rigidity is $B_{0} R_{0}$. The equilibrium radius at B is R, momentum p, rigidity $B R$

$$
\begin{equation*}
\Delta x=D \frac{\Delta p}{p_{0}} \quad \text { with } \quad D=\frac{R_{0}}{1+k} \quad \text { the dispersion function } \tag{3.20}
\end{equation*}
$$

The dispersion D is an s-independent quantity as a result of the revolution symmetry of the field (k and $R=p / q B$ are s-independent).

To the first order in the coordinates, the vertical coordinates $y(s)$, $y^{\prime}(s)$ (Eq. 3.17) are unchanged under the effect of a momentum offset, the horizontal trajectory angle $\mathrm{x}^{\prime}(\mathrm{s})$ (Eq. 3.16) is unchanged as well (the circular orbits are concentric, Fig. 3.12) whereas $x(s)$ satisfies

$$
\begin{equation*}
x\left(s, p_{0}+\Delta p\right)=x\left(s, p_{0}\right)+\left.\Delta p \frac{\partial x}{\partial p}\right|_{s, p_{0}}=x\left(s, p_{o}\right)+D \frac{\Delta p}{p_{0}} \tag{3.21}
\end{equation*}
$$

Orbit and revolution period lengthening

A δp momentum offset results in (Eq. 3.20)

$$
\begin{equation*}
\frac{\delta C}{C}=\frac{\delta R}{R}=\frac{\delta x}{R}=\alpha \frac{\delta p}{p} \quad \text { with } \quad \alpha=\frac{1}{1+k}=\frac{1}{v_{R}^{2}} \tag{3.22}
\end{equation*}
$$

with α the momentum compaction, a positive quantity: orbit length increases with momentum. Substituting $\frac{\delta \beta}{\beta}=\frac{1}{\gamma^{2}} \frac{\delta p}{p}$, the change in revolution period $T_{\text {rev }}=C / \beta c$ with momentum writes

$$
\begin{equation*}
\frac{\delta T_{\mathrm{rev}}}{T_{\mathrm{rev}}}=\frac{\delta C}{C}-\frac{\delta \beta}{\beta}=\left(\alpha-\frac{1}{\gamma^{2}}\right) \frac{\delta p}{p} \tag{3.23}
\end{equation*}
$$

Given that $-1<k<0$ and $\gamma \gtrsim 1$, it results that $\alpha-1 / \gamma^{2}>0$: the revolution period increases with energy, the increase in radius is faster than the velocity increase.

3.2.3 Quasi-Isochronous Resonant Acceleration

The energy W of an accelerated ion (in the non-relativistic energy domain of the classical cyclotron) satisfies the frequency dependence

$$
\begin{equation*}
W=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(2 \pi R f_{\mathrm{rev}}\right)^{2}=\frac{1}{2} m\left(2 \pi R \frac{f_{\mathrm{rf}}}{h}\right)^{2} \tag{3.24}
\end{equation*}
$$

Observe in passing: given the cyclotron size (radius R), f_{rf} and h set the limit for the acceleration range. The revolution frequency decreases with energy and the condition of synchronism with the oscillating voltage, $f_{\mathrm{rf}}=h f_{\mathrm{rev}}$, is only fulfilled at that particular radius where $\omega_{\mathrm{rf}}=q B / m$ (Fig. 3.13-left). The out-phasing $\Delta \phi$ of the RF at ion arrival at the gap builds-up turn after turn, decreasing in a first stage (towards lower voltages in Fig. 3.13-right) and then increasing back to $\phi=\pi / 2$ and beyond towards π. Beyond $\phi=\pi$ the RF voltage is decelerating.

With $\omega_{\text {rev }}$ constant between two gap passages, differentiating $\phi(t)$ (Eq. 3.2) yields $\dot{\phi}=\omega_{\mathrm{rf}}-\omega_{\mathrm{rev}}$. Between two gap passages on the other hand, $\Delta \phi=\dot{\phi} \Delta T=\dot{\phi} T_{\mathrm{rev}} / 2=$ $\dot{\phi} \frac{\pi R}{v}$, yielding a phase-shift of

$$
\begin{equation*}
\text { half-turn } \quad \Delta \phi=\pi\left(\frac{\omega_{\mathrm{rf}}}{\omega_{\mathrm{rev}}(R)}-1\right)=\pi\left(\frac{m \omega_{\mathrm{rf}}}{q B(R)}-1\right) \tag{3.25}
\end{equation*}
$$

The out-phasing is thus a gap-after-gap, cumulative effect. Due to this the classical cyclotron requires quick acceleration (small number of turns), which means high voltage (tens to hundreds of kVolts). As expected, with ω_{rf} and B constant, ϕ presents a minimum $(\dot{\phi}=0)$ at $\omega_{\mathrm{rf}}=\omega_{\mathrm{rev}}=q B / m$ where exact isochronism is reached (Fig. 3.13). The upper limit to ϕ is set by the condition $\Delta W>0$: acceleration.

Fig. 3.13 Left: a sketch of the synchronism condition at one point ($\mathrm{h}=1$ assumed). Right: the span in phase of the energy gain $\Delta W=q \hat{V} \sin \phi$ (Eq. 3.2) over the acceleration cycle

Fig. 3.14 A graph of the cyclotron equation (Eq. 3.26), for three different accelerating voltages: 100,200 and $400 \mathrm{kV} / \mathrm{gap}$ (respectively square, circle and triangle markers). The sole settings resulting in $-1<\cos \phi(E)<1$, $\forall E$, allow complete acceleration to top energy. $\phi_{i}=\pi / 4$ at injection for instance, does not (upper three curves). $\phi_{i}=3 \pi / 4$ works (lower three curves), with as low as $100 \mathrm{kV} / \mathrm{gap}$

The cyclotron equation determines the achievable energy range, depending on the injection energy E_{i}, the RF phase at injection ϕ_{i}, the RF frequency ω_{rf} and gap voltage \hat{V}. It writes [12]

$$
\begin{equation*}
\cos \phi=\cos \phi_{i}+\pi\left[1-\frac{\omega_{\mathrm{rf}}}{\omega_{\mathrm{rev}}} \frac{E+E_{i}}{2 M}\right] \frac{E-E_{i}}{q \hat{V}} \tag{3.26}
\end{equation*}
$$

Equation 3.26 is represented in Fig. 3.14 for various values of the peak voltage and phase at injection $\phi_{i} . M\left[\mathrm{eV} / \mathrm{c}^{2}\right]$ and $E[\mathrm{eV}]$ are respectively the rest mass and relativistic energy, $q \hat{V}$ is expressed in electron-volts, the index i denotes injection parameters.

3.2.4 Beam Extraction

From $R=p / q B$ and assuming $B(R) \approx$ constant (this is legitimate as k is normally small), in the non-relativistic approximation ($W \ll M, W=p^{2} / 2 M$) one gets

$$
\begin{equation*}
\frac{d R}{R}=\frac{1}{2} \frac{d W}{W} \tag{3.27}
\end{equation*}
$$

Integrating yields

$$
\begin{equation*}
R^{2}=R_{i}^{2} \frac{W}{W_{i}} \tag{3.28}
\end{equation*}
$$

with R_{i}, W_{i} initial conditions. From Eqs. $3.27,3.28$, assuming $W_{i} \ll W$ and constant acceleration rate $d W$ such that $W=n d W$ after n turns, one gets the scaling laws

$$
\begin{equation*}
R \propto \sqrt{n}, \quad d R \propto \frac{R}{W} \propto \frac{1}{R} \propto d W, \quad \frac{d R}{d n}=\frac{R}{2 n} \tag{3.29}
\end{equation*}
$$

The turn separation $d R$ is proportional to the energy gain per turn and inversely proportional to the orbit radius.

Fig. 3.15 The radial distance between successive turns decreases with energy, in inverse proportion to the orbit radius. The red and blue segments here figure the accelerating gap

The radial distance between successive turns decreases with energy, toward zero

Orbit modulation

Consider an ion bunch injected in the cyclotron with some (x_{0}, x_{0}^{\prime}) conditions in the vicinity of the reference orbit, and assume slow acceleration. While accelerated the bunch undergoes an oscillatory motion around the equilibrium orbit (Eq. 3.16). Observed at the extraction septum this oscillation modulates the distance of the
bunch to the local equilibrium orbit, moving it outwards or inwards depending on the turn number, which modulates the distance between the accelerated turns. This effect can be resorted to, so to increase the separation between the final two turns and so enhance the extraction efficiency [9].

3.2.5 Spin Dance

"Much of the physics of spin motion can be illustrated using the simplest model of a storage ring consisting of uniform horizontal bending and no straight sections." [13].

By virtue of this statement, a preliminary introduction to spin motion in magnetic fields is given in the present chapter. In support to this in addition, comes the fact that cyclotrons happened to be the first circular machines to acelerate polarized beams (first acceleration of polarized beams had happened earlier in the 1960s, using electrostatic columns at voltage generators, when polarized proton and deuteron sources began operating [14]).

The magnetic field \mathbf{B} of the cyclotron dipole exerts a torque on the spin angular momentum \mathbf{S} of an ion, causing it to precess following the Thomas-BMT differential equation [15]

$$
\begin{equation*}
\frac{d \mathbf{S}}{d t}=\mathbf{S} \times \underbrace{\frac{q}{m}\left[(1+G) \mathbf{B}_{\|}+(1+G \gamma) \mathbf{B}_{\perp}\right]}_{\omega_{\mathrm{sp}}} \tag{3.30}
\end{equation*}
$$

where t is the time; $\omega_{\text {sp }}$ the precession vector: a combination of $\mathbf{B}_{\|}$and \mathbf{B}_{\perp} components of \mathbf{B} respectively parallel and orthogonal to the ion velocity vector. G is the gyromagnetic anomaly,

$$
\mathrm{G}=1.7928474(\text { proton }),-0.178(\mathrm{Li}),-0.143 \text { (deuteron), }-4.184\left({ }^{3} \mathrm{He}\right) . .
$$

\mathbf{S} in this equation is in the ion rest frame, all other quantities are in the laboratory frame.

In the case of an ion moving in the median plane of the dipole, $\mathbf{B}_{\|}=0$, thus the precession axis is parallel to the magnetic field vector, \mathbf{B}_{y}, so that $\boldsymbol{\omega}_{\text {sp }}=\frac{q}{m}(1+$ $G \gamma) \mathbf{B}_{y}$. The spin precession angle over a trajectory arc \mathcal{L} is

$$
\begin{equation*}
\theta_{\mathrm{sp}, \mathrm{Lab}}=\frac{1}{v} \int_{(\mathcal{L})} \omega_{\mathrm{sp}} d s=(1+G \gamma) \frac{\int_{(\mathcal{L})} B d s}{B R}=(1+G \gamma) \alpha \tag{3.31}
\end{equation*}
$$

with α the velocity vector precession (Fig. 3.16). The precession angle in the moving frame (the latter rotates by an angle α along \mathcal{L}) is

$$
\begin{equation*}
\theta_{\mathrm{sp}}=G \gamma \alpha \tag{3.32}
\end{equation*}
$$

thus the number of 2π spin precessions per ion orbit around the cyclotron is $G \gamma$. By analogy with the wave numbers (Eq. 3.18) this defines the "spin tune"

Fig. 3.16 Spin and velocity vector precession in a constant field, from \mathbf{S} to \mathbf{S}^{\prime} and \mathbf{v} to \mathbf{v}^{\prime} respectively. In the moving frame the spin precession along the arc $\mathcal{L}=R \alpha$ is $G \gamma \alpha$, in the laboratory frame the spin precesses by $(1+G \gamma) \alpha$

$$
\begin{equation*}
v_{\mathrm{sp}}=G \gamma \tag{3.33}
\end{equation*}
$$

3.3 Exercises

Note: some of the input data files for these simulations are available in zgoubi sourceforge repository at
//sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/book/zgoubiMaterial/cyclotron_classical/

3.1 Modeling a Cyclotron Dipole: Using a Field Map

Solution: page 71
In this exercise, ion trajectories are ray-traced, various optical properties addressed in the foregoing are recovered, using a field map to simulate the cyclotron dipole. Fabricating that field map is a preliminary step of the exercise.

The interest of using a field map is that it is an easy way to account for fancy magnet geometries and fields, including field gradients and possible defects. A field map can be generated using mathematical field models, or from magnet computation codes, or from magnetic measurements. The first method is used, here. TOSCA[MOD.MOD1=22.1] keyword [16, $c f$. INDEX] is used to ray-trace through the map.

Working hypotheses: A 2-dimensional $m(R, \theta)$ polar meshing of the median plane is considered (Fig. 3.17). It is defined in a $(O ; X, Y)$ frame and covers an angular sector of a few tens of degrees. The mid-plane field map is the set of values $B_{Z}(R, \theta)$ at the nodes of the mesh. During ray-tracing, TOSCA[MOD.MOD1=22.1] extrapolates the field along 3D space (R, θ, Z) ion trajectories from the 2D polar map [16].

Fig. 3.17 Principle of a 2D field map in polar coordinates, covering a 180° sector (over the right hand side dee). The mesh nodes $m(R, \theta)$ are distant ΔR radially, $\Delta \theta$ azimuthally. The map is used twice to cover the 360° cyclotron dipole as sketched here, while allowing insertion of an accelerating gap between the two dees

(a) Construct a 180° two-dimensional map of a median plane field $B_{Z}(R, \theta)$, proper to simulate the field in a cyclotron as sketched in Fig. 3.1. Use one of the following two methods: either (i) write an independent program, or (ii) use zgoubi and its analytical field model DIPOLE, together with the keyword OPTIONS[CONSTY=ON] [16, $c f$. INDEX].

Besides: use a uniform mesh (Fig. 3.17) covering from Rmin $=1$ to $\mathrm{Rmax}=76 \mathrm{~cm}$, with radial increment $\Delta R=0.5 \mathrm{~cm}$, azimuthal increment $\Delta \theta=0.5[\mathrm{~cm}] / R_{0}$ with R_{0}
some reference radius (say, 50 cm , in view of subsequent exercises), and constant axial field $B_{Z}=5 \mathrm{kG}$. The appropriate 6-column formatting of the field map data for TOSCA[MOD.MOD1=22.1] to read is the following:
$R \cos \theta, Z, R \sin \theta, B Y, B Z, B X$
with θ varying first, R varying second; Z is the vertical direction (normal to the map mesh), $Z \equiv 0$ in the present case. Note that proper functioning of TOSCA requires the field map to begin with the following line of numerical values:

Rmin $[\mathrm{cm}] \quad \Delta R[\mathrm{~cm}] \quad \Delta \theta[\mathrm{deg}] \quad Z[\mathrm{~cm}]$
Produce a graph of the $B_{Z}(R, \theta)$ field map content.
(b) Ray-trace a few concentric circular mid-plane trajectories centered on the center of the dipole, ranging in $10 \leq R \leq 80 \mathrm{~cm}$. Produce a graph of these concentric trajectories in the $(O ; X, Y)$ laboratory frame.

Initial coordinates can be defined using OBJET, particle coordinates along trajectories during the stepwise ray-tracing can be logged in zgoubi.plt by setting IL=2 under TOSCA. In order to find the Larmor radius corresponding to a particular momentum, the matching procedure FIT can be used. In order to repeat the latter for a series of different momenta, REBELOTE[IOPT=1] can be used.

Explain why it is possible to push the ray-tracing beyond the 76 cm radial extent of the field map.
(c) Compute the orbit radius R and the revolution period $T_{\text {rev }}$ as a function of kinetic energy W or rigidity $B R$. Produce a graph, including for comparison the theoretical dependence of $T_{\text {rev }}$.
(d) Check the effect of the density of the mesh (the choice of ΔR and $\Delta \theta$ values, i.e., the number of nodes $\left.N_{\theta} \times N_{R}=\left(1+\frac{180^{\circ}}{\Delta \theta}\right) \times\left(1+\frac{80 \mathrm{~cm}}{\Delta R}\right)\right)$, on the accuracy of the trajectory and time-of-flight computation.
(e) Check the effect of the integration step size on the accuracy of the trajectory and time-of-flight computation, by considering a small $\Delta s=1 \mathrm{~cm}$ and a large $\Delta s=10 \mathrm{~cm}$, at 200 keV and 5 MeV (proton), and comparing with theory.
(f) Consider a periodic orbit, thus its radius R should remain unchanged after stepwise integration of the motion over a turn. However, the size Δs of the numerical integration step has an effect on the final value of the radius:

For two different cases, 200 keV (a small orbit) and 5 MeV (a larger one), provide a graph of the dependence of the relative error $\delta R / R$ after one turn, on the integration step size Δs (consider a series of Δs values in a range $\Delta s: 0.1 \mathrm{~mm} \rightarrow 20 \mathrm{~cm}$). REBELOTE[IOPT=1] do-loop can be used to repeat the one-turn raytracing with different Δs.

3.2 Modeling a Cyclotron Dipole: Using an Analytical Field Model
 Solution: page 80
 This exercise is similar to exercise 3.1, yet using the analytical modeling DIPOLE, instead of a field map. DIPOLE provides the Z-parallel median plane field $\mathbf{B}(R, \theta, Z=$ $0) \equiv \mathbf{B}_{Z}(R, \theta, Z=0)$ at the projected $m(R, \theta, Z=0)$ ion location (Fig. 3.18), while $\mathbf{B}(R, \theta, Z)$ at particle location is obtained by extrapolation.

Fig. 3.18 DIPOLE provides the value $B_{Z}(m)$ of the median plane field at m , projection of particle position $M(R, \theta, Z)$ in the median plane. $\mathbf{B}(R, \theta, Z)$ is obtained by extrapolation

(a) Simulate a 180° sector dipole; DIPOLE requires a reference radius [16, Eqs. 6.3.19-21], noted R_{0} here; for the sake of consistency with other exercises, it is suggested to take $R_{0}=50 \mathrm{~cm}$. Take a constant axial field $B_{Z}=5 \mathrm{kG}$.

Explain the various data that define the field simulation in DIPOLE: geometry, role of R_{0}, field and field indices, fringe fields, integration step size, etc.

Produce a graph of $B_{Z}(R, \theta)$.
(b) Repeat question (b) of exercise 3.1.
(c) Repeat question (c) of exercise 3.1.
(d) As in question (e) of exercise 3.1, check the effect of the integration step size on the accuracy of the trajectory and time-of-flight computation.

Repeat question (f) of exercise 3.1.
(e) From the two series of results (exercise 3.1 and the present one), comment on various pros and cons of the two methods, field map versus analytical field model.

3.3 Resonant Acceleration

Solution: page 84
Based on the earlier exercises, using indifferently a field map (TOSCA) or an analytical model of the field (DIPOLE), introduce a sinusoidal voltage between the two dees, with peak value 100 kV . Assume that ion motion does not depend on RF phase: the boost through the gap is the same at all passes, use CAVITE[IOPT=3] [16, $c f$. INDEX] for that. Note that using CAVITE requires prior PARTICUL in order to specify ion species and data, necessary to compute the energy boost (Eq. 3.2).
(a) Accelerate a proton with initial kinetic energy 20 keV , up to 5 MeV , take harmonic $\mathrm{h}=1$. Produce a graph of the accelerated trajectory in the laboratory frame.
(b) Provide a graph of the proton momentum p and total energy E as a function of its kinetic energy, both from this numerical experiment (ray-tracing data can be stored using FAISTORE) and from theory, all on the same graph.
(c) Provide a graph of the normalized velocity $\beta=v / c$ as a function of kinetic energy, both numerical and theoretical, and in the latter case both classical and relativistic.
(d) Provide a graph of the relative change in velocity $\Delta \beta / \beta$ and orbit length $\Delta C / C$ as a function of kinetic energy, both numerical and theoretical. From their evolution, conclude that the time of flight increases with energy.
(e) Repeat the previous questions, assuming a harmonic $h=3$ RF frequency.

3.4 Spin Dance

Solution: page 88
Cyclotron modeling in the present exercise can use Exercise 3.1 or Exercise 3.2 technique (i.e., a field map or an analytical field model), indifferently.
(a) Add spin transport, using SPNTRK [16, cf. INDEX]. Produce a listing (zgoubi.res) of a simulation, including spin outcomes.

