
Transverse (Betatron) Motion 
 Linear betatron motion  
 Dispersion function of off momentum particle 
 Simple Lattice design considerations 
      Nonlinearities 
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Frenet-Serret coordinates (x,y,s) 
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Natural focusing from 
dipoles (curvature) 

Focusing from 
quadrupoles 

Hill’s equations (derivatives w.r.t. s) 

Higher order magnet, 
usually field errors 

Solution of Hill’s equations X(s), X’(s) form  a coordinate set and can be transformed thru 
matrix  representation 
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Stable solution conditions 
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Courant-Snyder parameterization 

Where α,β,γ,φ are functions of s and describes position dependent beam properties.  
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Focusing quadrupole: 
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Defocusing quadrupole: 

Dipole:  K=1/ρ2 →
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Dipole  

quadrupole 

θ=ℓ/ρ=Bℓ/Bρ 
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For hs=1 or ρ=∞, one obtains the multipole expansion: 

For two dimensional magnetic field, one can expand the magnetic field using Beth 
representation. 
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Floquet Theorem 
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The evolution of the betatron amplitude function in a drift space is 
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Passing through a thin-lens quadrupole, the evolution of betatron function is 
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The values of the Courant–Snyder parameters α2, β2, γ2 at s2 are related to α1, β1, γ1 at s1 by 



Courant-Snyder Invariant 

(X,PX) form a normalized phase space coordinates with 
X2+PX2=2βJ,  here J is called action. 
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Emittance of a beam 
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normalized emittance εn=εβγ is invariant when beam energy is changed.  
Adiabatic damping – beam emittance decreases with increasing beam 
momentum, i.e. ε=εn/βγ, which applies to beam emittance in linacs.  

 

In storage rings, the beam emittance increases with energy (∼γ2). The 
corresponding normalized emittance is proportional to γ3.  

The Gaussian distribution function 
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Effects of Linear Magnetic field Error 

ρρ
00 )]()([      ,)]()([ aysksKy

b
xsksKx yx −=−+′′=++′′

For a localized dipole field error:           θ=∆Bℓ/Bρ 
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 For a distributed dipole field error:  
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Where the field error is expanded in Fourier series 

closed orbit bump: Xco(sf) = 0, X′co(sf) = 0 
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Off-momentum and dispersion 
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For different particle energy 

Extend the matrix representation to 3 by 3  

For a pure dipole (K=0): 
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1      0        0
0      0  1/
0      0         1

1                     0
0         cos

0     sin

   
0

sin

cos

),(

1

0 fK

K

KK

K

ssM
K

"

"

"

"
Defocusing 
change K -> -K 



Closed orbit condition: 

FODO cell 



Chromatic aberration  and correction 

http://upload.wikimedia.org/wikipedia/en/4/47/Lens6a.svg
http://upload.wikimedia.org/wikipedia/en/e/e4/Diffractive.png
http://upload.wikimedia.org/wikipedia/en/0/0e/Lens6b.svg
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Chromatic aberration in particle accelerators 
Inhomogeneous 
equation 

Note that the betatron motion for off momentum particle is perturbed by a 
chromatic term. The betatron tunes must avoid half-integer resonances. But, the 
quadrupole error is proportional to the designed quadrupole field. They are called 
systematic chromatic aberration. It is an important topic in accelerator physics. 
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Tune shift, or tune spread, due to chromatic aberration: 
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The chromaticity induced by quadrupole field error is called natural 
chromaticity. For a simple FODO cell, we find 
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We define the specific chromaticity as  yyyxxx CC Q[Q[ /      ,/   

The specific chromaticity is about −1 for FODO cells, and can be as high as -
4 for high luminosity colliders and high brightness electron storage rings. 
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Fermilab Booster (X. Huang, Ph.D. 
thesis, IU 2005): The measured 
horizontal chromaticity Cx when SEXTS 
is on (triangles) or off (stars), and the 
measured vertical chromaticity Cy 
when SEXTS is on (dash, circles) or off 
(squares). The error bar is estimated to 
be 0.5. The natural chromaticities are 
Cnat,y=−7.1 and Cnat,x=−9.2 for the 
entire cycle. The betatron tunes are 
6.7(x) and 6.8(y) respectively. 

