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Chapter 1410648

Optical Elements and Keywords, Complements10649

Abstract This chapter is not a review of the 60+ optical elements of zgoubi’s10650

library. They are described in the Users’ Guide. One aim here is, regarding some of10651

them, to briefly recall some aspects which may not be found in the Users’ Guide and10652

yet addressed, or referred to, in the theoretical reminder sections and in the exercises.10653

This chapter is not a review of the 40+ monitoring and command keywords available10654

in zgoubi, either. However it reviews some of the methods used, by keywords such10655

as MATRIX (computation of transport coefficients from sets of rays), FAISCEAU10656

(which produces beam emittance parameters), and others. This chapter in addition10657

recalls the basics of transport and beam matrix methods, in particular it provides the10658

first order transport matrix of several of the optical elements used in the exercises, in10659

view essentially of comparisons with transport coefficients drawn from raytracing,10660

in simulation exercises.10661

14.1 Introduction10662

Optical elements are the basic bricks of charged particle beam lines and accelerators.10663

An optical element sequence is aimed at guiding the beam from one location to10664

another while maintaining it confined in the vicinity of a reference optical axis.10665

Zgoubi library offers of collection of about 100 keywords, amongst which about10666

60 are optical elements, the others being commands (to trigger spin tracking, trigger10667

synchrotron radiation, print out particle coordinates, compute beam parameters,10668

etc.). This library has built over half a century, so it allows simulating most of10669

the optical elements met in real life accelerator facilities. Quite often, elements10670

available provide different ways to model a particular optical component. A bending10671

magnet for instance can be simulated using AIMANT, or BEND, CYCLOTRON,10672

DIPOLE[S][-M], FFAG, FFAG-SPI, MULTIPOL, QUADISEX, or a field map and10673

TOSCA, CARTEMES or POLARMES to handle it. These various keywords have10674

their respective subtleties, though, more on this can be found in the “Optical Elements10675

Versus Keywords” Section of the guide [1, pp. 12, 227], which tells “Which optical10676
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component can be simulated. Which keyword(s) can be used for that purpose”. For10677

a complete inventory of optical elements, refer to the “Glossary of Keywords” found10678

at the beginning of PART A [1, page 9] or PART B of the Users’ Guide [1, page 229].10679

Optical elements in zgoubi are actually field models, or field modeling methods10680

such as reading and handling field maps. Their role is to provide the numerical10681

integrator with the necessary field vector(s) to push a particle, and possibly its spin,10682

along a trajectory. The following sections introduce the analytical field models which10683

the simulation exercises resort to.10684

Zgoubi’s coordinate nomenclature, as well as the Cartesian or cylindrical refer-10685

ence frames used in the optical elements and field maps, have been introduced in10686

Sect. 1.2 and Fig. 1.5.10687

14.2 Drift Space10688

This is the DRIFT, or ESL (for the French “ESpace Libre”) optical element, through10689

which a particle moves on a straight line. From the geometry and notations in10690

Fig. 14.1, with L the length of the drift, coordinate transport satisfies10691 ��������
Xf − Xi = L

Yf − Yi = L tanT

Z f − Zi = L tan P/cosT

path length d = L/(cosT cos P)
(14.1)

Fig. 14.1 An L-long drift

in zgoubi (O;X,Y,Z) frame,

with origin at the upstream

end of the drift. A particle flies

from A(Yi, Zi ) to B(Yf , Z f ),
at an angle P to the (X,Y)
plane. Projection W of its

straight path in (X,Y) plane is

at an angle T to the X axis
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Linear approach10692

Coordinate transport from initial to final position in the linear approximation is10693

written (with z standing indifferently for x or y, subscripts i for initial and f for final10694

coordinates) (Fig. 14.2)

Fig. 14.2 A drift section

with length L = s f − si ,

and projection of a straight

trajectory in the (s, z) plane,

at an angle z′ (standing for x′

or y′ ) to the s axis
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10695

����������

z f = zi + L z′
i

z′
f
= z′

i

δlf − δli = βcδt =
L

γ2

δp

p
δp f /p = δpi/p

or, Tdrift =

©­­­­­­­­­«

1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1
L

γ2

0 0 0 0 0 1

ª®®®®®®®®®¬

(14.2)

where βc is the particle velocity, p = γmβc its momentum, γ is the Lorentz rela-10696

tivistic factor.10697

14.3 Guiding10698

Beam guiding is in general assured using dipole magnets to provide a field vector10699

normal to a bend plane. Gradient dipoles combine guiding and focusing in a single10700

magnet, this is the case in cyclotrons where the field index is tailored to ensure10701

isochronism, in scaling FFAGs where B ∝ rk ensures the zero-chromaticity prop-10702

erty. This may also be the case in strong focusing synchrotrons, for instance in the10703

BNL AGS [2], in the CERN PS [3]. Dipole magnets sometimes include a sextupole10704

component for the compensation of chromatic aberrations [4]. Non-linear optical ef-10705

fects may be introduced in addition by shaping entrance and/or exit EFBs, a parabola10706

for instance for x2 field integral dependence, a cubic curve for x3 dependence (see10707