Note: PARTICUL is necessary here, for the spin equation of motion (Eq. 3.30) to be solved [16, Sect. 2]. SPNPRT can be used to have local spin coordinates listed in zgoubi.res (at the manner that FAISCEAU lists local particle coordinates).
(b) Consider proton case, take initial spin longitudinal, compute the spin precession over one revolution, as a function of energy over a range $12 \mathrm{keV} \rightarrow 5 \mathrm{MeV}$. Give a graphical comparison with theory.

FAISTORE can be used to store local particle data, which include spin coordinates, in a zgoubi.fai style output file. $\mathrm{IL}=2$ [16, $c f$. INDEX] (under DIPOLE or TOSCA, whichever modeling is used) can be used to obtain a print out of particle and spin motion data to zgoubi.plt during stepwise integration.
(c) Inject a proton with longitudinal initial spin \mathbf{S}_{i}. Give a graphic of the longitudinal spin component value as a function of azimuthal angle, over a few turns around the ring. Deduce the spin tune from this computation. Repeat for a couple of different energies.

Place both FAISCEAU and SPNPRT commands right after the first dipole sector, and use them to check the spin rotation and its relationship to particle rotation, right after the first passage through that first sector.
(d) Spin dance: the input data file optical sequence here is assumed to model a full turn. Inject an initial spin at an angle from the horizontal plane (this is in order to have a non-zero vertical component), produce a 3-D animation of the spin dance around the ring, over a few turns.
(e) Repeat questions (b-d) for two additional ions: deuteron (much slower spin precession), ${ }^{3} \mathrm{He}^{2+}$ (much faster spin precession).

3.5 Synchronized Spin Torque

Solution: page 94
A synchronized spin kick is superimposed on orbital motion. An input data file for a complete cyclotron is considered as in question 3.4 (d), for instance six 60 degree DIPOLEs, or two 180 degree DIPOLEs.

Insert a local spin rotation of a few degrees around the longitudinal axis, at the end of the optical sequence (i.e., after one orbit around the cyclotron). SPINR can be used for that, rather than a local magnetic field, so to avoid any orbital effect. Track 4 particles on their respective equilibrium orbit, with energies $0.2,108.412,118.878$ and 160.746 MeV .

Produce a graph of the motion of the vertical spin component S_{y} along the circular orbit.

Produce a graph of the spin vector motion on a sphere.

3.6 Weak Focusing

Solution: page 97
(a) Consider a 60° sector as in earlier exercises (building a field map and using TOSCA as in exercise 3.1, or using DIPOLE as in exercise 3.2), construct the sector accounting for a non-zero radial index k in order to introduce axial focusing, say $k=-0.03$, assume a reference radius R_{0} for a reference energy of $200 \mathrm{keV}\left(R_{0}\right.$ and B_{0} are required in order to define the index k, Eq. 3.11). Ray-trace that 200 keV reference orbit, plot it in the lab frame: make sure it comes out as expected, namely, constant radius, final and initial angles zero.
(b) Using FIT[2], find and plot the radius dependence of orbit rigidity, $B R(R)$, from ray-tracing over a $B R$ range covering 20 keV to 5 MeV ; superpose the theoretical curve. REBELOTE[IOPT=1] can be used to perform the scan.
(c) Produce a graph of the paraxial axial motion of a 1 MeV proton, over a few turns (use IL=2 under TOSCA, or DIPOLE, to have step by step particle and field data logged in zgoubi.plt). Check the effect of the focusing strength by comparing the trajectories for a few different index values, including close to -1 and close to 0 .
(d) Produce a graph of the magnetic field experienced by the ion along these trajectories.

3.7 Loss of Isochronism

Solution: page 106
Compare on a common graphic the revolution period $T_{\text {rev }}(R)$ for a field index value $k \approx-0.95,-0.5,-0.03,0^{-}$. The scan method of exercise 3.6 , based on REBELOTE[IOPT=1] preceded by FIT[2], can be referred to.

3.8 Ion Trajectories

Solution: page 108
In this exercise individual ion trajectories are computed. DIPOLE or TOSCA magnetic field modeling can be used, indifferently. No acceleration here, ions circle around the cyclotron at constant energy.
(a) Produce a graph of the horizontal $x(s)$ and vertical $y(s)$ trajectory coordinates of an ion with rigidity close to $B R\left(R_{0}\right)\left(R_{0}\right.$ is the reference radius in the definition of the index k), over a few turns around the cyclotron. From the number of turns, give an estimate of the wave numbers. Check the agreement with the expected $v_{R}(k)$, $v_{y}(k)$ values (Eq. 3.18).
(b) Consider now protons at 1 MeV and 5 MeV , far from the reference energy $E\left(R_{0}\right)$; the wave numbers change with energy: consistency with theory can be checked. Find their theoretical values, compare with numerical outcomes.
(c) Consider proton, 200 keV energy, plot as a function of s the difference between $x(s)$ from raytracing and its values from Eq. 3.16. Same for $y(s)$ compared to Eq. 3.17.
$\mathrm{IL}=2$ can be used to store in zgoubi.plt the step-by-step particle coordinates across DIPOLE.
(d) Perform a scan of the wave numbers over $200 \mathrm{keV}-5 \mathrm{MeV}$ energy interval, computed using OBJET[KOBJ=5] and MATRIX[IORD $=1, \mathrm{IFOC}=11]$, or OB$\mathrm{JET}[\mathrm{KOBJ}=6]$ and MATRIX[IORD=2,IFOC=11], together with REBELOTE[IOPT=1] to repeat MATRIX for a series of energy values.

3.9 RF Phase at the Accelerating Gap

Solution: page 114
Consider the cyclotron model of exercise 3.6: field index $k=-0.03$ defined at $R_{0}=50 \mathrm{~cm}$, field $B_{0}=5 \mathrm{kG}$ on that radius. two dees, double accelerating gap.

Accelerate a proton from 1 to 5 MeV : get the turn-by-turn phase-shift at the gaps; use CAVITE[IOPT=7] to simulate the acceleration. Compare the half-turn $\Delta \phi$ so obtained with the theoretical expectation (Eq. 3.25). Produce similar graphs $B(R)$ and $\Delta W(\phi)$ to Fig. 3.13.

Accelerate over more turns, observe the particle decelerating.

3.10 The Cyclotron Equation

Solution: page 116
The cyclotron model of exercise 3.3 is considered: two dees, double accelerating gap, uniform field $B=5 \mathrm{kG}$, no field gradient needed here (no vertical motion).
(a) Set up an input data file for the simulation of a proton acceleration from 0.2 to 20 MeV . In particular, assume that $\cos (\phi)$ reaches its maximum value at $W_{m}=10 \mathrm{MeV}$; find the RF voltage frequency from $d(\cos \phi) / d W=0$ at W_{m}.
(b) Give a graph of the energy-phase relationship (Eq. 3.26), for $\phi_{i}=\frac{3 \pi}{4}, \frac{\pi}{2}, \frac{\pi}{4}$, from both simulation and theory.

3.11 Cyclotron Extraction
 Solution: page 118

(a) Acceleration of a proton in a uniform field $B=5 \mathrm{kG}$ is first considered (field hypotheses as in exercise 3.3). RF phase is ignored: CAVITE[IOPT=3] can be used for acceleration. Take a 100 kV gap voltage.

Compute the distance ΔR between turns, as a function of turn number and of energy, over the range $E: 0.02 \rightarrow 5 \mathrm{MeV}$. Compare graphically with theoretical expectation.
(b) Assume a beam with Gaussian momentum distribution and rms momentum spread $\delta p / p=10^{-3}$. An extraction septum is placed half-way between two successive turns, provide a graph of the percentage of beam loss at extraction, as a function of extraction turn number. COLLIMA can be used for that simulation and for particle counts, it also allows for possible septum thickness.
(c) Repeat (a) and (b) considering a field with index: take for instance $B_{0}=5 \mathrm{kG}$ and $k=-0.03$ at $R_{0}=R(0.2 \mathrm{MeV})=12.924888 \mathrm{~cm}$.
(d) Investigate the effect of injection conditions $\left(Y_{i}, T_{i}\right)$ on the modulation of the distance between turns.

Try and confirm numerically that, with slow acceleration, the oscillation is minimized for an initial $\left|T_{i}\right|=\left|\frac{x_{0} v_{R}}{R}\right|$ (after Ref. [9, p. 133]).

3.12 Acceleration and Extraction of a 6-D Polarized Bunch

Solution: page 123
The cyclotron simulation hypotheses of exercise 3.10-a are considered; account or $k=-0.02$ field index.

Add a short "high energy" extraction line, say 1 meter, following REBELOTE in the optical sequence, ending up with a "Beam_Dump" MARKER for instance.
(a) Create a 1,000 ion bunch with the following initial parameters:

- random Gaussian transverse phase space densities, centered on the equilibrium orbit, truncated at 3 sigma, normalized rms emittances $\varepsilon_{Y}=\varepsilon_{Z}=1 \pi \mu \mathrm{~m}$, both emittances matched to the 0.2 MeV orbit optics,
- uniform bunch momentum density $0.2 \times\left(1-10^{-3}\right) \leq p \leq 0.2 \times\left(1+10^{-3}\right) \mathrm{MeV}$, matched to the dispersion, namely (Eq. 3.21), $\Delta x=D \frac{\Delta p}{p}$,
- random uniform longitudinal distribution $-0.5 \leq s \leq 0.5 \mathrm{~mm}$,

Note: two ways to create this object are, (i) using MCOBJET[KOBJ=3] which generates a random distribution, or (ii) using OBJET[KOBJ=3] to read an external particle coordinate file.

Add spin tracking request (SPNTRK), all initial spins normal to the bend plane.
Produce a graph of the three initial 2-D phase spaces: (Y,T), (Z,P), $(\delta l, \delta p / p)$, matched to the 200 keV periodic optics. Provide Y, Z, dp/p, δl and S_{Z} histograms (HISTO can be used), check the distribution parameters.
(b) Accelerate this polarized bunch to 20 MeV , using the following RF conditions:

- 200 kV peak voltage,
- RF harmonic 1,
- initial RF phase $\phi_{i}=\pi / 4$.

Produce a graph of the three phase spaces as observed downstream of the extraction line. Provide the $\mathrm{Y}, \mathrm{Z}, \mathrm{dp} / \mathrm{p}, \delta l$ and S_{Z} histograms. Compare the distribution parameters with the initial values.

What causes the spins to spread away from vertical?

3.4 Solutions of Exercises of Chapter 3: Classical Cyclotron

3.1 Modeling a Cyclotron Dipole: Using a Field Map

(a) A field map of a 180° sector of a classical cyclotron magnet.

The first option is retained here: a Fortran program, geneSectorMap.f, given in Tab. 3.1. constructs the required map of a field distribution $B_{Z}(R, \theta)$, to be subsequently read and raytraced through using the keyword TOSCA [16, lookup INDEX].

Regarding the second option: using the analytical model DIPOLE together with the keyword OPTIONS[CONSTY=ON] to fabricate a field map, examples can be found for instance in the FFAG chapter exercises (Chap. 10).

Fig. 3.19 Principle 2-D field map mesh as used by TOSCA, and the $(\mathrm{O} ; \mathrm{X}, \mathrm{Y})$ coordinate system. (A), (B): Cartesian mesh in the (X,Y) plane, case of respectively 9-point and a 25 -point interpolation grid; the mesh increments are ΔX and ΔY. (C) : polar mesh and increments ΔR and $\Delta \alpha(\Delta \theta$ in the text $)$, and $(\mathrm{O} ; \mathrm{X}, \mathrm{Y})$ frame moving along a reference arc of radius R_{M}. The field at particle location is interpolated from its values at the closest 3×3 or 5×5 nodes

A polar mesh is retained (Fig. 3.19), rather than Cartesian, consistently with cyclotron magnet symmetry. The program can be compiled (gfortran -o geneSectorMap geneSectorMap. f will provide the executable, geneSectorMap) and run, as is. The field map is saved under the name geneSectorMap.out, excerpts of the expected content are given in Tab. 3.2. That name appears under TOSCA in zgoubi input data file for this simulation (Tab. 3.3). Figure 3.20 shows the field over the 180° azimuthal extent (using a gnuplot script, bottom of Tab. 3.2.

Note the following:
(i) the field map azimuthal extent (set at 180° in geneSectorMap) can be changed, for instance to simulate a 60 deg sector instead;
(ii) the field is vertical being the mid-plane field of dipole magnet. The field is taken constant in this exercise, $\forall R, \forall \theta$ throughout the map mesh, whereas in upcoming exercises, a focusing index will be introduced, which will make $B_{Z} \equiv$ $B_{Z}(R)$ an R-dependent quantity (in Chap. 4 which addresses Thomas focusing and the isochronous cyclotron, exercises will further resort to $B_{Z} \equiv B_{Z}(R, \theta)$, an R- and θ-dependent quantity).

This field map can be readily tested using the example of Tab. 3.3, which raytraces $E_{k}=0.12,0.2$ and 5.52 MeV protons on circular trajectories centered at the center of the field map. Trajectory radii, respectively $R=10.011,12.924$ and 67.998 cm (Tab. 3.3), have been prior determined from

$$
\begin{equation*}
\text { Rigidity } B \rho=B_{0} \times R \quad \text { and } \quad B \rho=p / c=\sqrt{E_{k}\left(E_{k}+2 M\right)} / c \tag{3.34}
\end{equation*}
$$

with $B_{0}=0.5 \mathrm{~T}$ (Tab. 3.1) and $M=938.272 \mathrm{MeV} / \mathrm{c}^{2}$ the proton mass.
The optical sequence for this particle raytracing uses the following keywords:

Table 3.1 A Fortran program which generates a 180° mid-plane field map. This angle as well as field amplitude can be changed, a field index can be added. This program can be compiled and run, as is. The field map it produces is logged in geneSectorMap.out

C geneSectorMap.f program
implicit double precision (a-h,o-z)
parameter ($\mathrm{p} i=4 . \mathrm{d} 0 * a \tan (1 . \mathrm{d} \theta), \quad \mathrm{BY}=0 . \mathrm{d} \theta, \mathrm{BX}=0 . \mathrm{d} \theta, \mathrm{z}=0 . \mathrm{d} \theta)$
open(unit=2,file='geneSectorMap.out') ! Field map storage file.
C----------- Hypotheses :
AT $=180 . \mathrm{d} 0 \quad / 180 . \mathrm{d} 0 * \mathrm{pi}$
I Angular extent of field map. Can be changed 360,60 deg, etc.).
Rmi=1.d0; Rma=76.d0; RM=50.d0 ! cm. Radial extent of field map; reference radius to define mesh.
$\mathrm{dR}=0.5 \mathrm{~d} 0 ; \mathrm{NR}=\operatorname{NINT}((\mathrm{Rma}-\mathrm{Rmi}) / \mathrm{dR})+1 \quad$! R-distance between nodes in mesh. Number of R-nodes.
C \quad RdA $=0.5 \mathrm{~d} \theta \quad$ given angle increment $d A$ (dA is the "Delta thetw" quantity in the main text).

write (2,") $\quad \mathrm{Rmi}, \mathrm{dR}, \mathrm{dA} / \mathrm{pi}$ " $180 . \mathrm{dQ}, \mathrm{dZ}$,
$!\mathrm{Rmi} / \mathrm{cm}, \mathrm{dR} / \mathrm{cm}, \mathrm{dA} / \mathrm{deg}, \mathrm{dZ} / \mathrm{cm}$
,
write(2,fmt=' (a)') '\# AT/rd, AT/deg, Rmi/cm, Rma/cm, RM/cm,'
//' $\mathrm{NR}, \mathrm{dR} / \mathrm{cm}, \mathrm{NX}, \mathrm{RdA} / \mathrm{cm}, \mathrm{dA} / \mathrm{rd}$;
rite(2,fmt='(a, 1p,5(e16.8,1x),2(i3,1x,e16.8,1x), e16.8)'
'\#',AT, AT/pi*180.d0,Rmi, Rma, RM, NR, dR, NX, RdA, dA
write(2,*) '\# For TOSCA: ', NX,NR,' 122.1 1. !IZ=1 -> 2D ; ,
>//'MOD=22 -> polar map ; .MOD2=.1 -> one map file'
write (2,*) '\# R* cosA $\quad Z==0, \quad R * \sin A$ '
>//, BY BZ \quad BX $\begin{gathered}R^{*} \sin A \\ i x ~ j r\end{gathered}$
write(2,*) '\# \quad cm $\quad \begin{array}{lllll}\text { BZ } & \mathrm{cm} & \mathrm{BX} & \mathrm{cm} \\ \mathrm{cm}\end{array}$
write(2,*) '\#,
do $\mathrm{jr}=1$, NR
$\mathrm{R}=\mathrm{Rmi}+\mathrm{dble}(\mathrm{jr}-1) * \mathrm{dR}$
$A=A 1+d b l e(i x-1) * d A ; X=R * \sin (A) ; Y=R * \cos (A)$
write(2 , fmt=' $(1 \mathrm{p}, 6(\mathrm{e} 16.8), 2(1 \mathrm{x}, \mathrm{i} \theta)$)') $\mathrm{Y}, \mathrm{Z}, \mathrm{X}, \mathrm{BY}, \mathrm{BZ}, \mathrm{BX}, \mathrm{ix}, \mathrm{jr}$ enddo
enddo
stop , Job complete ! Field map stored in geneSectorMap.out.,

Fig. 3.20 Left: map of a constant magnetic field over a 180 deg sector, 76 cm radial extent. Right: three circular trajectories, at respectively $0.12,0.2$ and 5.52 MeV , computed using that field map

Table 3.2 First and last few lines of the field map file geneSectorMap.out. The file starts with an 8-line header, the first of which is effectively used by zgoubi (the following 7 are not used) and indicates, in that order: the minimum radius of the map mesh Rmi, the radial increment dR , the azimuthal increment dA, the axial increment dZ (null and not used in the present case of a two-dimensional field map), in units of, respectively, cm, cm, degree, cm . The additional 7 lines provide the user with various indications regarding numerical values used in, or resulting from, the execution of geneSectorMap.f. The first 5 numerical data in line 5 in particular are to be reported in zgoubi input data file under TOSCA keyword. The rest of the file is comprised of 8 columns, the first three give the node coordinates and the next three the field component values at that node, the last two columns are the (azimuthal and radial) node numbers, from $(1,1)$ to $(315,151)$ in the present case

[^0](i) OBJET to define a (arbitrary) reference rigidity and initial particle coordinates
(ii) TOSCA, to read the field map and raytrace through (and TOSCA's 'IL=2' flag to store step-by-step particle data into zgoubi.plt)
(iii) FAISCEAU to print out particle coordinates in zgoubi.res execution listing
(iv) SYSTEM to run a gnuplot script (Tab. 3.3) once raytracing is complete
(v)MARKER, to define two particular "LABEL_1" type labels [16, lookup INDEX] (\#S_halfDipole and \#E_halfDipole), to be used with INCLUDE in subsequent exercises.

Three circular trajectories in a dee, resulting from the data file of Tab. 3.3 are shown in Fig. 3.20. Inspecting zgoubi.res execution listing one finds the D, Y, T, Z, P, S particle coordinates under FAISCEAU, at OBJET (left) and current (right) after a turn in the cyclotron (unchanged, as the trajectory forms a closed orbit):

(b) Concentric trajectories in the median plane.

Table 3.3 Simulation input data file FieldMapSector.inc: it is set to allow a preliminary test regarding the field map geneSectorMap.out (as produced by the Fortran program geneSectorMap, Tab. 3.1), by computing three circular trajectories centered on the center of the map. This file also defines the INCLUDE segment between the labels (LABEL1 type [16, Sect. 7.7]) \#S_halfDipole and \#E_halfDipole

```
FieldMapSector.inc
! Uniform field 180 deg sector. FieldMapSector.inc.
```

'MARKER' FieldMapSector_S
. Just for edition purposes
' OBJET'
ll
64.62444403717985

Reference Brho ("BORO" in the users' guide) -> 200 keV proton
2
31
10
10.011362 O. O. Q. Q. 0.7745802 ' ${ }^{\prime}$ ', $\quad!\mathrm{p}[\mathrm{MeV} / \mathrm{c}]=15.007$, $\operatorname{Brho}[\mathrm{kG} . \mathrm{cm}]=50.057$, $\mathrm{kin}-\mathrm{E}[\mathrm{MeV}]=0.12$.