BNL AGS (E. Blesser 1987): 
Chromaticities measured at the AGS. 
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Chromaticity measurement: 

M. Yoon and T. Lee, 
RSI 68, 2651 (1997) 

The chromaticites are 
Cx=+2.9, Cy=+1.4. 

The chromaticity can be 
measured by measuring 
the betatron tunes vs 
the rf frequency f, i.e. 



The Natural chromaticity can be obtained by measuring the tune 
variation vs the bending-magnet current at a constant rf frequency. 
Change of the bending-magnet current is equivalent to the change of 
the beam energy. Since the orbit is not changed, the effect of the 
sextupole magnets on the beam motion can be neglected. The Figure 
shows the horizontal and vertical tune vs the bending-magnet current 
in the PLS storage ring.  

The data give Cx=−18.96,  
Cy=−13.42; vs theory:  
Cx=−23.36, Cy=−16.19. M. Yoon and T. Lee, 

RSI 68, 2651 (1997) 

Note that this method may not apply for 
combined function dipoles. 



Contribution of low E triplets in an IR to the natural chromaticity is 

CIR= 



Contribution from 6-IRs 

Contribution outside IRs 

E*(m) 

The total chromaticity is composed of 
contributions from the low E-quads and 
the rest of accelerators that is made of 
FODO cells. The decomposition to fit the 
data is Δs|35 m in RHIC. 



Chromaticity correction: 
The chromaticity can cause tune spread to a beam with momentum spread 
∆ν=Cδ. For a beam with C=-100, δ=0.005,  ∆ν=0.5. The beam is not stable for 
most of the machine operation. Furthermore, there exists collective (head-tail) 
instabilities that requires positive chromaticity for stability! To correct 
chromaticity, we need to find magnetic field that provide stronger focusing for 
off-(higher)-momentum particles. We first try sextupole with 
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Let K2=-2B0b2/Bρ=–B2/Bρ, we obtain: 



• In order to minimize their strength, the chromatic sextupoles should be located 
near quadrupoles, where βxDx and βyDx are maximum. 

• A large ratio of βx/βy for the focusing sextupole and a large ratio of βy/βx for the 
defocussing sextupole are needed for optimal independent chromaticity 
control. 

• The families of sextupoles should be arranged to minimize the systematic half-
integer stopbands and the third-order betatron resonance strengths. 
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Lattice Design Strategy 

Based on our study of linear betatron motion, the lattice design of accelerator can 
be summarized as follows. The lattice is generally classified into three categories: 
low energy booster, collider lattice, and low-emittance lattice storage rings. 

• The betatron tunes should be chosen to avoid systematic integer and half-
integer stopbands and systematic low-order nonlinear resonances; 
otherwise, the stopband width should be corrected. 
• The betatron amplitude function and the betatron phase advance between 

the kicker and the septum should be optimized to minimize the kicker angle 
and maximize the injection or extraction efficiency.  
• Local orbit bumps can be used to alleviate the demand for a large kicker 

angle. Furthermore, the injection line and the synchrotron optics should be 
properly “matched” or “mismatched” to optimize the emittance control.  
• To improve the slow extraction efficiency, the β value at the (wire) septum 

location should be optimized. The local vacuum pressure at the high-β value 
locations should be minimized to minimize the effect of beam gas scattering. 



• The chromatic sextupoles should be located at high dispersion function 
locations. The focusing and defocusing sextupole families should be located in 
regions where βx ≫ βy, and βx ≪ βy respectively in order to gain independent 
control of the chromaticities. 
• It is advisable to avoid the transition energy for low to medium energy 

synchrotrons in order to minimize the beam dynamics problems during 
acceleration. 

 
Besides these design issues, problems regarding the dynamical aperture, 
nonlinear betatron detuning, collective beam instabilities, rf system, vacuum 
requirement, beam lifetime, etc., should be addressed. 



Symplectic integration



Outline
Ø Hamiltonian & symplecticness

Ø Numerical integrator and symplectic integration

Ø Application to accelerator beam dynamics

Ø Accuracy and integration order

Symplectic integration



Hamiltonian dynamics
In accelerator, particles’ motion is predicted by Hamilton’s equations

or it can be written in a compact form

The solution is a transformation mapping (flow)

or for simplicity 

in matrix representation, the map A is a 2n by 2n matrix.

dq
dt
=
∂H
∂p
, dp

dt
= −

∂H
∂q

q =∇ pH (p,q), p = −∇qH (p,q)or

z = J∇zH (z) z ≡ (p,q)

J ≡ 0 I
−I 0

#

$
%

&

'
(

p,q( ) = At,H (p0,q0 )

z = A(z0 )

Symplectic integration



Symplecticness
A. Hamilton’s equations predict the evolution of phase space.