67.997983 O. O. O. O. 5.2610112 'c

11
1
1
! $\mathrm{p}[\mathrm{MeV} / \mathrm{c}]=101.926$, Brho $[\mathrm{kG} . \mathrm{cm}]=339.990$, kin $-\mathrm{E}[\mathrm{MeV}]=5.52$.
MARKER' \#S_halfDipole
02 ! IL=2 to log step-by-step coordinates, spin, etc., to zgoubi.plt (avoid, if CPU time matters).

1. 2. 3. 4. ! Normalization coefficients, for B, X, Y and Z coordinate values read from the map.
HEADER_8 The field map file starts with an 8 -line header
315151122.11 . ! $\mathrm{IZ}=1$ for 2 D map; MOD=22 for polar frame; . MOD2=. 1 if only one map file.
geneSectorMap.out
$O O O Q$! Possible vertical boundaries within the field map, to start/stop stepwise integration.
1 ! Integration step size. Small enough for orbits to close accurately.

'MARKER' \#E_halfDipole
'FAISCEAU'
'SYSTEM'
! This SYSTEM command runs gnuplot, for a graph of the two trajectories.
1
gnuplot <./gnuplot_Zplt.gnu
gnuplot $<$ 'MARKER'
'Enviplot_Zplt.gnu
FieldMapSector_E \quad ! Just for edition purposes.
'END'

A gnuplot script to obtain a graph of the orbits, Fig. 3.20:
\# gnuplot_Zplt.gnu
set key maxcol 1 ; set key tres set xtics ; set ytics ; cm2m = 0.01 ; unset colorbox
set xlabel "X_\{Lab\} [m]" ; set ylabel "Y_\{Lab\} [m]" ; set size ratio 1 ; set polar
plot for [orbit=1:3] "zgoubi.plt" u ($\$ 19==$ orbit ? $\$ 22: 1 / 0):(\$ 10 * c m 2 m):(\$ 19) \mathrm{w} 1 \mathrm{lw} 2 \mathrm{lc}$ pal; pause 1 the execution pointer back to the top of the data file) for a new momentum value which REBELOTE itself defines, prior.

In order to compute and then plot trajectories (Fig. 3.21), zgoubi proceeds as follows: orbit circles for a series of different radii taken in [10, 80] cm are searched, using FIT to find the appropriate momenta. REBELOTE is used to repeat that fitting on a series of different values of R; prior to repeating, REBELOTE modifies the initial particle coordinate Y_{0} in OBJET. Stepwise particle data through the dipole field are logged in zgoubi.plt, due to $\mathrm{IL}=2$ under TOSCA keyword, at the first pass before FIT, and at the last pass following FIT completion. A key point here: a flag,

Table 3.4 Simulation input data file: optical sequence to find cyclotron closed orbits at a series of different momenta. An INCLUDE inserts the \#S_halfDipole to \#E_halfDipole TOSCA segment of the sequence of Tab. 3.3

```
Uniform field 180 deg. sector. Find orbits
    'MMARKER' FieldMapOrbits_S Find orbits. ! Just for edition purposes.
    'OBJET'
    ! Reference Brho ("BORO" in the users' guide) -> 200keV proton.
    64.62444403717985
2
```



```
1
FieldMapSector.inc[#S_halfDipole:#E_halfDipole]
'FAISCEAU'
    'INCLUDE'
    1
FieldMapSector.inc[#S_halfDipole:#E_halfDipole]
'FIT'
l
3.11250.1.0 ! request same radius after a half-turn (i.e., after first 180 deg sector,
! 'FAISCEAU' CHECK ! Allows quick check of particle coordinates, in zgoubi.res: final should = initial.
```

'REBELOTE'		
15	0.1	0
1	1	

OBJET 30 10:80
! Prior to each repeat, first change the value of parameter 30 (i.e., Y) in OBJET.
'SYSTEM'
2
gnuplot <./gnuplot_Zplt.gnu
cp gnuplot_Zplt_XYLab.eps gnuplot_Zplt_XYLab_stage1.eps
'MARKER' FieldMapOrbits_E
! Just for edition purposes.
'END'

A gnuplot script to obtain Fig. 3.21:

Note: removing the test ' $\$ 51==1$?' on column 51 in zgoubi.plt, would add on the graph the orbit as it is before each FIT.
\# gnuplot_Zplt.gnu
set key maxcol 1 ; set key t r ; set xtics ; set ytics ; set size ratio 1 ; set polar ; unset colorbox
set xlabel "X_\{Lab\} $[\mathrm{m}] \backslash \mathrm{n} "$; set ylabel "Y-\{Lab\} $[\mathrm{m}] \quad \backslash \mathrm{n} " ; \mathrm{cm} 2 \mathrm{~m}=0.01$; sector $1=4$; sector $2=8$; pi = 4.*atan(1.) lmnt $1=4$; lmnt2=8 \#\#\# column numer in zgoubi.plt, \$42: NOEL; \$51: FITLST; \$49: FIT number plot for [l=lmnt1/4:lmnt2/4] "zgoubi.plt"u $(\$ 42=4 * 1 \& \& \$ 51==1 ? \$ 22+\mathrm{pi} *(1-1): 1 / 0):(\$ 10 * \mathrm{~cm} 2 \mathrm{~m}):(\$ 49) \mathrm{w}$ p ps .3 lc pal pause 1

Fig. 3.21 Circular trajectories in the cyclotron mid-plane, centered on the field map center. The outermost orbit is at $\mathrm{R}=80 \mathrm{~cm}$ by hypothesis, thus $B R=B_{0} \times R=0.4 \mathrm{~T}$ m, $E_{k}=7.632 \mathrm{MeV}$. These stepwise (R, θ) data are read from zgoubi.plt, coordinates (Y, X) in zgoubi polar frame
 nomenclature [16, Sect.8.3]

FITLST, recorded in column 51 in zgoubi.plt [16, Sect. $\dot{8} .3$], is set to 1 at the last pass (the last pass follows the completion of the FIT execution and uses updated FIT variable values).

At the bottom of zgoubi input data file, a SYSTEM command produces a graph of ion trajectories, by executing a gnuplot script (bottom of Tab. 3.4). Note the test on FITLST, which allows selecting the last pass following FIT completion. Graphic outcomes are given in Fig. 3.21.

Fig. 3.22 Numerical (markers) and theoretical (solid lines) values of orbit radius, R , and revolution period, T_{rev}, versus kinetic energy (top scale) and rigidity (bottom scale). The mesh density here is $N_{\theta} \times N_{R}=315 \times 151$. The integration step size is $\Delta s=1 \mathrm{~cm}$, so ensuring converged results (to $\Delta R / R$ and $\Delta T_{\text {rev }} / T_{\text {rev }}<10^{-6}$)

\rightarrow

The reason why it is possible to push the raytracing beyond the 76 cm radius field map extent, without loss of accuracy, is that the field is constant. Thus, referring to the polynomial interpolation technique used [16, Sect. 1.4], the extrapolation out of the map will leave the field value unchanged.
(c) Energy and rigidity dependence of orbit radius and time-of-flight.

The orbit radius R and the revolution time $T_{\text {rev }}$ as a function of kinetic energy E_{k} and rigidity $B R$ are obtained by a similar scan to exercise (b). The results are shown in Fig. 3.22.
A slow increase of revolution period with energy can be observed, which is due to the mass increase.

Note that these results are converged for the step size, to high accuracy (see (d)), due to its value taken small enough, namely $\Delta s=1 \mathrm{~cm}$. This corresponds for instance to 80 steps to complete a revolution for the $120 \mathrm{keV}, R=12.9 \mathrm{~cm}$ smaller radius trajectory in Fig 3.21.
(d) Numerical convergence: mesh density.

This question concerns the dependence of the numerical convergence of the solution of the differential equation of motion [16, Eq. 1.2.1] upon mesh density.

The program used in (b) to generate a field map (Tab. 3.1) is modified to construct field maps of $B_{Z}(R, \theta)$ with various radial and azimuthal mesh densities. Changing

Fig. 3.23 Convergence versus mesh density and step size: a graph of orbit radius R (left axis), and revolution period, $T_{\text {rev }}$ (right axis), versus kinetic energy (top scale) and rigidity (bottom scale). Solid markers are for $\Delta s=1 \mathrm{~cm}$ and $N_{\theta} \times N_{R}=3 \times 3$ node mesh, large empty circles are for $\Delta s=10 \mathrm{~cm}$ and $N_{\theta} \times N_{R}=106 \times 151$ node mesh. Solid lines are from theory and show convergence in the case 3×3 nodes and $\Delta s=1 \mathrm{~cm}$

Table 3.5 Field map of a 60° constant field sector as read by TOSCA. The field map is complete, with smallest possible $N X \times N R=3 \times 3=9$ number of nodes. The first line of the header is used by zgoubi (the following 7 are not used), namely, the minimum value of the radius in the map, radius increment, azimuthal increment, and vertical increment (null here, as this is a single, mid-plane map)

Modified TOSCA keyword data, in the case of a 60° sector field map (compared to Tab. 3.3, the sole data line "3 3122.1 1." changes, from " 315151122.1 1." in that earlier 180° sector case):

[^1]these is simply a matter of modifying the quantities dR (radius increment ΔR) and $R d A$ (R times the azimuth increment $\Delta \theta$) in the program of Tab. 3.1. The field maps geneSectorMap.out so generated for various $(d R, R d A)$ couples may be saved under different names, and used separately.

Table. 3.5 shows the complete, 9 line, TOSCA field map, in the case of a 60° sector covered in $N_{\theta} \times N_{R}=\frac{60^{\circ}}{\Delta \theta} \times \frac{75 \mathrm{~cm}}{\Delta R}=\frac{360^{\circ}}{120^{\circ}} \times \frac{75 \mathrm{~cm}}{37.5 \mathrm{~cm}}=3 \times 3$ nodes. Six sectors are now required to cover the complete cyclotron dipole: zgoubi input data need be changed accordingly, namely stating TOSCA - possibly via an INCLUDE six times, instead of just twice in the case of a 180 degree sector.

The result to be expected: with a mesh reduced to as low as $N_{\theta} \times N_{R}=3 \times 3$, compared to $N_{\theta} \times N_{R}=106 \times 151$, radius and time-of-flight should however remain unchanged. This shows in Fig. 3.23 which displays both cases, over a $E_{k}: 0.12 \rightarrow$ 5 MeV energy span (assuming protons). The reason for the absence of effect of the mesh density is that the field is constant. As a consequence the field derivatives in the Taylor series based numerical integrator are all zero [16, Sect. 1.2]: only B_{Z} is left in evaluating the Taylor series, however B_{Z} is constant. Thus R remains unchanged when pushing the ion by a step Δs, and the cumulated path length - the closed orbit length - and revolution time - path length over velocity - end up unchanged. Note: this will no longer be the case when a radial field index is introduced in order to cause vertical focusing, in subsequent exercises.
(e) Numerical convergence: integration step size

Figure 3.23 displays two cases of step sizes, $\Delta s \approx 1 \mathrm{~cm}$ and $\Delta s=10 \mathrm{~cm}$.
It has been shown (Fig. 3.22) that $\Delta s \approx 1 \mathrm{~cm}$ is small enough that the numerical integration is converged, agreement with theoretical expectation is quite good.

The difference on the value of R, in the case $\Delta s \approx 10 \mathrm{~cm}$, appears to be weak, only noticeable at the scale of the graph for R values small enough that the number of steps over one revolution goes as low as $2 \pi R / \Delta s \approx 2 \pi \times 14.5 / 10 \approx 9$. The change in time-of-flight due to the larger step size amounts to a relative 10^{-3}.

Step size is critical in the numerical integration, the reason is that the coefficients of the Taylor series that yield the new position vector $\mathbf{R}\left(M_{1}\right)$ and velocity vector $\mathbf{v}\left(M_{1}\right)$, from an initial location M_{0} after a Δs push, are the derivatives of the velocity vector [16, Sect. 1.2] and may take substantial values if $\mathbf{v}(s)$ changes quickly. In such case, taking too large a Δs value makes the high order terms significant and the Taylor series truncation [16, Eq. 1.2.4] is fatal to the accuracy (regardless of a possible additional issue of radius of convergence of the series).
(f) Numerical convergence: $\frac{\delta R}{R}(\Delta s)$

Issues faced are the following:

- the increase of $\delta R(\Delta s) / R$ at large Δs has been addressed above;
- a small Δs is liable to cause an increase of $\delta R(\Delta s) / R$, due to computer accuracy: truncation of numerical values at a limited number of digits may cause a Δs push to result in no change in $\mathbf{R}\left(M_{1}\right)$ (position) and $\mathbf{u}\left(M_{1}\right)$ (normed velocity) quantities [16, Eq. 1.2.4].

A detailed answer to the question, including graphs, is left to the reader, the method is the same as in (e).

3.2 Modeling a Cyclotron Dipole: Using an Analytical Field Model

This exercise introduces the analytical modeling of a dipole, using DIPOLE [16, lookup INDEX], and compares outcomes to the field map case of exercise 3.1. The exercise is not entirely solved, however all the material needed for that is provided, and indications are given to complete it.
(a) Analytical modeling.

DIPOLE keyword provides an analytical model of the field to simulate a sector dipole with index, namely [16, lookup INDEX]

$$
\begin{equation*}
B_{Z}=\mathcal{F}(\theta) B_{0}\left[1+k\left(\frac{R-R_{0}}{R_{0}}\right)+k^{\prime}\left(\frac{R-R_{0}}{R_{0}}\right)^{2}+k^{\prime \prime}\left(\frac{R-R_{0}}{R_{0}}\right)^{3}\right] \tag{3.35}
\end{equation*}
$$

R_{0} is a reference radius, $B_{0}=\left.B_{Z}\left(R_{0}\right)\right|_{\mathcal{F} \equiv 1}$ is a reference field value, k is the field index and k ', k " are homogeneous to its first and second derivative with respect to R (Eq. 3.11). $\mathcal{F}(\theta)$ is an azimuthal form factor, defined by the fringe field model, presumably taking the value 1 in the body of the dipole. In the present case a hard-edge field model is considered, so that

$$
\mathcal{F}=\left\{\begin{array}{ll}
1 & \text { inside } \tag{3.36}\\
0 & \text { outside }
\end{array}\right. \text { the dipole magnet }
$$

Fig. 3.24 Parameters used to define the geometry of a dipole magnet with index, using DIPOLE. In the text, ACENT is noted ACN [16, Fig. 9]

Setting up the input data list under DIPOLE (Table 3.6) requires close inspection of Fig. 3.24, which details the geometrical parameters such as the full angular opening of the field region that DIPOLE comprises, AT; a reference angle ACN to allow positioning the effective field boundaries at ω^{+}and ω^{-}; field and indices; fringe field regions at $A C N-\omega^{+}$(entrance) and $A C N-\omega^{-}$(exit); wedge angles, etc.

A 60 deg sector is used here for convenience, it is detailed in Table 3.6 (Table 3.7 provides the definition of a 180 deg sector, for possible comparisons with the present three-sector assembly).

In setting up DIPOLE data the following values have been accounted for:

- $R_{0}=50 \mathrm{~cm}$, an arbitrary value (consistent with other exercises), more or less half the dipole extent,
- $B_{0}=B_{Z}\left(R_{0}\right)=5 \mathrm{kG}$, as in the previous exercise. Note in passing, $R_{0}=50 \mathrm{~cm}$ thus corresponds to $B R=0.25 \mathrm{~T} \mathrm{~m}, E_{k}=2.988575 \mathrm{MeV}$ proton kinetic energy,
- radial field index $k=0$ for the time being (constant field at all (R, θ)),
- a hard-edge field model for \mathcal{F} (Eq. 3.36). In that manner for instance, two consecutive 60 deg sectors form a continuous 120 deg sector.

A graph of $B_{Z}(R, \theta)$ can be produced by computing constant radius orbits, for a series of energies ranging in $0.12-5.52 \mathrm{MeV}$ for instance. DIPOLE[IL=2] causes logging of step by step particle data in zgoubi.plt, including particle position and magnetic field vector; these data can be read and plotted, to yield similar results to Fig. 3.20.
(b) Concentric trajectories in the median plane.

The optical sequence of Exercise 3.1-b (Tab. 3.4) can be used, by just changing the INCLUDE to account for a 180° DIPOLE (instead of TOSCA), namely
'INCLUDE'
1
3* 60degSector.inc[\#S_60degSectorUnifB:\#E_60degSectorUnifB]
wherein 60degSector.inc is the name of the data file of Tab. 3.6 and
[\#S_60degSectorUnifB:\#E_60degSectorUnifB]
is the DIPOLE segment as defined in the latter. Note that the segment represents a 60° DIPOLE, thus it is included 3 times.

The additional keywords in that modified version of the Tab. 3.4 file include

- FIT, which finds the circular orbit for a particular momentum,
- FAISTORE to print out particle data once FIT is completed,
- REBELOTE, which repeats the execution of the sequence (REBELOTE sends the execution pointer back to the top of the data file) for a new momentum value which REBELOTE itself defines.

For the rest, follow the same procedure as for exercise 3.1-b. The results are the same, Fig. 3.21.
(c) Energy and rigidity dependence of orbit radius and time-of-flight.

The orbit radius R and the revolution time $T_{\text {rev }}$ as a function of kinetic energy E_{k} and rigidity $B R$ are obtained by a similar scan to exercise (b). The procedure is the same as in exercise 3.1-c. Results are expected to be the same as well (Fig. 3.22).

A comparison of revolution periods can be made using the simulation file of Table 3.6 which happens to be set for a momentum scan and yields Fig. 3.25, to be compared to Fig. 3.22: DIPOLE and TOSCA produce the same results as long as both methods are converged, from the integration step size stand point (small enough), and regarding TOSCA from field map mesh density stand point in addition (dense enough).
(d) Numerical convergence: integration step size; $\frac{\delta R}{R}(\Delta s)$.

This question concerns the dependence of the numerical convergence of the solution of the differential equation of motion upon integration step size.

Follow the procedure of exercise 3.1-e: a similar outcome to Fig. 3.23 is expected - ignoring mesh density with the present analytical modeling using DIPOLE.

The $\frac{\delta R}{R}$ dependence upon the integration step size Δs is commented in exercise 3.1-e and holds regardless of the field modeling method (field map or analytical model).
(e) Pros and cons.

Using a field map is a convenient way to account for complicated one-, two- or three-dimensional field distributions.

However, using an analytical field model rather, ensures greater accuracy of the integration method.

CPU-time wise, one or the other method may be faster, depending on the problem.

Fig. 3.25 A scan of radiusdependent revolution frequency. An analytical model of a cyclotron dipole is used, featuring uniform field (no radial gradient, at this point)

Table 3.6 Simulation input data file 60 deg Sector.inc: analytical modeling of a dipole magnet, using DIPOLE. That file defines the labels (LABEL1 type [16, Sect. 7.7]) \#S_60degSectorUnifB and \#E_60degSectorUnifB, for INCLUDEs in subsequent exercises. It also realizes a 60 -sample momentum scan of the cyclotron orbits, from 200 keV to 5 MeV , using REBELOTE

Note: this file is available in zgoubi sourceforge repository at https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/book/zgoubiMaterial/cyclotron_classical/ProbMdlAnal/

'MARKER' ProbMdlAnal_S 'OBJET'

PROTON \quad Optioanl - using PARTICUL is a way to get the time-of-flight computed
! otherwise, by default \backslash zgoubi only requires rigidity
FAISCEAU'
'MARKER' \#S_60degSectorUnifB
! Local particle coordinates.
'DIPOLE' \#S_60degSectorUnifB ! Label should not exceed 20 characters.

2 60 . 50 . $\mathrm{IL}=2$, only purpose is to logged trajectories in zgoubi.plt, for further plotting.
! Sector angle AT; reference radius

0. Q. ! Reference azimuthal angle ACN; BM field at RO; indices, N, N', N'
$4 \begin{array}{llllll}4 & 2.2670 & -.6395 & 1.1558 & \text { Q. Q. O. ! hard-edge only possible with sector magnet. }\end{array}$

$\begin{array}{lllll}4.1455 & 2.2670 & -.6395 & 1.155 \\ -30.0 . & 1 . \mathrm{E} 6 & -1 . \mathrm{E} 6 & 1 . \mathrm{E} 6 & 1 . \mathrm{E} 6\end{array}$
Exit face placed at omega-=-30 deg from $A C N$. 0 . 0.1 ERB 3 (unused).

$210 \quad$! ' 2 ' is for 2nd degree interpolation. Could also be ' 25 ' ($5 * 5$ points grid) or 4 (4 th degree)
2 Q. Q. Q. Q. ! Integration step size. Small enough for orbits to close accurately
$2 \mathrm{RE}=50$. Q. RS=50. Q., as long as Yo is amended accordingly in OBJET
'FAISCEAU'
! Adjust Yo at OBJET so to get final $Y=Y 0 \rightarrow$ a circular orbit
2300 [12.,65.] ! Variable : Yo.

1 2e-12 199 ! constraint; default penalty would be $1 \mathrm{e}-10$; maximu 199 calls to function

112 \#End 0.1.0				

zgoubi.fai ! for further plotting (by gnuplot, below)
zgoubi.fai
1
'REBELOTE'
$600.20 \quad 160$ different rigidities; \log to video ; take initial coordinates scan, 60 samples. 1 , \quad ! Change parameter(s) as stated next OBET. OBJET 35 1:5.0063899693 ! Change relative rigity (35) in OBJET; range (0.2 MeV to 5 MeV). 'SYSTEM'
1
/usr/bin/gnuplot < /.gnuplot_TOF.gnu \& $\quad \begin{array}{r}\text { ! } 2 \text { SYSTEM commands follow. }\end{array}$ 'MARKER' ProbMdiAnal_E 'END

A gnuplot script, gnuplot_TOF.gnu, to obtain Fig. 3.25:
\# gnuplot_TOF.gnu
set xlabel "R [m]"; set ylabel "T_\{rev\} [\{/Symbol m\}s]"; set y2label "f_\{rev\} [MHz]"
set xtics mirror; set ytics nomirror; set y2tics nomirror; set key $t l$; set key spacin 1.2
nSector=6; Hz2MHz=1e-6; M=938.272e6; c=2.99792458e8; $\mathrm{B}=0.5$; freqNonRel (x) $=\mathrm{Hz} 2 \mathrm{MHz*} \mathrm{C}^{* * 2 * B / M /(2 . * \mathrm{pi}) ~}$ set y2range [7.58:7.63] ; set yrange[1/7.63:1/7.58]
plot \}
"zgoubi.fai" u 10:(\$15 *nSector) axes x1y1 w lp pt 5 ps .6 lw 2 linecolor rgb "blue" tit "T_\{rev\}",
zgoubi.fai" u 10:(1/(\$15*nSector)) axes x1y2 w lp pt 6 ps . 6 lw 2 linecol rgb "red" tit "f_\{rev\}"
"zgoubi.fai" u 10:(1/(\$15*nSector)) axes xly2 w lp pt 6 ps. 6 lw 2 linecol rgb "red" tit "f_\{rev\}",

Table 3.7 A 180° version of a DIPOLE sector, where the foregoing quantities $A T=60^{\circ}, A C N=$ $\omega^{+}=-\omega^{-}=30^{\circ}$ have been changed to $A T=180^{\circ}, A C N=\omega^{+}=-\omega^{-}=90^{\circ}-$ a file used under the name 180degSector.inc in further exercises
Note: this file is available in zgoubi sourceforge repository at https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/book/zgoubiMaterial/cyclotron_classical/ProbMdlAnal/

3.3 Resonant Acceleration

The field map and TOSCA [16, lookup INDEX] model of a 180° sector is used here (an arbitrary choice, the analytical field modeling DIPOLE would do as well), the configuration is that of Fig. 3.5 with a pair of sectors.

An accelerating gap between the two dees is simulated using CAVITE[IOPT=3], PARTICUL is added in the sequence in order to specify ion species and data, necessary for CAVITE to operate. Acceleration at the gap does not account for the particle arrival time in the IOPT=3 option: whatever the later, CAVITE boost will be the same as longitudinal motion is an unnecessary consideration, here).

The input data file for this simulation is given in Tab. 3.8. It is resorted to INCLUDE, twice in order to create a double-gap sequence, using the field map model of a 180° sector. The INCLUDE inserts the magnet itself, i.e., the \#S_halfDipole to \#E_halfDipole TOSCA segment of the sequence of Tab. 3.3. Note: the theoretical field model of Tab. 3.6, segment \#S_60degSectorUnifB to \#E_60degSectorUnifB (to be INCLUDEd 3 times, twice), could be used instead: exercise 3.2 has shown that both methods, field map and analytical field model, deliver the same results.

Particle data are logged in zgoubi.fai at both occurrences of CAVITE, under the effect of FAISTORE[LABEL=cavity], Tab. 3.8. This is necessary in order to access the evolution of parameters as velocity, time of flight, etc. at each half-turn, given that each half-turn is performed at a different energy
(a) Accelerate a proton.

A proton with initial kinetic energy 20 keV is launched on its closed orbit radius, $R_{0}=p / q B=4.087013 \mathrm{~cm}$. It accelerates over 25 turns due to the presence to REBELOTE[NPASS=24], placed at the end of the sequence. The energy range, 20 keV to 5 MeV , and the acceleration rate: 0.1 MeV per cavity, 0.2 MeV per turn, determine the number of turns, $N P A S S+1=(5-0.02) / 0.2 \approx 25$. The accelerated
trajectory spirals out in the fixed magnetic field, it is plotted in Fig. 3.26, reading data from zgoubi.plt.

Fig. 3.26 Twenty five turn spiral trajectory of a proton accelerated in a uniform 0.5 T field from 20 keV to 5 MeV at a rate of 200 kV per turn (a 100 kV gap voltage). The vertical thick line materializes the gap, the upper half (red) corresponds to the first occurrence of CAVITE in the sequence (Tab. 3.8), the lower half (blue) corresponds to the second occurrence of CAVITE
(b) Momentum and energy.

Proton momentum p and total energy E as a function of kinetic energy, from raytracing (turn-by-turn particle data are read from zgoubi.fai, filled up due to FAISTORE) are displayed in Fig. 3.27, together with theoretical expectations, namely, $p\left(E_{k}\right)=\sqrt{E_{k}\left(E_{k}+2 M\right)}$ and $E=E_{k}+M$.

Fig. 3.27 Energy dependence of, left: proton momentum p (left axis) and total energy E (right axis) and of, right: proton normalized velocity $\beta=v / c$. Markers: from raytracing; solid lines: theoretical expectation
(c) Velocity.

Proton normalized velocity $\beta=v / c$ as a function of kinetic energy from raytracing is displayed in Fig. 3.27, together with theoretical expectation, namely, $\beta\left(E_{k}\right)=$ $p /\left(E_{k}+M\right)$.

Table 3.8 Simulation input data file: accelerating a proton in a double-dee cyclotron, from 20 keV to 5 MeV , at a rate of 100 kV per gap, independent of RF phase (longitudinal motion is frozen - see question (e) dealing with CAVITE[IOPT=7] for unfrozen motion). Note that particle data are logged in zgoubi.fai (under the effect of FAISTORE) at both occurrences of CAVITE. The INCLUDE file FieldMapSector.inc is taken from Tab. 3.3

Two gnuplot scripts, to obtain respectively Fig. 3.26: and Fig. 3.28:
The awk command in gnuplot_awk_Zfai_dTT.gnu takes care of a 1-row shift so to subtract next turn data from currant turn ones.

```
# gnuplot_Zplt_XYLab.gnu
set xtics ; set ytics ; set xlabel "X_{Lab} [m]" ; set ylabel "Y_{Lab} [m]"
set xtics ; set ytics ; set xlabel "X_{Lab} [m]" ; set ylabel 
set arrow from 0, 倝 to 0, 0.67 nohead lc "red" lw 6; set arrow from 0, -0.75 to 0, 0 nohead lc "blue" lw 6
noel_1=6 ; noel_2=11 # 1st CAVITE is element noel_1; 2nd CAVITE is noel_2. Col. $42 in zgoubi.plt is element numb.
plot for [nl=noel_1:noel_2:5] "zgoubi.plt" u ($42==noel_1? $22:$22+pi ):($10 *cm2m) w p pt 5 ps . 2 lc rgb "black"
# gnuplot_awk_Zfai_dTT.gnu
set xtics nomirror; set ytics mirror; set xlabel "E_k [MeV]";
set ylabel "{/Symbol Db}/{/Symbol b}, {/Symbol D}C/C, {/Symbol D}T_{rev}/T_{rev}"; set logscale y; set yrange [:3]
# zgoubi.fai columns: $25: energy; $14: path length; $23: kinetic E; $29: mass; $15: tim
plot "< awk '/#/ {next;} { if(prev14>0 && prev25>0) print prev24, ($14 -prev14)/prev14, prev24} \
{prev14 = $14; prev24 = $24; prev25=$25 }' < zgoubi.fai" u 1:2 w p pt 5 lc rgb "black" tit "{/Symbol D}C/C" ,\
<< awk /#/ {next;} { if(prev14>0 && prev25>0) print prev24, (-sqrt(prev25**2-$29**2)/prev25+\
sqrt($25**2-$29**2)/$25)/(sqrt(prev25**2-$29**2)/prev25), prev24} {prev14=$14; prev24 = $24; prev25=$25 }'\
< zgoubi.fai" u 1:2 w p pt 6 ps 1.5 lc rgb "red" tit "d{/Symbol b}/{/Symbol b}" ,\
"< awk '/#/ {next;} { if(prev14>0 && prev25>0) print prev24, ($14 -prev14)/prev14- ( -sqrt(prev25**2-$29**2)/prev25\
+ sqrt($25**2-$29**2)/$25)/(sqrt(prev25**2-$29**2)/prev25), prev24} {prev14=$14; prev24=$24; prev25=$25}'\
< zgoubi.fai" u 1:2 w p pt 8 ps 1.5 lc rgb "blue" tit "{/Symbol D}T/T=dC/C-d{/Symbol b}/{/Symbol b}" ,\
<<awk /#/ {next,} { if(prev14>0 && prev15>0) print prev24, ($15-prev15)/prev15, prev24} { prev14 = $14;\
prev24 = $24; prev15=$15 }' < zgoubi.fai" w l lw 2 lc rgb "blue" tit "theor. {/Symbol D}T/T"
```

Fig. 3.28 Relative variation of velocity $\Delta \beta / \beta$ (empty circles), circumference $\Delta C / C$ (solid disks) and revolution time $\Delta T / T$ (triangles), as a function of energy, from raytracing. Theoretical expectation for the latter is also displayed (solid line), for comparison

(d) Relative velocity, orbit length and time of flight.

The relative increase in velocity is smaller than the relative increase in orbit length as energy increases (this is what Fig. 3.28 shows). Thus the relative variation of the revolution time, Eq. 3.23, is positive; in other words the revolution time increases with energy, the revolution frequency decreases. Raytracing outcomes are displayed in Fig. 3.28, they are obtained using the gnuplot script given in Tab. 3.8. Note that the path length difference (taken as the difference of homologous quantities in a common line) is always between the two CAVITEs (particle data are logged at the two occurrences of CAVITE), crossed successively, which is half a turn. Same for the difference between homologous velocity data on a common line, it corresponds to two successive crossings of CAVITE, i.e., half a turn. The graph includes the theoretical $\delta T_{\text {rev }} / T_{\text {rev }}$ (Eq. 3.23) for comparison with raytracing; some difference appears in the low velocity regime, this may be due to the large $\Delta \beta$ step imparted by the 100 kV acceleration at the gaps.
(e) Harmonic $\mathrm{h}=3 \mathrm{RF}$.

The input data file for this simulation is given in Tab. 3.9. The RF is on harmonic $\mathrm{h}=3$ of the revolution frequency. It has been tuned to ensure acceleration up to 3 MeV . The accelerating gap between the two dees is simulated using CAVITE[IOPT=7]: by contrast with the previous exercise (where CAVITE[IOPT=3] is used), the RF phase at ion arrival at the gap is now accounted for.

Repeating questions (b-d) is straightforward, changing what needs be changed in Tab. 3.9 input data file.

Table 3.9 Simulation input data file: accelerating a proton in a double-dee cyclotron, from 20 keV to 5 MeV , using harmonic 3 RF . The INCLUDE file is taken from Tab. 3.6

3.4 Spin Dance

The DIPOLE analytical field model of exercise 3.2 (Tab. 3.6) is used here, as opposed to using a field map and TOSCA, as it allows more straightforward changes in the field, if desired.
(a) Spin transport.

Spin transport is obtained by adding SPNTRK. PARTICUL is necessary in order to get the Thomas-BMT equation of motion solved [16, Sect. 2]. This results in the input data file given in Tab. 3.10 (excluding FIT and REBELOTE keywords, introduced for the purpose of the following question (b)).

The use of SPNTRK results in the following outcome (an excerpt from zgoubi.res execution listing):

```
        4 Keyword, label(s) : SPNTRK
```

 Spin tracking requested
 Particle mass \(=938.2721 \mathrm{MeV} / \mathrm{c} 2\)
 Gyromagnetic factor \(\mathrm{G}=1.79284\)
 Initial spin conditions type 1 :
 PARAMETRES DYNAMIQUES DE REFERENCE :
 BORO \(\stackrel{ }{=} \quad 64.624 \mathrm{kG} \mathrm{G}^{*} \mathrm{~cm}\)
 \(\begin{array}{ll}\text { BORO } & =\quad 64.624 \\ \text { beta } & =0.02064411\end{array}\)
 \(\begin{array}{lll}\text { beta } & =0.02064411 \\ \text { ganma } & =1.00021316\end{array}\)
 \(\begin{array}{ll}\text { gamma } & =1.00021316 \\ \text { gamma* } G & =1.7932295094\end{array}\)
 POLARISATION INITIALE MOYENNE DU FAISCEAU DE 1 PARTICULES:
 <SX> \(=1.000000\)
 <SY> \(=0.000000\)
 \(\begin{array}{ll}\text { <SZ> } & =0.000000 \\ \text { <S> } & = \\ & 1.000000\end{array}\)
 Spin coordinates are logged in zgoubi.res execution listing using SPNPRT. Five sample passes around the cyclotron (four iterations by REBELOTE) result in the following outcomes in zgoubi.res, under SPNPRT:

		Keyword	label(s) INITIAL	SPNPRT				FINAL				
		SX	SY	Sz	\|S		SX	SY	SZ	\|S		GAMMA
m	1	1.000000	0.000000	0.000000	1.000000	0.268269	0.963344	0.000000	1.000000	1.0002		
m	1	1.000000	0.000000	0.000000	1.000000	0.268599	0.963252	0.000000	1.000000	1.0002		
m	1	1.000000	0.000000	0.000000	1.000000	0.268949	0.963154	0.000000	1.000000	1.0003		
m	1	1.000000	0.000000	0.000000	1.000000	0.269319	0.963051	0.000000	1.000000	1.0003		
m	1	1.000000	0.000000	0.000000	1.000000	0.269710	0.962942	0.000000	1.000000	1.0003		

Table 3.10 Simulation input data file: add spin to the cyclotron simulation of Tab. 3.6. The present input file INCLUDEs six copies of the 60 degree sector DIPOLE defined therein

A gnuplot script to obtain Fig. 3.29:
The file zgoubi. 1 cm is a copy of zgoubi.fai obtained for a $\Delta s=1 \mathrm{~cm}$ run; zgoubi.fai is for $\Delta s=0.5 \mathrm{~cm}$.
\# gnuplot_Zfai_spin.gnu
set xlabel "G\{/Symbol g\}"; set ylabel "Spin precession angle $\{/$ Symbol q\}_\{sp\} / $2\{/$ Symbol p\}"
set xlabel "G\{/Symbol g\}"; set ylabel "Spin precession angle
set xtics; set ytics nomirror; set y2tics; am =938.27208; $G=1.79284735 ; \mathrm{pi}=4 . * a \tan (1$.$) ; set key \mathrm{t} \mathrm{c}$ spacin 1.5
set xtic
"zgoubi.fai" u ($\$ 31 * \$ 25 / \$ 29):(((4 . * \mathrm{pi}-\operatorname{atan}(\$ 21 / \$ 20))) /(2 . * \mathrm{pi}))$ w lp pt 4 ps .7 tit "\{/Symbol q\}_\{sp $\} / 2\{/$ Symbol p\}" ,
"zgoubi. 1 cm" u ($(\$ 31 * \$ 25 / \$ 29):(\operatorname{abs}((4 * \mathrm{pi}-\mathrm{atan}(\$ 21 / \$ 20)) / \mathrm{pi} * 180-\$ 31 * \$ 25 / \$ 29 * 360)$.$) axes x1y2 w lp pt 8 \mathrm{ps} .7 \mathrm{tit}$ " $1 \mathrm{~cm} ", \backslash$
"zgoubi.fai" u (\$31*\$25/\$29):(abs((4.*pi $\left.\left.-\operatorname{atan}(\$ 21 / \$ 20)) / \mathrm{pi}^{*} 180-\$ 31 * \$ 25 / \$ 29 * 360.\right)\right)$ axes x 1 y 2 w lp pt 8 ps .7 tit 5 mm "

(b) Spin precession.

Proton case is considered, simulation is performed using Tab. 3.10 input data file. Initial spin is parallel to the X axis (longitudinal). The particle is raytraced on the circular closed orbit over one revolution, for a particular momentum. Particle data resulting from a FIT (FIT forces orbit closure, by varying the initial Y_{0}) are logged in zgoubi.fai, by FAISTORE. The computation is repeated using REBELOTE in the very manner that the energy scan was done in exercise 3.2, over an energy range $12 \mathrm{keV} \rightarrow 5 \mathrm{MeV}$.

Figure 3.29 (obtained using the gnuplot script given in Tab. 3.10) displays the resulting energy dependence of the spin precession, $\theta_{\mathrm{sp}}(E)$, together with its difference to theoretical expected $\theta_{\mathrm{sp}}(E)=G \frac{E}{M} \times 2 \pi=G \gamma \times 2 \pi$ (proton gyromagnetic anomaly $G=1.792847$).

Fig. 3.29 $G \gamma$ dependence of the spin precession angle over a revolution around the cyclotron, in the moving frame (left axis), and relative difference to $G \gamma$ for the two integration step sizes $\Delta s=0.5$ and 1 cm (right axis), Markers are from raytracing, solid lines are to guide the eye

(c) Spin tune.

Two protons are injected with longitudinal initial spin $\mathbf{S}_{i} \|$ OX axis and respective energies 12 keV and 5.52 MeV , thus the following OBJET (a slight modification to Tab. 3.10 data):

```
'ObJET'
64.62444403717985
2 
12.9248888074 0. 0. 0. O. 1. 'm',
12.9248888074 0. O. O. O. 1. 'm',
```

 ! \(\mathrm{D}=1=2200 \mathrm{keV}\) proton. \(\mathrm{R}=\mathrm{Brho} / \mathrm{B}=64.624444037[\mathrm{kG} . \mathrm{cm}] / 5[\mathrm{kG}]\)
 \(!\mathrm{p}[\mathrm{MeV} / \mathrm{c}]=101.926\), \(\operatorname{Brho}[\mathrm{kG} . \mathrm{cm}]=339.990\), \(\operatorname{kin}-\mathrm{E}[\mathrm{MeV}]=5.52\).
 FAISCEAU following FIT (Tab. 3.10) allows to control that momentum and trajectory radius are matched, which means coordinates at OBJET and current coordinates at FAISCEAU are equal. Inspection of zgoubi.res execution listing shows for instance, after 4 turns:

A graphic of the projection of the spin motion on the longitudinal axis, over a few turns, from the ray tracing, is given in Fig. 3.30, together with the longitudinal component as of the parametric equations of motion

$$
\left\{\begin{array}{l}
S_{X}=\hat{S} \cos (G \gamma \theta) \tag{3.37}\\
S_{Y}=\hat{S} \sin (G \gamma \theta)
\end{array}\right.
$$

The motion amplitude is $\hat{S}=\sin \phi$, with ϕ the angle that the spin vector makes with the vertical precession axis. In this simulation \mathbf{S} is launched parallel to OX, thus $\phi=\pi / 2$ and $\hat{S}=1$.