B. Canonical transformation A preserves the form of Hamilton’s 
equations. 

C. Transformation A is canonical if and only if it satisfies the relation

and we call this transformation A symplectic

Proof. Hamilton’s equation can be expressed as

if we have transformation 

if                        i.e. symplectic

ATJA = J

x = J ∂H
∂x

y = y(x)

y = AJAT ∂H
∂y

= J ∂H
∂y

ATJA = J

detA =1

Symplectic integration



Preservation of area
Symplecticness is equivalent to the preservation of area. 

In a 2d(d=1) space, the area of a parallelogram is defined as the 
magnitude of the wedge product 

While for a transformation 

we have

wedge products are anticommutative

dp∧dq

z = A(z0 )

dp = ∂p
∂p0

dp0 +
∂p
∂q0

dq0, dq = ∂q
∂p0

dp0 +
∂q
∂q0

dq0

dp∧dq = ∂p
∂p0

∂q
∂q0

dp0 ∧dq0 +
∂p
∂q0

∂q
∂p0

dq0 ∧dp0

dp∧dq = −dq∧dp

dp∧dq = ∂p
∂p0

∂q
∂q0

dp0 ∧dq0 −
∂p
∂q0

∂q
∂p0

dp0 ∧dq0 = detA*dp0 ∧dq0 = dp0 ∧dq0

Symplectic integration



Preservation of area
The area of a parallelogram (with sides η and ξ) is given by ηTJξ. 

The area of a transformed parallelogram (with sides Aη and Aξ) is 

ηTATJAξ=ηTJξ, if and only if A is symplectic

The symplecticness for a more general case (with d>1) can be written as

ATJA = J

dp1∧dq1 ++ dpd ∧dqd = dp0
1∧dq0

1 ++ dp0
d ∧dq0

dConservation of volumn (Liouville’s theorem)

Symplectic integration



Numerical integrators
A system with differential equations

can usually be solved using integration method with infinitesimal 
integration steps Δt=h in each iteration. For Hamilton’s equations,

Euler(nonsymplectic)

Euler(symplectic, 1st)

Implicit midpoint(symplectic, 2nd)

xn+1 = xn + hJ∇H (xn ), xn+1 = xn + hJ∇H (xn+1)

x = f (t, x)

explicit                      implicit

pn+1 = pn − h∇qH (pn,qn+1), qn+1 = qn + h∇qH (pn,qn+1)

x = (p,q)

xn+1 = xn + hJ∇H (
xn+1 + xn
2

)

Symplectic integration



Numerical integrators
Störmer-Verlet(symplectic,2nd)

It is simply the symmetric composition (2nd order) of the two symplectic
Euler methods with step size h/2. 

For a 2nd order differential equation

It can be simplified as 

q = −∇U(q), H (p,q) = 1
2
pT p+U(q)

p
n+1
2

= pn −
h
2
∇qH (pn+1

2

,qn )

qn+1 = qn +
h
2
∇ pH (pn+1

2

,qn )+∇ pH (pn+1
2

,qn+1)
#

$
%

&

'
(

pn+1 = pn+1
2

−
h
2
∇qH (pn+1

2

,qn+1)

qn+1 − 2qn + qn−1 = −h
2∇U(qn ), pn =

qn+1 − qn−1
2h

Symplectic integration



Runge-Kutta methods
s-stage Runge-Kutta

where                                  . For a case where

it simplifies to the famous 4th order Runge-Kutta integrator.  

ki = f (t + cih, xn + h aij
j=1

s

∑ kj ), i =1,…, s

xn+1 = xn + h bi
i=1

s

∑ ki

ci = aij
j=1

s

∑ , bi
i=1

s

∑ =1

s = 4, c1 = 0, c2 = c3 =
1
2
, c4 =1,

a21 = a32 =
1
2
, a43 =1

b1 = b4 =
1
6
, b2 = b3 =

2
6

Symplectic integration



Runge-Kutta methods
Runge-Kutta method is usually non-symplectic. However, we can 
prove that when the coefficients satifsy

it is symplectic.

biaij + bjaji = bibj for all i, j =1,…, s

Symplectic integration



Symplectic mapping

In accelerator, we usually use transfer map to calculate lattice 
properties. For example, matrix for a quadrupole is 

What a simulation code does is it slices the element into pieces and 
apply the kicks. 

Kk =

Symplectic integration



Symplectic mapping(cont’d)
Thus the transfer matrix becomes 

And then Taylor expansion gives 

Truncation is required and up to 1st order

While the determinant of it is not unity– not symplectic. 

Symplectic integration



Symplectic mapping(cont’d)
One trick to make the determinant 1 is to artificially add in one 2nd

order term

Which makes the transfer map not as accurate as if we simply keep 
it up to 2nd order

Which is not symplectic!

Symplecticity is not equal to accuracy!!

Symplectic integration



Symplectic mapping(cont’d)
Tracking of single quadrupole shows the difference

From left to right are exact mapping, non-simplectic mapping 
and symplectic mapping. Although keeping up to 2nd order 
simulates the shape more accurately but it diverges. 1st order 
symplecity has a poor performance in preserving the shape.

1. Classical theories of numerical integration give information 
about how well different methods approximate the trajectories 
for fixed times as step sizes tend to zero. Dynamical systems 
theory asks questions about asymptotic, i.e. infinite time, 
behavior. 

2. Geometric integrators are methods that exactly conserve 
qualitative properties  associated to the solutions of the 
dynamical system under study.

3. The difference between symplectic integrators and other 
methods become most evident when performing long time 
integrations (or large step size).

4. Symplectic integrators do not usually  preserve energy either, 
but the fluctuations in H from its original value remain small.

Symplectic integration



Symplectic mapping(cont’d)
One way of thinking is to use thin lens approximation, divide the 
quadrupole into drifts and thin lens which all have transfer 
matrices with unity determinant.

Transfer matrices for drift and sudden kick

With a quadrupole at length L

Symplectic integration



Symplectic mapping(cont’d)
So we have various ways of dividing the quadrupole which result 
into different order of symplicticity.

Symplectic integration



Symplectic mapping(cont’d)
After splitting the magnets, we need to solve for the 
parameters(symplicticity is automatically preserved). Take the 2nd

on the right as an example. Total transfer map is

Comparing with

Symplectic integration



Symplectic mapping(cont’d)
Keeping them equal up to 4th order then gives

Last one arises from geometry condition. 

Unfortunately, this does not have a solution—symplicticify failure. 
But the 3rd one on the right has a solution 

Symplectic integration



Symplectic mapping(cont’d)
Notice that both β and δ are negative. This means we need to go 
through 7 steps for the symplectic integration shown as follows.

This results in a 4th order symplectic integration.

Symplectic integration



Symplectic mapping(cont’d)
Higher order of symplectic integration can be achieved simply by 
dividing the magnet into more pieces and solving much more 
complicated set of equations. A 6th order integration is done in 19 
steps.

Symplectic integration



Accuracy vs order
Order does bring up complicity but does it provide higher accuracy? 
Considering the amplitude of phase space given by 

With initial A to be normalized to 1. 

Exact tracking should always A while if we use symplectic mapping 
it’s not the case. 

Symplectic integration



Accuracy vs order(cont’d)
Comparison of 2nd order and 4th order of symplectic integration is 
given as

With the top one as 2nd order 
and bottom one the 4th. 
Stability is always preserved but 
the accuracy is greatly 
improved by using higher order 
integration. 

Notice that the deviation from 1 
tells us the deviation from a 
pure circle– distortion. Higher 
order also improves the shape 
distortion introduced by this 
symplecticify process.
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Accuracy vs order(cont’d)
A list shown all the integrators from 2nd order to 5th order is shown 
here with the error information and the model needed to achieve it.

Notice that simple repetition doesn’t improve order. 

Have to change way of slicing.
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4th order Runge-Kutta is not 
symplectic

Considering DE                     , with given initial x & x’. A 4th order 
Runge-Kutta solves it at x=L 

With                        
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4th order Runge-Kutta is not 
symplectic

For a quadrupole, it gives

with sextupole, it becomes
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4th order Runge-Kutta is not 
symplectic

For quadrupole, the determinant is

For sextupole, the determinant is

Both of them are not 1– not symplectic!! 

Symplectic integration
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