Now, checking the spin precession:
Placing both FAISCEAU and SPNPRT commands right after the first dipole sector allows checking the spin precession and its relationship to particle rotation, for simplicity right after the first pass through that first sector, as follows. FAISCEAU and SPNPRT (Tab. 3.10) yield, respectively:

Fig. 3.30 Longitudinal spin component motion (left vertical axis), observed in the moving frame, case of 0.2 MeV energy, $\mathrm{R}=12.924888 \mathrm{~cm}$ (left graph), and of 5.52 MeV energy, $\mathrm{R}=67.998 \mathrm{~cm}$ (right graph). Markers are from ray tracing, the solid line is the theoretical expectation (Eq. 3.37). The right vertical axis (triangle markers; solid line is to guide the eye) shows the absolute difference between both. The oscillation is as expected slightly faster at 5.52 MeV : frequencies are in the ratio $\gamma(5.52 \mathrm{MeV}) / \gamma(0.2 \mathrm{MeV})=1.00566$
ene

m	1	1.000000	0.
0	1	1.000000	0.

SPNPRT tells that,

- case of the first particle, tagged ' m ' above; its energy is $200 \mathrm{keV}, \gamma=1.00021315$, its spin tune is $v_{s p}=G \gamma=1.793229$
The computed value of the ' $\left(S_{i}, S_{f}\right)$ ' angle between initial and final spin vectors is -107.594 (truncated), negative as spin precession has the sign of proton rotation. Theoretical expectation is $G \gamma \alpha=-107.59377 \mathrm{deg}$. The resulting spin components are, as above, $S_{X}=\cos (-107.59377)=-0.302266$ and $S_{Y}=\sin (-107.59377)=$ -0.9532235 .
- case of the second particle, tagged 'o'; its energy is $5.52 \mathrm{MeV}, \gamma=1.00588315$, its spin tune is $v_{s p}=G \gamma=1.803394$
The computed value of ' $\left(S_{i}, S_{f}\right)$ ' is -108.204 (truncated). Theoretical expectation is $G \gamma \alpha=-108.20370 \mathrm{deg}$.

Now, accounting for particle rotation in order to get spin coordinates in the laboratory frame:

- the FAISCEAU outcome above shows that, after crossing the 60 deg sector the angles of the two particles have the value $T=0$, which is expected as they are launched with zero incidence, and as DIPOLE uses a polar coordinate system [16] with particle coordinates computed in the moving (rotating) frame. The latter has also undergone a-60 deg rotation, clockwise, which is therefore the implicit rotation of the particles in the laboratory frame. The spin precession in the laboratory frame results, namely,
- case of the first particle: $(1+G \gamma) \alpha=-167.59377$ deg.
- case of the second particle: $(1+G \gamma) \alpha=-168.20370$ deg.
(d) Spin dance.

A 200 keV proton is injected with its initial spin vector at 80 degrees from the vertical axis. The input data file for this simulation is given in Tab. 3.11, together with a gnuplot script for the animation. The latter plots three things, concurrently:

- the circular trajectory of the particle in the (X,Y) plane: this is the curve at $\mathrm{Z}=0$ in Fig. 3.31, a set of points $\{(R \cos (-X), R \sin (-X), 0)\}$ resulting from the step by step integration. Note that X is counted positive clockwise in zgoubi.fai (consistently with the definition of DIPOLE parameters, Fig. 9 in [16]), hence "- X " the rotation angle;
- the spin vector: its foot is attached to the particle (the previous set of points), whereas its tip is at $\left\{\left(S_{X} \cos (-X)-S_{Y} \sin (-X), S_{X} \sin (-X)+S_{Y} \cos (-X), S_{Z}\right\}\right.$, with S_{X}, S_{Y}, S_{Z} the spin vector components in the moving frame as read from zgoubi.fai. S_{Z} is constant as the precession axis is parallel to the Z axis. The $\left(\begin{array}{cc}\cos (-X) & -\sin (-X) \\ \sin)-X) & \cos (-X)\end{array}\right)$ rotation applied to the $\left(S_{X}, S_{Y}\right)$ vector accounts for the transformation from the moving frame to the laboratory frame;
- the cycloidal shape trajectory of the tip of the spin vector (the previous set of points).

A frozen view of that spin dance, over about 2.5 proton revolutions around the ring, is given in Fig. 3.31.

Fig. 3.31 Dance - frozen, here - of the spin of a 200 keV proton over 2.5 turns around the cyclotron. The circle on the left, or bottom closed curve on the right, is the trajectory of the proton. The cycloidal curve represents the motion of the spin vector tip in the moving frame

Table 3.11 Simulation input data file: spin dance, 20 turns around a uniform field cyclotron. The INCLUDE file 60degSector.inc is taken from Tab. 3.6

Note: this animation (input data file \& gnuplot script) is available in zgoubi sourceforge repository at
https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/book/zgoubiMaterial/cyclotron_classical/ProbAddSpin/spinDance/

A gnuplot script to obtain the spin dance in Fig. 3.31. Note a "mag" factor, aimed at artificially increasing the amplitude of the vector tip oscillation in this graphic:
set xlabel "X_\{Lab\}"; set ylabel "Y_\{Lab\}"; set zlabel "S_Z"; set xtics; set ytics; set ztics \#unset ztics
set zrange $[0:]$; set xrange [-25:25]; set yrange [-25:25]; set xyplane 0
dip1=7; dip2=22; dd=3 \# positining of 1st and last dipoles in zgoubi.dat sequence, and increment
\# magnifies apparent spin tilt speed up graphic pi/3
$\operatorname{mag}=10 . \quad ; \quad$ speedUp=1 $\quad ; \quad$ pi3 $=4 . * \operatorname{atan}(1) / .3 ; \quad n z=0.18$
\# JUST 2D, PROJECTED IN (X,Y) PLANE, FIRST:
set size ratio -1
for [dip=dip1:dip2:dd] "zgoubi.plt" every 1::::speedUp*i u (\$19==1 \&\& \$42==dip? \$10* $\cos (-\$ 22-$ pi3*(dip-6.)/3.) :1/0):
(\$10*sin(-\$22-pi3*(dip-6.)/3.)) w 1 lw 3 notit ,
for [dip=dip1:dip2:dd] "zgoubi.plt" every $1:::$:speedUp*i u ($\$ 19=1$ \& \& $\$ 42==$ dip? $\$ 10^{*} \cos (-\$ 22-$ pi3*(dip-6.)/3.)

+ mag" $(\cos (-\$ 22-$ pi3*(dip-6.)/3.)*\$33-sin(-\$22-pi3*(dip-6.)/3.)*\$34) :1/0):
$(\$ 10 * \sin (-\$ 22-$ pi3*(dip-6.)/3.) + mag* $(\sin (-\$ 22-$ pi3*(dip-6.)/3.)*\$33+cos $(-\$ 22-$ pi3*(dip-6.)/3.)*\$34))wlnotit \}
unset size
\# 3D, NEXT:
do for $[\mathrm{i}=1: 239]\{$ splot
for [dip=dip1:dip2:dd] "zgoubi.plt" every speedup*i::::speedUp*i u ($\$ 19==1 \& \& \$ 42==$ dip? $\$ 10 * \cos (-\$ 22-$ pi3*(dip-6)/3):1/0):
$\left(\$ 10^{*} \sin \left(-\$ 22-\mathrm{pi} 3^{*}(\operatorname{dip}-6) / 3\right)\right):(\$ 1 * 0):\left(\right.$ mag $\left.^{*}\left(\cos (-\$ 22-\mathrm{pi} 3 *(\operatorname{dip}-6) / 3) * \$ 33-\sin \left(-\$ 22-\mathrm{pi} 3^{*}(\operatorname{dip}-6) / 3\right) * \$ 34\right)\right):$
(sip ($\$ 22$ in (dd] " 2)
os(-\$22-pi3*(dip-6)/3) :1/0):
$\left.\$ 10^{*} \sin \left(-\$ 22-\mathrm{pi3} 3^{*}(\mathrm{dip}-6) / 3\right)\right):\left(\$ 1^{*} 0\right):\left(\$ 19==1 \& \& \$ 2==\mathrm{dip} ? \$ 10^{*} \cos (-\$ 22-\mathrm{pi} 3 *(\operatorname{dip}-6) / 3): 1 / 0\right):\left(\$ 10^{*} \sin (-\$ 22-\mathrm{pi} 3 *(\mathrm{dip}-6) / 3)\right)$: [dip-dip1 3 notit
pery $1:::$:speedup*i u $\left(\$ 19==1\right.$ \& $\$ 42==$ dip? $\$ 10^{*} \cos (-\$ 22-$ pi3*(dip-6)/3)+mag*(
 * $\left.\left.\left.\$ 33-\sin \left(-\$ 22-\mathrm{pi} 3^{*}(\operatorname{dip}-6) / 3\right) * \$ 34\right)\right): 1 / 0\right):\left(\$ 10^{*} \sin (-\$ 22-\mathrm{pi} 3 *(\operatorname{dip}-6) / 3)+\right.$ mag* $\left(\sin (-\$ 22-\mathrm{pi} 3 *(\operatorname{dip}-6) / 3) * \$ 33+\cos \left(-\$ 22-\mathrm{pi} 3^{*}\right.\right.$ (dip-6)/3) *\$34)):(\$35/nz) w 1 lw 3 notit $\}$
(e) Deuteron

The input data file set up for questions (b-e) can be used mutatis mutandis, as follows.

Raytracing a different particle requires changing the reference rigidity, BORO, under OBJET, and changing particle data, under PARTICUL. That reference rigidity is to be determined from the field value in the dipole model (namely, $B_{0}=5 \mathrm{kG}$)

Particle data for these two particles are (respectively mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$, charge (C), G factor):

$$
\begin{array}{rrrr}
\text { deuteron: } & 1875.612928 & 1.602176487 \times 10^{-19} & -0.14301 \\
{ }^{3} \mathrm{He}^{2+}: & 2808.391585 & 3.204352974 \times 10^{-19} & -0.14301
\end{array}
$$

3.5 Synchronized Spin Torque

The simulation input data file of exercise 3.4-(d) can be used here, with a few addenda or modifications, as follows:
(i) the initial ion coordinate D (rigidity relative to the reference $\mathrm{BORO}=64.6244440$) under OBJET has to be calculated for the four energies concerned;
(ii) the closed orbit radius at $0.2,108.412,118.878$ and 160.746 MeV has to be found; calculation is straightforward given that the field considered here is vertical, uniform, namely, $B_{Z}=$ constant $=5 \mathrm{kG}, \forall R$, so that $R=B \rho / B_{Z}$; otherwise a FIT procedure can be used to find the orbit radius, given the rigidity, as done already in various exercises [16, lookup "closed orbit"], that could help for instance in the presence of a radial index, or field defects;
(iii) initial spins are set vertical for convenience, but this is not mandatory;
(iv) the multiturn tracking is set to a few 10 s of turns, in order to allow a few spin precessions;
(v) particle data through DIPOLEs are saved step-by-step all the way in zgoubi.plt by means of $\mathrm{IL}=2$ (the integration step size is 1 cm (Tab. 3.6), thus zgoubi.plt may end up bulky);
(vi) turn-by-turn data are saved in zgoubi.fai by means of FAISTORE;
(vii) SPINR is added at the end of the sequence, to impart on spins the requested X-tilt.

This results in the updated simulation input data file given in Tab. 3.12.
The oscillatory motion of the vertical spin component as the ion orbits around the ring, is displayed in Fig. 3.32. The spin points upward, parallel to the vertical axis at start; SPINR kick is 10 deg in the present case. At $G \gamma=2$ the spin always finds itself back in the (Y,Z) transverse plane after one proton orbit, this synchronism causes the cumulated spin tilt at SPINR to take the value $N \times 10 \mathrm{deg}$ (with N the number of orbits). Thus after 18 proton orbits, 36 spin precessions, the spin points downward; it takes 36 orbits, or 226.194 rad, to complete an oscillation. If $G \gamma$ moves away from an integer, the spin tilts with bounded amplitude, within the limits of a cone.

Additional graphs and details are obtained using the simulation file of Tab. 3.13. This file simulates spin motion in three different cases, $G \gamma=1.79322, G \gamma=2$, integer, yielding an integer number of spin precessions over one proton orbit around the cyclotron, and $G \gamma=2.5$, half-integer, yielding a half-integer number of spin precessions over one proton orbit. Outcomes are given in Fig. 3.33 which shows the spin motion projected on the (X, Y) plane (horizontal), and on a sphere, step-by-step. The spin kick by SPINR is 20 deg in this case. If $G \gamma=1.793229$, far from an integer, \mathbf{S}, initially vertical, remains at a bounded angle to the vertical axis, X-kicked from one circle to another, turn after turn; if $G \gamma=2$ the spin vector flips by 20 degree in the (Y,Z) plane at SPINR, turn after turn; if $G \gamma=2.5$, half-integer, the spin vector

Table 3.12 Simulation input data file: superimposition of a turn-by-turn localized 10 deg X-rotation of the spin (using SPINR $[\phi=0, \mu=10]$), on top of Thomas-BMT $2 \pi G \gamma$ Z-precession. The INCLUDE file 60degSector.inc is taken from Tab. 3.6

```
Cyclotron, classical. Synchronous spin kick
Cyclotron, classical. Synchr
                                    ! Just for edition purposes
'OBJET
! Reference Brho ("BORO" in the users' guide) -> 200keV proton
64.62444403717985
```



```
2
12.9248888074 0. O. O. O. 1. 'm' ! D=1 => 200keV proton. R=Brho/B=64.624444037[kG.cm]/5 [kG]
3.0947295453790e2 O. O. O. O. 23.9439548880185 'm' ! Ggamma=2
*)
3.8177333586897e2 O. O. O. O. 29.5378429599586 'm', Ggamma=2.1
'PARTICUL' ! This is required for spin motion to be computed,
PROTON ! ! otherwise, by default \zgoubi\only requires rigidity.
4.1
0. 0. 1.
                                    ! Initial spin vector is defined here.
'FAISTORE'
zgoubi.fai
'INCLUDE
1
'FAISCEAU'
'SPINR'
1 Q. 10. 1 about the X-axis, by 10 or 20 dgrees as the case may be.
1 about the X -axis, by 10 or 20 dgrees as the casetation,
'rebelote'
390.2 99
'SYSTEM'
1
gnuplot < ./gnuplot_Zplt_spinTilt.gnu
'MARKER' ProbAddSpinTorque_E
```


Fig. 3.32 S_{Z} motion versus orbital angle, while the ion orbits on a circle. S_{Z} is constant over a turn and then undergoes a discontinuity upon the 10 deg X-tilt, hence the step function. At $G \gamma=2$ it takes 36 turns, or 226.194 rad , to complete an oscillation. A graph obtained using zpop: menu $7 ; 1 / 1$ to open zgoubi.plt; 2/[6,23] for $S_{\text {Z }}$ versus $\theta ; 7$ to plot

undergoes a half-integer number of precessions over one orbit around the cyclotron, it jumps and alternates between vertical, and the surface of the 20 degree Z-axis cone.

Table 3.13 Simulation input data file: a similar simulation to 3.12, for different $G \gamma$ values, namely $1.79322,2$ and 2.5. The spin kick at SPINR has been changed to 20 deg . Regarding the use of OBJET[IEX] option: IEX $=-9$ allows inhibiting the tracking for the particle(s) concerned, all the rest left unchanged; it is necessary here to have at least one particle with IEX=1, for proper operation of the gnuplot scripts. The INCLUDE file 60degSector.inc is taken from Tab. 3.6

A gnuplot script to produce spin components versus turn, reading from zgoubi.SPNPRT.Out, Fig. 3.33:
\# gnuplot_Zspnprt_spinoscillation.gnu
set xlabel "turn"; set ylatel "S
set xlabel "turn"; set ylabel "S_X, S_Y, S_Z"; set key b l ; nbtrj=3 \# number of trajectories tracked
do for [it=1:nbtri] \{ unset label; set label sprintf("particle $\% 3.5 \mathrm{~g}$ ",it) at $10,0.8$
plot [] $[-1: 1]$ \}
zgoubi. SPNPRT. Out' every nbtrj:: (it+2) u ($\$ 22$): ($\$ 13$) w lp lw .3 pt 4 ps .8 lc rgb "red",,
'zgoubi. SPNPRT. Out' every nbtrj: : (it $\mathrm{it}+2$) u ($\$ 22$): ($\$ 14$) w lp lw .3 pt 6 ps .8 lc rgb "blue",',
'zgoubi.SPNPRT.Out' every nbtrj: :(it+2) u (\$22):(\$15)w lp lw $.3 \mathrm{pt} 8 \mathrm{ps} .8 \mathrm{lc} \mathrm{rgb} \mathrm{"black";} \mathrm{pause} .5$
set terminal postscript eps blacktext color enh
A gnuplot script to produce 2 D spin motion projection of Fig. 3.33:

```
# gnuplot_Zplt_spinTilt.gnu
    #et xlabel "S_X"; set ylabel "S_Y"; set size ratio -1; set xrange [-1:1]; set yrange [-1:1]; set key t l
    ndorlo [it=1:nbri] f {
    do for [it=1:nbtrj] { unset label; set label sprintf("particle %i",it) at -.9, .8
        plot 'zgoubi.plt' u ($19=it? $33:1/0):($34)w lp lw . 3 ps . 2 lc rgb "blue"; pause .5
        set terminal postscript eps blacktext color enh
        set output sprintf('gnuplot_Zplt_SX-SY_trj%i.eps',it); replot; set terminal X11; unset output }
A gnuplot script to produce the projection on a sphere of Figs. 3.33:
    # gnuplot_Zplt_spinTilt_3D.gnu
    set xlabel "X"; set ylabel "Y"; set zlabel "Z"; set xrange [-1:1]; set yrange [-1:1]; set zrange [-1:1]
    set xyplane 0; set view equal xyz; set view 49, 339; unset colorbox
    set urange [-pi/2:pi/2]; set vrange [0:2*pi]; set parametric; R = 1. # radius of sphere
    nbtrj=3 # number of trajectories tracked 
    do for [it=1.nos)*
        zooubi.plt' u ($ (9)=it? $33:1/0):($34):($35)w lp lw . 2 ps.4 lc palette ; pause.5
        set terminal postscript eps blacktext color enh
        set output sprintf('gnuplot_Zplt_S3D_trj%i.eps',it); replot; set terminal X11; unset output }
```


Fig. 3.33 Top row: spin coordinates versus turn; middle row: projection in the median plane (the segment between two consecutive circles materializes the location of the X-kick by SPINR); bottom row: projection on a sphere. $G \gamma=1.793229$: far from an integer, \mathbf{S} remains within a cone of reduced aperture. $G \gamma=2$: the spin vector oscillates between up and down orientations, by 20 deg steps; it takes $180 / 20=9$ orbits for the X-precession at SPINR to flip the spin; $G \gamma=2.5$: the spin vector finds itself back in the (Y,Z) plane at the location of SPINR, after one orbit and a half-integer number of precessions; it alternates between vertical and 20 deg from vertical, after each orbit around the cyclotron

3.6 Weak Focusing

(a) Add a field index.

To the first order in R, in the median plane ($\mathrm{Z}=0$) and noting $R=R_{0}+d R$, $B_{Z}\left(R_{0}\right)=B_{0}, B_{Z}(R)=B$, the field writes (Sect. 3.2.2) $B(R)=B_{0}+\left.d R \frac{\partial B}{\partial R}\right|_{R_{0}}$. With $k=\frac{R_{0}}{B_{0}} \frac{\partial B}{\partial R}$ (Eq. 3.11) this yields

$$
\begin{equation*}
B(R)=B_{0}+\frac{B_{0}}{R_{0}} k d R \tag{3.38}
\end{equation*}
$$

Assume the earlier 200 keV conditions as a reference, thus take
$R_{0}=12.9248888 \mathrm{~cm}$ as the 200 keV radius, whereas $B_{0}=B\left(R_{0}\right)=5 \mathrm{kG}$.
Take $k=-0.03$, a slow decrease of the field with R - proper to ensure appropriate vertical focusing with marginal impact on the radial extent of the cyclotron. For instance, with that index value the 5 MeV orbit is at a radius of 75.75467 cm (see OBJET in Tab. 3.3) (giving $B=0.3235 \mathrm{~T}$ along the orbit), whereas if $\mathrm{k}=0$ then $R=75.75467 \mathrm{~cm}$ is the 6.8463 MeV orbit radius $(B=0.3788 \mathrm{~T})$.

The field map is generated using a similar Fortran program to that of exercise 3.1 (see Tab. 3.1), mutatis mutandis, namely, introducing a reference radius R_{0} and field index k. The resulting program is given in Tab. 3.14, it can be compiled and executed, as is, excerpts of the field data file so obtained are given in Tab. 3.15, a graph $B_{Z}(R, \theta)$ is given in Fig. 3.34. The orbit radius is assessed for three different energies, and appears to be in accord with theoretical expectation (Fig. 3.34-right). Comparison with Fig. 3.20-right shows the effect of the negative index on the radial distribution of the orbits, including a radius about 20% greater in the 5 MeV range. The input data file to find these trajectories is given in Tab. 3.16:

- the file defines an INCLUDE segment, \#S_60degSectorIndx to \#E_60degSectorIndx, used in subsequent exercises;
- the file is set to allow a preliminary test regarding the field map geneSectorMapIndex.out (as produced by the program given in Tab. 3.14), by computing three circular trajectories centered on the center of the map, at respectively 20 keV , 200 keV (the reference energy for the definition of the gradient index k) and 5 MeV (a large radius);
- note that once the FIT procedure is completed, zgoubi continues in sequence, so raytracing the 3 ions through the field map with, this time, IL set to 2 under TOSCA for stepwise particle data to be logged in zgoubi.plt.

Fig. 3.34 Left: field map of a 60 deg magnetic sector with radial index, 76 cm radial extent. The field decreases from the center of the ring (at $\left.\left(X_{\text {Lab }}, Y_{\text {Lab }}\right)=(0,0)\right)$. Right: three circular arc of trajectories over a sextant, at respectively from left to right: $0.02 \mathrm{MeV}, 0.2 \mathrm{MeV}$ (energy on the reference radius) and 5 MeV

Table 3.14 A Fortran program which generates a 60° mid-plane field map with non-zero transverse field k. The field map it produces is logged in geneSectorMapIndex.out

```
    C geneSectorMapIndex.f program (a-h,o-z)
    implicit double precision (a-h,o-z)
    open(unit=2,file='geneSectorMapIndex.out')
                                    ! Field map storage file.
C----------- Hypotheses :
    AT = 60.d0 /180.d0*pi ! Angular extent of field map. Can be changed 360, 60 deg, etc.).
    BQ = 5.d0 ;RO = 12.9248888074d0 ! field at RO (kG); 200keV radius (cm), B(RQ)=BQ=5kG.
    Rmi=1.d0; Rma=76.d0; RM=50.d0 ! cm. Radial extent of field map; reference radius to define mesh.
    dR = 0.5d0 ; NR = NINT((Rma - Rmi)/dR)+1 ! R-distance between nodes in mesh. Number of R-nodes.
C RdA=RM*dA is the distance between two nodes along R=RM arc,
    RdA = 0.5d0 ! given angle increment dA ( }\textrm{dA}\mathrm{ is the "Delta theta" quantity in the main text).
    NX= NINT(RM*AT /RdA) +1 ; RdA= RM*AT / DBLE(NX -1) ! exact mesh step at RM, corresponding to NX.
```



```
C--------------------------------
    write(2,*) Rmi,dR,dA/pi*180.d0,dZ,
    ` ! Rmi/cm, dR/cm, dA/deg, dZ/cm
    write(2,*) '# Field map generated using geneSectorMapIndex.f
    write(2,fmt='(a)') '# AT/rd, AT/deg, Rmi/cm, Rma/cm, RM/cm,'
    //' NR, dR/cm, NX, RdA/cm, dA/rd :
    write(2,fmt='(a,1p,5(e16.8,1x),2(i3,1x,e16.8,1x),e16.8)')
    '#',AT, AT/pi*180.d0,Rmi, Rma, RM, NR, dR, NX, RdA, dA
    write(2,*)'# For TOSCA:',NX,NR,' 1 22.1 1. !IZ=1 -> 2D ; ,
    //'MOD=22 -> polar map ; .MOD2=.1 -> one map file'
    write(2,*)'#
    write(2,*) '# R*cosA Z==0, R*sinA,
    >//', Brite(2 %),# BY BZ
    >//' kg kG
    do jr = 1, NR
        R = Rmi + dble(jr-1)*dR
            BZ = BO + BO/RO * ak * (R - RO)
            do ix = 1, NX
                A = A1 + dble(ix-1)*dA; X = R* sin(A) ; Y = R* cos(A)
            write(2,fmt='(1p,6(e16.8),2(1x,i\otimes))') Y,Z,X,BY,BZ,BX,ix,jr
            enddo
    stop ' Job complete ! Field map stored in geneSectorMapIndex.out.'
    stop '
```

Table 3.15 First and last few lines of the field map file geneSectorMapIndex.out. The file starts with an 8 -line header, the first one of which is effectively used by zgoubi, the following 7 are just comments

Table 3.16 Simulation input data file FieldMapSectorIndex.inc: a file to test trajectories for a field map with radial index. This file also defines the INCLUDE segment between the LABEL_1s \#S_60degSectorIndx and \#E_60degSectorIndx

(b) R-dependence of orbit rigidity.

The method is similar to exercise 3.1-(b) (see Tab. 3.4.): FIT finds the closed orbit radius R for a given ion rigidity, and REBELOTE is used to repeat for a series of different momenta, 20 here. The input data file for this exercise is given in Tab. 3.17, it includes a 21 ion 1-turn raytracing, in sequence with the previous 21-orbit finding.

Raytracing outcomes for $k=-0.03, R_{0}=R(E=200 \mathrm{keV})=12.924888 \mathrm{~cm}$, $B_{0}=B\left(R_{0}\right)=0.5 \mathrm{~T}$ are given in Fig. 3.35, together with theoretical expectation (with $\mathrm{B}(\mathrm{R})$ from Eq. 3.7)

$$
\begin{equation*}
\text { Rigidity } \quad B R(R)=B_{0}\left(1+\frac{R-R_{0}}{R_{0}} k\right) R \tag{3.39}
\end{equation*}
$$

Fig. 3.35 Case of field index $\mathrm{k}=-0.03$. Left: closed orbits at a series of different rigidities. Right: comparison of $B \rho(R)$ from raytracing outcomes (markers) and from theory (solid line, Eq. 3.39)
(c) Paraxial motion.

A proton with energy 1 MeV is considered, here. DIPOLE [16, lookup INDEX] is used rather than a field map, so to allow to freely change the k index value (using TOSCA instead would require computing a new field map when changing k).

The input data for a 60 deg sector are given in Tab. 3.18, essentially a copy of the uniform dipole field case of Tab. 3.6 in which the index value $k=-0.03$ has been added (line 3 under DIPOLE). The input data sequence for multiturn trajectory computation around the cyclotron is given in Tab. 3.19: in a first stage, orbit finding is performed by FIT, for 1 MeV energy; in a subsequent second stage, 4 protons with their initial horizontal coordinates taken on the closed orbit, and differing by their initial vertical take-off angle, are tracked over 120 sectors, i.e., 20 turns around the ring.

Fig. 3.36 displays the vertical sine motion. Stronger index (k closer to -1) results in stronger vertical focusing, hence more oscillations as expected from Eq. 3.18 and smaller motion amplitude as expected from Eq. 3.17. The latter can be written

Table 3.17 Simulation input data file: scan orbits for momentum dependence. Two problems are stacked, executed in sequence: in a first stage FIT finds a closed orbit, whose coordinates are logged in initialRs.fai file when FIT is completed, following what REBELOTE repeats for an additional 20 momenta; in a second stage OBJET grabs the 21-set of ion coordinates from initialRs.fai and these ions are raytraced over 6 sectors, i.e., one full turn. The INCLUDE file FieldMapSectorIndex.inc is taken from Tab. 3.16

A gnuplot script to obtain orbits, Fig. 3.35:
set xtics ; set ytics ; set xlabel "X_\{Lab\} [m]"; set ylabel "Y_\{Lab\} $[m] "$; cm2m $=0.01$; set polar; set size ratio
unset colorbox; pi $=4$.*atan(1.); TOSCA1=12; dT=3 \# number of 2nd TOSCA \& increment in zgoubi.plt listing
plot for $[\operatorname{trj}=2: 21]$
"zgoubi.plt" u (\$19=trj ? $\$ 22+(\$ 42-\mathrm{TOSCA1}) / \mathrm{dT} * \mathrm{pi} / 3: 1 / 0):(\$ 10 * \mathrm{~cm} 2 \mathrm{~m}):(\$ 19) \mathrm{w} 1 \mathrm{lw} 2$ lc palette notit ; pause 1

A gnuplot script to obtain $B \rho(R)$, Fig. 3.35:
set xtics ; set ytics nomirror ; set y2tics; set xlabel "R [m]" ; set ylabel "B\{/Symbol r\} [Tm]"
$\mathrm{B} 0=0.5 ; \mathrm{R} 0=12.924888 \mathrm{e}-2 ; \mathrm{k}=-0.03 ; \operatorname{Brho}(\mathrm{x})=\mathrm{B} 0^{*}\left(1 .+(\mathrm{x}-\mathrm{RQ}) / \mathrm{R} 0^{*} \mathrm{k}\right) * \mathrm{x} ; \mathrm{kGcm} 2 \mathrm{Tm}=1 \mathrm{e}-3 ; \mathrm{cm} 2 \mathrm{~m}=0.01$ plot for [trj=2:21]
"zgoubi plt" u (\$19==trj? $\left.\$ 10^{*} \mathrm{~cm} 2 \mathrm{~m}: 1 / 0\right):\left(\$ 40^{*}(1+\$ 2) * \mathrm{kGcm} 2 \mathrm{Tm}\right)$ w p pt 6 ps 1.2 notit ,
$\operatorname{Brho}(\mathrm{x})$ axes x1y2 w 1 lw 2 lc rgb "black" tit "theor." ; pause 1

Table 3.18 Simulation input data file sectorWithIndex.inc: definition of a dipole with index, case of analytical field modeling, namely here $\mathrm{k}=-0.03$ and reference radius $R_{0}=50 \mathrm{~cm}$. Definition of the [\#S_60degSectorWIdx:\#E_60degSectorWIdx] segment

$$
\begin{equation*}
Z(s)=P_{0} \frac{R_{0}}{\sqrt{-k}} \sin \frac{\sqrt{-k}}{R_{0}}\left(s-s_{0}\right) \quad \text { and } \quad \hat{Z}=P_{0} \frac{R_{0}}{\sqrt{-k}} \tag{3.40}
\end{equation*}
$$

Note that this vertical oscillation results in a modulation of the field along the trajectory (see question (d) of this exercise) which results in a radial oscillation, a second order Y-Z coupling effect (extremely weak), displayed in Fig. 3.37.

Fig. 3.36 Vertical sine motion over a few turns around the cyclotron, at 1 MeV . Vertical take-off angles are $P_{0}=0,0.1,0.2,0.3 \mathrm{mrad}$. Left: $\mathrm{k}=-0.03, v_{Z}=\sqrt{0.03} \approx 0.173$ oscillations per turn; right: for $\mathrm{k}=-0.2, v_{Z}=\sqrt{0.2} \approx 0.447$ oscillations per turn
(d) Magnetic field.

The magnetic field experienced by 1 MeV protons with four different take-off angles P_{0} (Fig. 3.36), along their respective trajectories, case of an index value $k=-0.03$, is displayed in Fig. 3.38. It is essentially constant as expected.

Table 3.19 Simulation input data file: scan orbits for momentum dependence; the file actually stacks two simulations, executed in sequence; the second simulation uses data produced by the first one, as follows. The first part of the file finds the closed orbits, they depend on the vertical excursion and are not exactly zero, due to the field index; closed orbit coordinates so found are logged in initialRs.fai when FIT is completed. The second part of the file starts at the second occurrence of OBJET which reads initial particle coordinates from initialRs.fai and tracks these particles through a sequence of 120 sector dipoles, i.e., 20 turns. The [\#S_60degSectorWIdx:\#E_60degSectorWIdx] segment of Tab. 3.18 is INCLUDEd, here

Uniform field sector with index. Scan orbits.

'MARKER' MeVVMotion_S	! Just for edition purposes.
	First stage: find closed orbit at 1 MeV , for some k value.
'OBJET'	
64.62444403717985	! Reference Brho ("BORO" in the users' guide) -> 200keV proton.
1.1	
$\begin{array}{lllllll}1 & 1 & 1 & 4 & 1 & 1\end{array}$	
0. 1. 0. 0.1 0. 1.	
30.107900 O. O. O. O. 2.2365445724 'INCLUDE'	'm' $\quad 11 \mathrm{MeV}$ proton $->$ Brho/Brho_ref $=2.2365445724$.
1	
./sectorWithIndex.inc[\#S_60degSectorWIdx	:\#E_60degSectorWIdx] ! DIPOLE case R $0=50 \mathrm{~cm} \mathrm{k}=-0.03$.
'FIT'	! This matching procedure finds the closed orbit radius.
1 nofinal	
$240 \quad 0 \quad .9$! Variable : Y_Q. Variation can be up to 90%.
1 1e-15 99	! Penalty; max numb of calls to function.
3.112 \#End 0.1.0	! Constraint : Y_final=Y_0.
'FAISTORE'	
initialRs.fai	! Log coordinates in initialRs.fai.

initialRs.fai
1
$!$

Second stage: raytrace the four particles over 20 turns.
64.62444403717985 ! Reference Brho ("BORO" in the users' guide) $\rightarrow 200 \mathrm{keV}$ proton.
$\begin{array}{ll}3 \\ 1 & 999 \\ 1 & 1\end{array}$
19991

1. 2. 3. 4. 5. 6. 7. '*'
1. 0. 0. 0. 0. 0. 0.

initialRs.fai
'FAISCEAU'
'INCLUDE'
1
'FAISCEAU,
'FAISCEAU'
2
gnuplot <./gnuplot_Zplt_1MeVVMotion.gnu
gnuplot <./gnuplot_Zplt_MeVBField.gnu
'MARKER' MeVVMotion_E

A gnuplot script to obtain Figs. 3.36, 3.37:
\# gnuplot_Zplt_1MeVVMotion.gnu

plot for [trj=4:1:-1]
"zgoubi.plt" u $(\$ 19==\operatorname{trj} \& \& \$ 42>10$? $\$ 14 * \mathrm{~cm} 2 \mathrm{~m}: 1 / 0):(\$ 12 * \mathrm{~cm} 2 \mathrm{~m}):(\$ 19)$ w 1 lw 2 tit " $\mathrm{P}[\mathrm{mrad}]=0 . " .(\operatorname{trj}-1)$; pause 1

A gnuplot script to obtain Fig. 3.38:
\# gnuplot_Zplt_MeVBField.gnu
set xtics; set ytics; set xlabel "s [m]"; set ylabel "Y [m]"; cm2m = 0.01; unset colorbox
plot for [$\operatorname{trj}=4: 1:-1]$
"zgoubi.plt" u (\$19==trj \&\& $\$ 42>10$? $\$ 14 * \mathrm{~cm} 2 \mathrm{~m}: 1 / 0):\left(\$ 10^{*} \mathrm{~cm} 2 \mathrm{~m}\right):(\$ 19)$ w 1 lw 2 tit " $\mathrm{P}[\mathrm{mrad}]=0 . " .(\operatorname{trj}-1)$; pause 1

Fig. 3.37 Horizontal motion at $1 \mathrm{MeV}, 20$ turns around the cyclotron, for vertical take-off angles $P_{0}=0,0.1,0.2,0.3$ mrad. Left: $\mathrm{k}=-0.03, v_{R}=\sqrt{1+0.03} \approx 1.015$ oscillations per turn; right: for $\mathrm{k}=-0.2, v_{R}=\sqrt{1+0.2} \approx 1.095$ oscillations per turn

Fig. 3.38 Magnetic field experienced by 1 MeV protons with four different take-off angles P_{0} (Fig. 3.36), along their respective trajectories. Case $k=-0.03$. The stepwise structure of these $B_{Z}(s)$ curves is due to the fact that field variations are at the limit of computer truncation related accuracy

3.7 Loss of Isochronism

In order to scan $T_{\text {rev }}(R)$ for different k values, DIPOLE [16, lookup INDEX] is used here, as it allows to easily vary k and subsequently find the closed orbit using FIT. The method of exercise 3.6 is employed to obtain a scan. The input data file of Tab. 3.17 is a good starting point to do this exercise, changing the INCLUDE to account for DIPOLE instead of a field map modeling using TOSCA: the proper INCLUDE formatting can be reproduced from Tab. 3.19. IL under DIPOLE may be set at IL=0 as zgoubi.plt is not used here. Introduce FAISTORE to store local particle data after FIT (that includes time of flight, the quantity of interest here, which requires PARTICUL[PROTON] following OBJET).

The new input data file so built for this simulation, is given in Tab. 3.20.
This input data file is run for four different k values, namely, under DIPOLE ($c f$. Tab. 3.18), the line "30. 5. -0.03 0. 0." is successively changed to $\left\{\begin{array}{l}30.5 .00 .0 . \\ 30.5 .-0.50 .0 . \\ 30.5 .-0.950 .0 .\end{array}\right.$. The corresponding zgoubi.fai files are saved under dedicated copies for plotting, see "gnuplot script gnuplot_Zfai_scanTrev.gnu" at the bottom of Tab. 3.20.

The results of these $T_{\text {rev }}$ scans are displayed in Fig. 3.39. In the case $k=0$ the loss of isochronism is only due to the relativistic change of the mass, a non-zero k

Table 3.20 Simulation input data file: scan revolution time. The [\#S_60degSectorWIdx:\#E_60degSectorWIdx] segment of Tab. 3.18 is INCLUDEd, here

```
Uniform field sector with index. Scan orbits.
    'MARKER' isoChroLoss_S ! Just for edition purposes.
    64.62444403717985 ! Reference Brho ("BORO" in the users' guide) -> 200keV proton.
    2
4.0039 O. Q. Q. Q. Q.3162126 'o' ! p[MeV/c]= 6.126277, Brho[kG.cm]=20.435, kin-E[MeV]=0.02.
' 'PARTICUL', ! Necessary as time of flight computation is needed,
    PROTON , ! otherwise, by default \zgoubi\ only requires rigidity.
    'INCLUDE'
    1//sectorWithIndex.inc[#S_60degSectorWIdx:#E_60degSectorWIdx]
        |egSectorWIdx] ! DIPOLE case R0=50cm k=-0.03.
    'FIT2
    'FIT2'
        ! Variable : Y_0
        ! Penalty; max numb of calls to function
    2 300 [0.5,80.]
    3.1 12 #End 0. 1. 0 ! Constraint : Y_final=Y 0
    'FAISCEAU',
    FAISTORE'
    zgoubi.fai
    'REBELOTE' ! A do-loop. Repeat the above, after changing particle rigidity to a new value
    200.2 0 1 ! 20 diffrnt rigidities; I/O options; coordinates as from OBJET; changes follow:
    OBJET 35 0.3162126:5.00639 ! Acceleration to 5MeV. Commented here, for use in subsequent exercises.
    ! OBJET 35 0.3162126:2.2365445724 ! Substitute to previous, for energy scan from 0.02 MeV to 1 MeV.
    'SYSTEM'
    1
gnuplot <./gnuplot_Zfai_scanTrev.gnu
    MARKER' isoChroLoss_E
    'END'
```

A gnuplot script to obtain Fig. 3.39:
\# gnuplot_Zfai_scanTrev.gnu
set xtics ; set ytics nomirror ; set y2tics; set xlabel "R [m]" ; set ylabel "T_\{rev\} [\{/Symbol m\}s]"
$\mathrm{cm2m}=0.01$; nSec=6; set y2label "T_\{rev $\}$ at $\mathrm{k}=0[\{/$ Symbol m$\} \mathrm{s}]$ "; set key c r
plot "zgoubi_k0.fai" u (\$10 *cm2m) : (\$15*nSec) w lp pt 4 ps 1.2 lc rgb "black" tit "k=0" , \
"zgoubi_k0.fai" u ($\$ 10$ *cm2m) : $(\$ 15 * \mathrm{nSec})$ axes x1y2 w lp pt 4 ps 1.2 lc rgb "black" notit , \}
"zgoubi_k0.03.fai" u ($\$ 10$ *cm2m) : $(\$ 15 * \mathrm{nSec})$ w lp pt 7 ps 1.2 tit "k=-03" , ,

85
augments the effect. The loss of isochronism is the cause of the $\approx 20 \mathrm{MeV}$ proton energy limit of the classical cyclotron.

Fig. 3.39 A scan of the revolution time, from 0.02 to 1 MeV , and its dependence on the field index k. The right vertical axis only concerns the case $k=0$ where the change in revolution time is weak and only due to the mass increase (in $T_{\text {rev }}=2 \pi \gamma m_{0} / q B$). The right graph shows, up to 5 MeV , the relatively important contribution of the focusing index, even a weak $k=-0.03$, compared to the effect of the mass increase ($k=0$ curve). Markers are from raytracing, solid lines are from theory

3.8 Ion Trajectories

A zgoubi data file is set up for computation of particle trajectories, taking a field value on reference radius of $B_{0}\left(R_{0}\right)=0.5 \mathrm{~T}$, and reference energy 200 keV (proton). These hypotheses determine the reference radius value. DIPOLE [16, lookup INDEX] is used (Tab. 3.21), for its greater flexibility in changing magnet parameters, field and radial field index amongst other, compared to using TOSCA and a field map.
(a) Transverse motion.

It first has to be checked that there is consistency between initial orbital radius Y_{0} in OBJET at 200 keV proton energy and the value of the reference radius R_{0} in DIPOLE (Eq. 3.35). Its theoretical value is $R_{0}=B O R O / 5[k G]=12.924889 \mathrm{~cm}$, a closed orbit finding using FIT can be performed, or it can be referred to the solutions of earlier exercises, to check agreement with raytracing outcomes.
(b) Wave numbers at 1 and 5 MeV .

These considerations result in the input data file given in Tab. 3.22, to compute multiturn trajectories. ; note that $R_{0}=12.924889 \mathrm{~cm}$ therein, whereas a value of $R_{0}=50 \mathrm{~cm}$ may be taken instead in other exercises. Field index derivatives $k^{\prime}, k^{\prime \prime}, \ldots$ are taken null in the present exercise.

Three particles with paraxial radial and axial motions are raytraced over a few turns. Their starting radius is the closed orbit radius for the respective energies, while a 0.1 mrad take-off angle is imparted to each particle both vertically and horizontally.

The value of the focusing index k_{E} at an energy E can be expressed in terms of DIPOLE data which are, the index value k at R_{0} (Eq. 3.11), reference radius R_{0}, and field $B_{0}=B_{Z}\left(R_{0}\right)$, namely,

$$
k_{E}=\frac{R_{E}}{B_{E}} \frac{\partial B}{\partial R}=\frac{R_{0}+\Delta R}{B_{0}+\Delta B} \frac{\partial B}{\partial R} \approx k \frac{1+\Delta R / R_{0}}{1+k \Delta R / R_{0}} \approx k\left[1+(1-k) \frac{\Delta R}{R_{0}}\right]
$$

Table 3.21 Input data file 60DegSectorR200.inc: it defines DIPOLE as a sequence segment comprised between the "LABEL_1" type labels [16, Sect. 7.7] \#S_60DegSectorR200 and \#E_60DegSectorR200. DIPOLE here, has an index $k=-0.03$, reference radius $R_{0} \equiv R_{0}\left(E_{k}=\right.$ $200 \mathrm{keV})=12.924888 \mathrm{~cm}$ and $B_{0}=B\left(R_{0}\right)=0.5 \mathrm{~T}$. Note that (i) this file can be run on its own: it has been designed to provide the transport MATRIX of that DIPOLE; (ii) for the purpose of some of the exercises, $\mathrm{IL}=2$ under DIPOLE, optional, causes the printout of particle data in zgoubi.plt, at each integration step (this is at the expense of CPU time, and memory volume)

```
60DegSectorR200.inc
64.62444403717985 ! 200keV proton.
0.01 0.0010.010.001 0.0.0001
12.9248888074 0. O. O. O. 1. ! 200keV. R=Brho/B=*/.5.
'DIPOLE' #S_60DegSectorR200 ! Analytical modeling of a dipole magnet.
60. 12.924888 purpose: log stepwise particle data in zgoubi.plt. Avoid if unused: I/Os take CPU time.
30. 5. -0.03 0.0. ! Reference azimuthal angle ACN; BM field at R0; indices, N, N', N',
0. 0. 
4.1455 2.2670
30.0. 1.E6 -1.E6 1.E6 1.E6
0. 0.
4 . 1455 2.2670 -. }6395\mp@code{1.1558 0. 0. 0.
0.0. 1.E6 -1.E6 1.E6 1.E6 % EFB 3 (unused).
0 0. 0. 0. 0. 0. 0. 0.
0.0. 1.E6 -1.E6 1.E6 1.E6 0.
! Integration step size. Small enough for orbits to close accurately.
'FAISCEAU' #E_60DegSectorR200
'MATRIX'
M'END'
```

Table 3.22 Simulation input data file: raytrace a few turns around the cyclotron, three particles with different momenta, and 0.1 mrad horizontal and vertical take-off angles. The INCLUDE segment is taken from Tab. 3.21
'MARKER' ProbProjTraj_S

A gnuplot script to obtain Fig. 3.41:
\# gnuplot_Zplt_traj.gnu
set xtics nomirror; set x2tics; set ytics; set xlabel 's /C_E '; set ylabel 'Y [cm] '
set palete defined (1 "red", 2 "blue", 3 "black") ; unset colorbox
array R[3]; R[1]=0.12924888; R[2]=0.301078986; R[3]=0.75754671; pi = 4.*atan(1.); cm2m = 0.01
sector1=3 \# number (NoEL) of 1st DIPOLE in \zgoubi, res (col. 42 in zgoubi.plt)
plot for [sector=1:6] for [trj=1:3] 'zgoubi plt' u (\$19 trj \& $\$ 42=12$ distance; col. 10: Y ; col. 12: YZ

:(\$10*cm2m-R[trj]):(\$19) w p ps . 2 lc palette notit ; pause 1
$/\left(2 .{ }^{* p i * R[\$ 19]): 1 / 0):(\$ 12):(\$ 19) \mathrm{w} p \mathrm{ps} .2 \text { lc palette notit ; pause } 1 .}\right.$

Fig. 3.40 In DIPOLE field model (Eq. 3.35), $\frac{\partial B}{\partial R}$ is constant: this graph shows the linear decrease of the field $B_{Z}(R)$ (Eq. 3.38), obtained from the raytracing of particles circulating in the median plane on orbits spanning a 0.2 to 5 MeV energy range

with ΔR assumed small, $\partial B / \partial R=k B / R_{E}$ an energy independent quantity, and the index E denoting a quantity taken at the reference energy. The latter property is illustrated in Fig. 3.40, produced using the input data file of Tab. 3.23.

Table 3.23 Simulation input data file for a magnetic field scan. The INCLUDE segment is taken from Tab. 3.21

```
    Field and derivative dB/dR, as a finction of R
    'MARKER' ProbProjTrajB_S
    'OBJET'
    64.62444403717985
    2
    l l l ! A particle with kin-E=0.2 MeV and 0.1 mrad take-off angles.
    ' 'INCLUDE'
    1 ! IL=2 is necessary under DIPOLE, for step-by-step log of particle data in zgoubi.plt
    60DegSectorR200.inc[#S_60DegSectorR200:#E_60DegSectorR200]
    'FIT'
    1}2300[12,80] ! Vary particle's Y0 at OBJET, to have it match its D (=Brho/BORO).
    11 1e-20 (12 #End 0. 1.0
    3.1 1 2 #E
    'REBELOTE''
    1
    OBJET 35 1:5.00639 ! Scan relative rigidity D from 1 (200 keV) to 5.0063900 (5 MeV).
    'SYSTEM'
gnuplot < ./gnuplot_Zplt_field.gnu
    'MARKER' ProbProjTrajB_E
    'END'
A gnuplot script to obtain Fig. 3.40:
    # gnuplot_Zplt_field.gnu
    set xtics nomirror; set x2tics; set ytics; set xlabel 's /C_E '; set ylabel 'Y [cm],
    set palette defined ( 1 "red", 2 "blue", 3 "black") ; unset colorbox
    array R[3]; R[1]=0.12924888; R[2]=0.301078986; R[3]=0.75754671; pi = 4.*atan(1.); cm2m = 0.01
    sector1=3 # number (NOEL) of 1st DIPOLE in \zgoubi,res (col. 42 in zgoubi.plt)
    # in zgoubi.plt, col. 19: particle number; col. 42: keyword number; col. 14: distance; col. 10: Y ; col. 12: YZ
    plot for [i=1:6] for [trj=1:3]
        'zgoubi.plt' u ($19==trj && $42==sector1 +2*(i-1) ? $14*cm2m /(2.*pi*R[$19]) :1/0)\
        :($10*cm2m-R[trj]):($19) w p ps .2 lc palette notit ; pause 1
    set ylabel 'Z [cm]';
    plot for [i=1:6] for [trj=1:3]
        'zgoubi.plt' u ($19==trj && $42==sector1 +2*(i-1) ? $14*cm2m \
        _(2.*pi*R[$19]) :1/0):($12):($19) w p ps .2 lc palette notit ; pause 1
```


Fig. 3.41 Radial (left) and axial (right) paraxial motion around respectively the 200 keV (smallest amplitude), 1 MeV (intermediate) and 5 MeV (greatest amplitude) closed orbit (the latter is circular, in the median plane, with radius respectively $R_{200 \mathrm{keV}}=12.924888 \mathrm{~cm}, R_{1 \mathrm{MeV}}=30.107898 \mathrm{~cm}$ and $R_{5 \mathrm{MeV}}=75.754671 \mathrm{~cm}$). The horizontal axis in this graph is $s / C_{E}:$ path length over closed orbit circumference at energy E , the vertical axis is the motion excursion

The resulting radial and axial motions over 10 turns are displayed in Fig. 3.41, which also illustrates, for paraxial motion at some reference energy, the energy dependence of the focusing strength (or wave number) and of the motion amplitude.

Table 3.24 Wave numbers, from numerical raytracing (columns denoted "ray-tr"), from theory, and from discrete Fourier transform ('DFT' cols.) from a multi-turn tracking

			$v_{R}=$					
$\mathrm{E}(\mathrm{MeV})$	k_{E}	ray-tr.	$\sqrt{1+k}$	DFT	ray-tr.	$\sqrt{-k}$	DFT	
0.2	-0.03	0.98520	0.9849	0.98513	0.17320	0.1732	0.17321	
1	-0.07279	0.96187	0.96292	0.96291	0.26980	0.26979	0.26981	
5	-0.20586	0.89083	0.89115	0.89115	0.45326	0.45371	0.45371	

An estimate of the wave numbers can be obtained as the inverse of the number of turns per oscillation, namely,

$$
v_{R}=\left.\frac{C_{E}}{\Delta s_{M}}\right|_{E} \quad \text { and } \quad v_{Z}=\left.\frac{C_{E}}{\Delta s_{M}}\right|_{E}
$$

with Δs_{M} the measured distance between two consecutive maxima in the sinusoid of concern in Fig. 3.41, C_{E} the closed orbit length for the energy of concern. Both quantities are obtained from motion records in zgoubi.plt. This yields the values of Tab. 3.24, where they are compared with the theoretical expectations, namely (Eq. 3.18), $v_{R}=\sqrt{1+k}$ and $v_{Z}=\sqrt{-k}$.

The maximum amplitude of the oscillation is obtained from zgoubi.plt records as well, this yields the results of Tab. 3.25. For comparison, the theoretical values are (Eqs. 3.16, 3.17 with respectively $x_{0}=0, x_{0}^{\prime}=T_{0}$ and $\left.y_{0}=0, y_{0}^{\prime}=P_{0}\right) \hat{Y}=T_{0} \frac{R_{E}}{\sqrt{1+k}}$ and $\hat{Z}=P_{0} \frac{R_{E}}{\sqrt{-k}}$. wherein R_{E} denotes the closed orbit radius at energy E (for the record: $R_{E} \equiv R_{0}$ at energy $E=200 \mathrm{keV}$, in the foregoing).

Table 3.25 Maximum amplitude of the oscillation, from raytracing (columns denoted "ray-tr.") and from theory. R_{E} is the closed orbit radius for the energy of concern, $T_{0}=P_{0}=0.1 \mathrm{mrad}$ is the trajectory angle at the origin, positions at the origin are zero

		\hat{Y}	\hat{Z}
$\mathrm{E}(\mathrm{MeV})$	k	ray-tr. $T_{0} \frac{R_{E}}{\sqrt{1+k}}$ $\left(\times 10^{-5}\right)$	ray-tr. $P_{0} \frac{R_{E}}{\sqrt{-k}}$ (MeV)
0.2	-0.03	1.31231 .3125	7.46227 .4624
1	-0.072787	3.1270	3.1267
5	-0.20586	8.5010	8.5008

(c) Comparison with theory.

Figure 3.42 shows the difference between numerical and theoretical vertical motion excursion, using an $a d h o c$ gnuplot script. An integration step size $\Delta s=2 \mathrm{~cm}$ is used in the numerical integration.

Fig. 3.42 Vertical excursion of a 1 MeV trajectory over 20 turns (left vertical axis), and difference with theoretical expectation as per Eq. 3.17 (right vertical axis). The plot shows two sinusoidal curves: a segmented one, thicker, from numerical integration, and a thinner one, superimposed, from Eq. 3.17

Table 3.26 Simulation input data file: for this wave number scan, the INCLUDE segment is taken from Tab. 3.21

```
Field and derivative \(d B / d R\), as a finction of \(R\)
    'MARKER' ProbMATRIX_S
64.62444403717985
5 ! Reference Brho ("BORO" in the users' guide) -> 200keV proton
.001 .01 .001 .01 .001 .00001 ! Sampling of the initial coordinates
12.924888 O. Q. O. O. 1.
' INCLUDE
' 1 INCLUDE' \(\quad\) IL=2 is necessary under DIPOLE, for step-by-step \(\log\) of particle data in zgoubi.plt
6* 60DegSectorR200.inc[\#S_60DegSectorR200:\#E_60DegSectorR200] ! Six 60 degree sectors
'FIT'
1
2 \(30[12,80] \quad\) U Vary particle's Y0 at OBJET, to have it match its D (=Brho/BORO).
3.112 \#End 0. \(1.0 \quad\) ! Consrain Y_final=Y0.
'MATRIX,
111 PRINT ! PRINT: \(\log\) computation outcome data to zgoubi.MATRIX.out, for further plotting.
'REBELOTE'
\(\begin{array}{ll}25 & 0.101 \\ 1\end{array}\)
OBJET 35 1:5.00639
'SYSTEM'
gnuplot < ./gnuplot_MATRIX_Qxy.gnu
'MARKER' ProbMATRIX_E
'END'
```


A gnuplot script to obtain Fig. 3.43:

\# gnuplot_MATRIX_Qxy.gnu
set xlab "kin. E [MeV]"; set ylab "\{/Symbol n\}_x, (\{/Symbol n\}_x^2+\{/Symbol n\}_y^2)^\{1/2\}"; set y2label "\{/Symbol n\}_y" set key t l maxrow 1 ; set xtics; set ytics nomirror; set y2tics nomirror
BORO $=64.62444403717985 ; ~ a m=938.27203 e 6 ; ~ c=2.99792458 e 8 ;$ BrhoRef $=$ BORO $* 1 \mathrm{e}-3$; eV2MeV $=1 \mathrm{e}-6$
plot "zgoubi.MATRIX.out" u ((sqrt ((\$47*BrhoRef*c)**2 + am*am)-am)*eV2MeV): (\$56) w lp pt 5 lt 1 lw. 5 lc rgb "red" tit "\{/Symbol n\}_x " , \}
"zgoubi.MATRIX.out" u ((sqrt ((\$47*BrhoRef*c)**2 + am*am)-am)*eV2MeV): (\$57) axes x1y2 wlp
pt 6 lt 3 lw. 5 lc rgb "blue" tit "\{/Symbol n\}_y ",

Fig. 3.43 A scan of the energy dependence of the horizontal and vertical wave numbers. Markers are from raytracing, solid lines are from theory (Eq. 3.18). The figure also shows that the raytracing yields $v_{R}^{2}+v_{y}^{2}=1, \forall E$, as expected

Table 3.27 Simulation input data file: accelerating a proton to get the evolution of RF phase The [\#S_60degSectorWIdx:\#E_60degSectorWIdx] segment of Tab. 3.18 is INCLUDEd, here

Cyclotron, classical. Acceleration to 6.02 MeV .
'MARKER' ProbRFPhase_S
64.62444403717985

64
2
11
$\begin{array}{llllll}11 \\ 12.629892 & \text { ०. } & \text { 0. } & \text { O. } & \text { 0. 1. 'm' }\end{array}$
'PARTICUL'
PROTON
'INCLUDE'
1
3* sectorWithIndex.inc[\#S_60degSectorWIdx:\#E_60degSectorWIdx] ! Three 60 deg sectors. R $0=50 \mathrm{~cm}, \mathrm{k}=-0.03$.
'FAISTORE'
zgoubi.fai
'CAVITE' GAP1
7 PRINT ! PRINT: log CAVITE computational dat to zgoubi.CAVITE.out.
$0.00 \quad 7.63358778626 \mathrm{e} 6 \quad$! f_rf= 1/T_rev, T_rev at about middle of acceleration range.
$100 \mathrm{e}^{-1.57079632679} \quad$! f_rf= 1/T_rev, T_rev at about middle of acceleration range.
' INCLUDE
3* sectorWithIndex.inc[\#S_60degSectorWIdx:\#E_60degSectorWIdx] ! Three 60 deg sectors. R $0=50 \mathrm{~cm}, \mathrm{k}=-0.03$.
${ }_{7}$ PRRINT GAP1 ! PRINT: log CAVITE computational dat to zgoubi. CAVITE.out.
$\begin{array}{ll}0.00 & 7.63358778626 e 6 \\ 100 \mathrm{e} 3 & +1.57079632679\end{array} \quad$! f_rf= $1 /$ T_rev, T_rev at about middle of acceleration range.
'FAISCEAU' ${ }^{+1.57079632679}$! Local particle coordinates phase of 1st cavity.
'REBELOTE' $\quad!\mathrm{K}=99$: coordinates at end of previous pass are used as initial
42 1.199
'SYSTEM' $\quad!$ coordinates for the next pass ; idem for spin components.
/usr/bin/gnuplot < ./gnuplot_CAVITE.gnu \& ! Plot phase, as read from command follows.
'MARKER' ProbRPh I Plot phase, as read from zgoubi. CAVITE.out.
'MARKER' ProbRFPhase_E
'END ${ }^{\prime}$

3.9 RF Phase at the Accelerating Gap

According to Sect. 3.2.3 (Fig. 3.13), the RF is taken about half-way of the accelerating range, namely, referring to Fig. 3.39, $T_{\text {rev }}=0.131 \mu \mathrm{~s}$ and $f_{\mathrm{rf}}=1 / T_{\mathrm{rev}}=$ 7.633 MHz .

An input data file for this simulation is given in Tab. 3.27.
In a similar way to the diagrams in Fig. 3.13, the resulting $B(R)$ curve is given in Fig. 3.44, the resulting $\Delta W(\phi)$ curve in Fig. 3.45.

A gnuplot to obtain the accelerated orbit of Fig. 3.45:
\# gnuplot_CAVITE.gnu
set xlabel "RF phase [rad]" ; set ylabel "\{/Symbol D\}W [MeV]"; set xtics ; set ytics mirror

More turns are performed by changing the arguments under REBELOTE in the input data file (Tab. 3.27), from 42 to 75 in the present case. The resulting energy gain of the proton as a function of RF phase is shown Fig. 3.46. A first graph in Fig. 3.47 shows the evolution of its relative rigidity, namely D-1 as a function of distance, with $D=B \rho(s) / B O R O$ and $\mathrm{BORO}=64.624444 \mathrm{kGcm}$ the reference rigidity as defined under OBJET; a second graph shows its orbital radius as a function of distance.

Fig. 3.44 Radial dependence of the magnetic field over the acceleration range. The field is 0.5 T at a reference radius $R_{0}=0.5 \mathrm{~m}$, the slope results from the index $k=$ -0.03 . A graph obtained using zpop: menu 7; $1 / 1$ to open zgoubi.plt; 2/[2,32] for B_{Z} versus $Y ; 7$ to plot

Fig. 3.45 Span in phase of the energy gain $\Delta W=$ $q \hat{V} \sin \phi$ over the acceleration range 200 keV to 5 MeV . The vertical separation of the two $\Delta W(\phi)$ branches on the left ($\Delta \phi<0$ above and $\Delta \phi>0$ underneath) is artificial (a "-(\$6-50)/10000." "trick" in the gnuplot script of Tab. 3.27), for the sake of clarity - they actually superimpose

Fig. 3.47 Left: relative rigidity offset of the proton as a function of distance around the ring, accelerating over half the path, and subsequently decelerating back to the initial energy, under the effect of the cumulated phase-shift. Right: increase first and decrease next of the orbital radius as a function of azimuthal distance

3.10 The Cyclotron Equation

Cyclotron model settings of exercise 3.3 are considered in questions (a) to (c), first: two dees, double accelerating gap, uniform field $B=0.5 \mathrm{~T}$. The analytical field modeling DIPOLE [16, lookup INDEX] is used.
(a) Simulation data file.

Acceleration is over the energy range $[0.2,20] \mathrm{MeV}$, the maximum of $\cos (\phi)$ (Fig. 3.14) is placed at $E_{k}=E_{k, m}=10 \mathrm{MeV}$.

The cyclotron equation (Eq. 3.26) can be written under the form

$$
\begin{equation*}
\cos \phi=\cos \phi_{i}-\frac{\pi}{q \hat{V}}\left[\frac{\omega_{r f}}{2 M \omega_{\mathrm{rev}}}\left(E^{2}-E_{i}^{2}\right)-\left(E-E_{i}\right)\right] \tag{3.41}
\end{equation*}
$$

where the index i denotes injection parameters, ϕ is the phase of the RF at particle arrival at the accelerating gap, \hat{V} is the peak gap voltage, $E=E_{k}+M$ is the total energy with M the rest mass. The value of E_{k} at the maximum of $\cos \phi$ is drawn from $d(\cos \phi) / d E_{k}=0$, namely

$$
\begin{equation*}
E_{k, m}=\left(\frac{\omega_{\mathrm{rev}}}{\omega_{r f}}-1\right) M \tag{3.42}
\end{equation*}
$$

Taking $E_{k, m}=10 \mathrm{MeV}$ one gets

$$
\frac{\omega_{\mathrm{rev}}}{\omega_{r f}} \approx 1+0.106578, \quad f_{r f} \approx 0.989454 \omega_{\mathrm{rev}} / 2 \pi=7.542209 \mathrm{MHz}
$$

The corresponding input data file is given in Tab. 3.28. Figure 3.48 shows the case of two particles accelerated at a rate of 400 kV per turn, one resulting from an initial phase at the gap of $\phi_{i}=\pi / 2$ and reaches 20 MeV in about 52 turns, the other resulting from an initial phase $\phi_{i}=3 \pi / 4$ and reaches 20 MeV in about 64 turns. In the latter case, the $\pi / 4$ phase shift results from an initial path length offset

Table 3.28 Simulation input data file: the cyclotron equation (Eq. 3.26). This requires a uniform field, for that the [\#S_60degSectorUnifB:\#E_60degSectorUnifB] segment of Tab. 3.6 is INCLUDEd, here. Note the PRINT instruction under CAVITE: it causes a print out of CAVITE computational data in zgoubi.CAVITE.out, during the ray tracing, including RF phase and ion energy which can then be plotted (gnuplot script below, called by SYSTEM, and Fig. 3.48). The second particle under OBJET is launched on the closed orbit, its initial phase at the voltage gap is $\pi / 2$. The first and third particles leave with an initial longitudinal shift $\delta s=\mp 10.26647 \mathrm{~cm}$ at OBJET resulting in $\pi / 4$ and $3 \pi / 4$ initial phase at the voltage gap

A gnuplot script to obtained Fig. 3.49:

\# gnuplot_CAVITE.gnu
set xlabel "E_k [MeV]" ; set ylabel "cos(\{/Symbol f\})"; set xtics; set ytics mirror
$\mathrm{pi}=4$. * $\operatorname{atan}(1.) ; \mathrm{EQ}=938.2720813 ; \mathrm{qV}=400 \mathrm{e}-3 ; \mathrm{Ei}=0.2$; $\mathrm{E} _\mathrm{km}=10$ \# locate max of $\cos (\mathrm{phi})$ at 10 MeV
omgR $=1 . /\left(1 .+E _k m / E 0\right) ; m x T u r n=80$
'zgoubi.CAVITE.Out' u ($\$ 5==$ i \& \& $\$ 6$ <mxTurn? $\$ 10: 1 / 0):(\cos (\$ 11))$ w p pt i+4 ps .5 notit ,
$\cos (\mathrm{pi} / 2)+.\mathrm{pi}^{*}(1 .-\mathrm{omgR} *(1 .+(\mathrm{x}+\mathrm{Ei}) /(2 * \mathrm{E} 0)))$ *(x-Ei)/(.5*qV)w 1 lw 2 lc rgb "blue"
tit "V/gap=200kV, \{/Symbol f\}_ $0=\{/$ Symbol $p\} / 2^{\prime \prime}$,

tit " $\quad\{/$ Symbol $f\} _Q=\{/$ Symbol $3 p\} / 4^{\prime \prime}$,
as specified under OBJET ($\beta c=0.020648 c$ is the proton velocity at $E_{i}=200 \mathrm{keV}$), yielding $\delta \phi=\omega_{\mathrm{rf}} \delta s / \beta c=\pi / 4$. A third curve in the figure is for to 200 kV voltage and initial phase at gap $\phi=\pi / 2$, in that case $\cos (\phi)$ reaches the value of 1 at about $4 \mathrm{MeV}, 32$ turns, and the particle starts decelerating.
(b) Energy-phase relationship.

Fig. 3.48 Proton energy versus turn, case of (Tab. 3.28) voltage $400 \mathrm{kV} /$ turn, two protons with initial phase respectively $\pi / 2(\delta s=0)$ and $3 \pi / 4(\delta s=10.26647 \mathrm{~cm})$, which make it up to 20 MeV and beyond. The third case case, voltage $200 \mathrm{kV} /$ turn, initial phase $\pi / 2(\delta s=0)$, features a maximum energy of 4 MeV and deceleration from there on. A graph obtained using zpop: menu $7 ; 1 / 5$ to
 read from zgoubi.fai; 2/[39,2] for Y versus turn

A graph of the energy-phase relationship obtained by ray tracing, for $\phi_{i}=\frac{3 \pi}{4}$ and $\frac{\pi}{2}$ at the three different gap voltages $\hat{V}=100,200$ and 400 kV , is given in Fig. 3.49, together with theoretical expectations (Eq. 3.26).

Fig. 3.49 A graph of the energy dependence of the arrival phase at the voltage gap, for a few different values of gap voltage \hat{V} and initial phase ϕ_{i}. Markers are from raytracing, using the input data file of Tab. 3.28 repeatedly for the various values of \hat{V} and ϕ_{i}. Superimposed solid lines are from theory (Eq. 3.26 and Fig. 3.14)

3.11 Cyclotron Extraction

(a) Distance between turns.

Simulation input data of exercise 3.3, Tab. 3.8, can be referred to as a guidance to build the present simulation file.

A proton is accelerated in 26 turns, in a uniform field $B_{0}=0.5 \mathrm{~T}$, from 20 keV (rigidity $B O R O \times D=0.064624444 \times 0.3162126=0.0204350634608 \mathrm{~T} \mathrm{~m}$, injection radius $\left.Y_{0}=B R / B_{0}=4.08701269216 \mathrm{~cm}\right)$ to 5.02 MeV . The RF phase is ignored
thus CAVITE[IOPT=3] is used, with a 100 kV gap voltage. The input data file for this simulation is given in Tab. 3.29.

Table 3.29 Simulation input data file: accelerating a proton to check evolution of $\Delta R / R$, in a dipole field with index. The \#S_180degSectorUnifB to \#E_180degSectorUnifB segment of Tab. 3.6 is INCLUDEd

A gnuplot script to obtain the accelerated orbit of Fig. 3.50:

```
set xtics ; set ytics ; set xlabel "X_{Lab} [m]" ; set ylabel "Y_{Lab} [m]"
set size ratio 1 ; set polar ; cm2m = 0.01 ; pi = 4.*atan(1.)
```

set arrow from 0 , 0 to 0.7 , 0 nohead linecolor "red" $1 w 6$; set arrow from 0,0 to -0.65 , 0 nohead linecolor "blue" $1 w 6$
noel_1=5; noel_2=10 \# 1st DIPOLE is element $\$ 42=$ noel_1; 4th DIPOLE is $\$ 42=$ noel_2. $\$ 42=$ column number in zgoubi.plt

A gnuplot script to obtain the turn separation curves of Fig. 3.50. In this script, zgoubi.fai 2 is a copy of zgoubi.fai (see exercise3.3) in which the first particle data line (particle data at the first pass) has been removed. This allows drawing the difference ΔR between two successive passes, using the "paste" command (see Tab. 3.8 for a similar 1-row shift using awk commands):
\# gnuplot_Zfai_dRR.gnu
set xtics; set ytics mirror; set key maxrow 2 ; set xlabel "R [cm]" ; set ylabel "\{/Symbol D\}R [cm]"
set key r c; set logscale y; unset colorbox
plot [8:65] "<paste zgoubi.fai2 zgoubi.fai" u (\$10):(\$10-\$63)wp pt 7 ps 1.5 lc rgb "black" tit "num." ,
"zgoubi.fai2" u (\$10):(\$10/2./(\$38-1)) w l lc rgb "red" tit "theory" ; pause 1

The accelerated orbit and the distance ΔR between turns are displayed in Fig. 3.50. Theoretical expectation (Eq. 3.27) in the case of slow acceleration (typically, the fixed energy closed orbit configuration of Fig. 3.21) is also displayed, for comparison.

Fig. 3.50 Left: accelerated orbit from 20 keV to 5.02 MeV , at a rate of 200 keV per turn over 26 turns, in a uniform field. The thick horizontal line (colored) figures the accelerating gap. Right: the resulting dependence of orbit separation ΔR on radius, from raytracing (markers) and from theory (solid line); the theoretical curve assumes small dE (adiabatic acceleration, concentric orbits), which is not quite the case here with $\Delta E=200 \mathrm{keV} / \mathrm{turn}$

Fig. 3.51 Left: accelerated orbit from 20 keV to 5.02 MeV , at a rate of 200 keV per turn over 26 turns, in a dipole field with index. The thick horizontal line (colored) figures the accelerating gap. Right: the resulting dependence of orbit separation ΔR on radius, observed at the second gap
(b) Beam losses

Indications to solve this exercise:

- a beam with Gaussian momentum distribution and rms momentum spread $\delta p / p=10^{-3}$ can be defined using MCOBJET,
- use REBELOTE to accelerate over a given number of turns,
- an extraction septum placed half-way between two successive turns can be simulated using COLLIMA, placed after REBELOTE (the execution pointer will
quietly continue beyond REBELOTE do-loop once the latter is completed). COLLIMA counts particles stopped. FAISTORE (or FAISCNL) can be placed after COLLIMA, to log particle data: particles stopped by COLLIMA have their IEX tag set to IEX=-4 [16, lookup COLLIMA].

Change the value of NPASS under REBELOTE for a different number of accelerated turns, and COLLIMA positioning data accordingly.
(c) Change the field index.

The cyclotron model of Tab. 3.21 is used here, reference field $B_{0}=5 \mathrm{kG}$ on the 200 keV orbit, and field index $\mathrm{k}=-0.03$. A proton is accelerated over 26 turns, from 20 keV to 5.02 MeV , as in question (a). The 20 keV closed orbit radius (taken as the injection radius) differs from question (a) due to the index $\mathrm{k}=-0.03$, and can be found using a FIT procedure (Tab. 3.30); it comes out to be $Y_{0}=4.0040586 \mathrm{~cm}$.

The input data file for this exercise is given in Tab. 3.31.

Table 3.30 Simulation input data file: finding the 20 keV injection radius in the presence of a non-zero index k, using FIT The INCLUDE segment is taken from Tab. 3.21

The resulting proton trajectory is displayed in Fig. 3.51 (the gnuplot script given in Tab. 3.31 is used). The greatly different accelerated orbit in this case, compared to the uniform field case in (a) (Fig. 3.50), results from a modulation of the distance between turns, which is an effect of the oscillation motion undergone by the accelerated orbit (around the local on-momentum half-circle orbit arc). This effect may be exploited to increase extraction efficiency, by causing such a radial modulation as to maximize turn separation at the location of the septum [17].
(d) Optimize extraction.

The modulation is minimized (or enhanced possibly, at the last turn, for minimized losses at extraction) by optimizing the injection conditions $\left(x_{0}, x_{0}^{\prime}\right)$.

Table 3.31 Simulation input data file: accelerating a proton to check evolution of $\Delta R / R$, in a dipole field with index. The [\#S_60DegSectorR200:\#E_60DegSectorR200] segment of Tab. 3.21 is INCLUDEd

A gnuplot script to obtain the accelerated orbit of Fig. 3.51:
\# gnuplot_Zplt.gnu
set xtics ; set ytics ; set xlabel "X_\{Lab\} [m]" ; set ylabel "Y_\{Lab\} [m]"
set size ratio 1 ; set polar ; cm2m $=0.01 ;$ pi $=4 . * \operatorname{atan}(1$.
set arrow from $0, \theta$ to $0.8,0$ nohead linecolor "red" lw 6 ; set arrow from $\theta, 0$ to -0.85 , 0 nohead linecolor "blue" lw 6
noel_1=4; noel_2=12 \# 1st DIPOLE is element $\$ 42=$ noel_1; 4th DIPOLE is $\$ 42=$ noel_2. $\$ 42=$ column number in zgoubi.plt

A gnuplot script to obtain the turn separation curves of Fig. 3.51. In this script, zgoubi.fai 2 is a copy of zgoubi.fai in which the first particle data line (particle data at the first pass) has been removed. This allows drawing the difference ΔR between two successive passes, using the "paste" command - see Tab. 3.8 for a similar 1-row shift using awk commands:
\# gnuplot_Zfai_DR.gnu
set xtics; set ytics mirror; set key maxrow 2 ; set xlabel "R [cm]" ; set ylabel "\{/Symbol D\}R [cm]"
set key r c; set logscale
plot "<paste zgoubi.fai2 zgoubi.fai" $u(\$ 10):(\$ 10-\$ 63):(\$ 10)$ w p pt 7 ps 1.5 lw .1 lc palette notit ; pause 1

3.12 Acceleration and Extraction of a 6-D Polarized Bunch

This simulation can be set up using material drawn from previous exercises. It is not fully developed here, guidelines are given.

The cyclotron simulation hypotheses of exercise 3.10-a are considered, the input data file for this exercise can be built from that of Tab. 3.28, with a few modifications, namely:

- downstream of REBELOTE, add a 1 meter DRIFT: an embryo of an "high energy line" into which the bunch is steered at extraction;
- that DRIFT is preceded by CHANGREF to center the current reference frame on the final coordinates Y and T of the accelerated orbit; the latter have to be determined by prior raytracing;
- add histograms (to be logged in zgoubi.res) for observation of transverse and longitudinal particle coordinate densities in the bunch at extraction. This uses HISTO, as many times as needed.

References

1. Sessler, A., Wilson, E.: Engines of Discovery. A century of particle accelerators. World Scientific (2007)
2. Lawrence, E.O., Livingston, M.S. Phys. Rev. 37, 1707 (1931), 1707; Phys. Rev. 38, 136, (1931); Phys. Rev. 40, 19 (1932)
3. Credit: Lawrence Berkeley National Laboratory. ©The Regents of the University of California, Lawrence Berkeley National Laboratory
4. Lawrence, E.O. and Livingston, M.S.: The Production of High Speed Light Ions Without the Use of High Voltages. Phys. Rev. 40, 19-35 (1932)
5. Livingston, M.S., McMillan, E.M.: History of the cyclotron. Physics Today, 12(10) (1959). https://escholarship.org/uc/item/29c6p35w
6. Bethe, H. E., Rose, M. E.: Maximum energy obtainable from cyclotron. Phys. Rev. 52 (1937) 1254
7. Cole, F.T.: O Camelot! A memoir of the MURA years (April 1, 1994). https://accelconf.web.cern.ch/c01/cyc2001/extra/Cole.pdf
8. Thomas, L.H.: The Paths of Ions in the Cyclotron. Phys. Rev. 54, 580, (1938). Craddock, M.K.: AG focusing in the Thomas cyclotron of 1938. Proceedings of PAC09, Vancouver, BC, Canada, FR5REP1
9. Stammbach, T.: Introduction to Cyclotrons. CERN accelerator school, cyclotrons, linacs and their applications. IBM International Education Centre, La Hulpe, Belgium, 28 April-5 May 1994.

Fig. 3.4: Stammbach, T.: Introduction to Cyclotrons. CERN Yellow Report 96-02 (1996), Figure 8, page 15. Copyright/License CERN CC-BY-3.0 https://creativecommons.org/licenses/by/3.0, no change to the material
10. Baron, E., et al.: The GANIL Injector. Proceedings of the 7th International Conference on Cyclotrons and their Applications, Zürich, Switzerland (1975). http://accelconf.web.cern.ch/c75/papers/b-05.pdf
11. Cohen, L.B.: Cyclotrons and Synchrocyclotrons. In Encyclopedia of Physics, Vol. XLIV, Nuclear Instrumentation I. Editor S. Flūgge. Springer-Verlag, 1959
12. Le Duff, J.: Longitudinal beam dynamics in circular accelerators. CERN Accelerator School, Jyvaskyla, Finland, 7-18 September 1992
13. Montague, B.W.: Polarized beams in high energy storage rings. Phys. Rep. (Rev. Sect. Phys. Lett.) 113(1), 1-96 (1984)
14. Thomas Roser, Anatoli Zelensky, private communication, BNL, June 2021.

Günther Clausnitzer: History of Polarized Ion Source Developments. In: International Workshop on Polarized Ion Sources and Polarized Gas Jets, February 12-17, 1990, KEK, Tsukuba, Japan. KEK Report 90-15, November 1990, edited by Y. MORI. https://inis.iaea.org/collection/NCLCollectionStore/_Public/22/051/22051667.pdf
15. Méot, F.: Spin Dynamics. In: Polarized Beam Dynamics and Instrumentation in Particle Accelerators, USPAS Summer 2021 Spin Class Lectures, Springer Nature, Open Access (2023).
https://link.springer.com/book/10.1007/978-3-031-16715-7
16. Méot, F.: Zgoubi Users' Guide. https://www.osti.gov/biblio/1062013-zgoubi-users-guide. Sourceforge latest version: https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/guide/Zgoubi.pdf
17. Stammbach, T.: Introduction to Cyclotrons. CERN accelerator school, cyclotrons, linacs and their applications. IBM International Education Centre, La Hulpe, Belgium, 28 April-5 May 1994.

[^0]: A gnuplot script to obtain a graph of $B(X, Y)$, Fig. 3.20:
 \# gnuplot_fieldMap.gnu
 set key maxcol 1 ; set key t 1 ; set xtics mirror ; set ytics mirror ; cm2m $=0.01$
 set xlabel "Y [m]"; set ylabel "X [m]"; set zlabel "B [kG] \n" rotate by 90; set zrange [:5.15]
 splot "geneSectorMap.out" u (\$1 *cm2m): (\$3 *cm2m):(\$5)wllc rgb "red" notit; pause 1

[^1]: 'TOSCA'
 02
 2 IL=2: log step-by-step coordinates, spin, etc., in zgoubi.plt (avoid if CPU time matters).

 1. 2. 3. 4. ! Normalization coefficients, for B, X, Y and Z coordinate values read from the map.

 HEADER_8
 $3 \quad 3 \quad 122.11$. ! IZ=1 for 2 D map; MOD=22 for polar frame; . MOD2=. 1 if only one map file.
 geneSectorMap.out
 ! IZ=1 for 2 D map; MOD=22 for polar frame; .MOD $2=.1$ if only one map file.
 tical boundaries within the field map, to start/stop stepwise integration.
 $\begin{array}{ll} \\ 2 & \text { ! Integration step size. Small enough for orbits to close accurately. } \\ 1 . & \text { ! Magnet positionning option. }\end{array}$
 ! Magnet positionning option.