Chap. 13).10708
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Low energy beam guiding also uses electrostatic deflectors, shaped to provide a10709

field normal to the trajectory arc, and possibly focusing properties. Plane condensers10710

may be used as well for beam steering, including beam filtering in combination with10711

a magnetic field, and at high energy in addition for such functions as pretzel orbit10712

separation, extraction septa, etc.10713

Guiding optical elements are dispersive systems: trajectory deflection has a first10714

order dependence on particle momentum.10715

14.3.1 Dipole Magnet, Curved10716

This is the DIPOLE element (an evolution of the 1972’s AIMANT [1]) or variants:10717

DIPOLES, DIPOLE-M. Lines of constant field in the magnet body are isocentric10718

circle arcs. The magnet reference curve is a particular arc, at a reference radius R010719

for which the field value is B0. The field in the median plane can be written10720

BZ (r, θ) = G(r, θ) B0

(
1 + N

r − R0

R0

+ N ′
(
r − R0

R0

)2

+ N ′′
(
r − R0

R0

)3

+ ...

)

(14.3)

N (n) = dnN/dYn are the field index and derivatives. G(r, θ) describes the azimuthal10721

shape of the field, from a plateau value in the body to zero away from the magnet. It10722

can be written under the form [5]10723

G(r, θ) = G0 F(d(r, θ)) (14.4)

where G0 a constant factor, and F(d) a convenient model for the field fall-off, such10724

as the Enge model discussed in Sect. 14.3.3. In that model take d(r, θ) the distance10725

from particle location (X,Y, Z) to the magnet EFB, λ(r) an r-dependent characteristic10726

extent of the field fall-off (e.g., representing a radial dependence of dipole gap height10727

gap(r), such that λ(r) ≈ gap(r)). The latter allows modeling the r-dependence of the10728

flutter and its effect on vertical focusing.10729

Linear approach10730

The first order transport matrix of a sector dipole with curvature radius ρ, deflection10731

α and index n, in the hard-edge model, writes10732

Tbend =

©­­­­­­­«

Cx Sx 0 0 0
r 2
x

ρ
(1 −Cx )

C′x S′x 0 0 0 1
ρ
Sx

0 0 Cy Sy 0 0

0 0 C′y S′y 0 0

1
ρ
Sx

r 2
x

ρ
(1 −Cx ) 0 0 1

r 3
x

ρ2 (ρα − Sx )
0 0 0 0 0 1

ª®®®®®®®¬
with



C = cos
ρα

r

C′ = dC
ds
=

1
ρ

dC
dα
=
−S
r 2

S = r sin
ρα

r

S′ = dS
ds
=

1
ρ

dS
dα
= C

(∗)x : r = ρ/
√

1 − n
(∗)y : r = ρ/

√
n

(14.5)
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or, explicitly,10733

Tbend =

©­­­­­«

cos
√

1 − nα
ρ√

1−n
sin
√

1 − nα 0 0 0
ρ

1−n (1 − cos
√

1 − nα)

−
√

1−n
ρ sin

√
1 − nα cos

√
1 − nα 0 0 0 1√

1−n
sin
√

1 − nα

0 0 cos
√
nα

ρ√
n

sin
√
nα 0 0

0 0 −
√
n
ρ sin

√
nα cos

√
nα 0 0

1√
1−n

sin
√

1 − nα
ρ

1−n (1 − cos
√

1 − nα) 0 0 1 ρ

√
1−nα−sin

√
1−nα

(1−n)3/2
0 0 0 0 0 1

ª®®®®®¬
(14.6)

Cancel the index in the previous sector dipole, introduce a wedge angle ε at entrance10734

and exit EFBs, introduce the flutter term ψ to account for dependence of vertical10735

focusing on fringe field extent (see Sect. 14.4.1, Eq. 14.20). The first order transport10736

matrix, accounting for the entrance and exit EFB wedge focusing, then writes10737

Tbend =

©­­­­­­­­«

cos(α−ε)
cos ε

ρ sinα 0 0 0 ρ(1 − cosα)
− sin(α−2ε)

ρ cos2 ε

cos(α−ε)
cos ε

0 0 0
sin(α−ε)+sin ε

cos ε

0 0 1 − α tan(ε − ψ) ρα 0 0

0 0 − tan(ε−ψ)
ρ
(2 − α tan(ε − ψ)) 1 − α tan(ε − ψ) 0 0

sinα 0 0 0 1 ρ(α − sinα)
0 0 0 0 0 1

ª®®®®®®®®¬
(14.7)

10738

14.3.2 Dipole Magnet, Straight10739

This is the MULTIPOL element. Lines of constant field in the magnet body are10740

straight lines. An early instance of a straight dipole magnet is the AGS main dipole10741

(Fig. 9.2), which combines steering and focusing, and features in addition a small sex-10742

tupole defect component [7]. The multipole components Bn(X,Y, Z) [n=1 (dipole),10743

2 (quadrupole), 3 (sextupole), ...] in the Cartesian frame of the straight dipole derive,10744

by differentiation, from the scalar potential10745

Vn(X,Y, Z) = (n!)2 ©­«
∞∑

q=0

(−1)q G
(2q)(X)(Y2

+ Z2)q
4qq!(n + q)!

ª®¬
©­­«

n∑
m=0

sin
(
m
π

2

)
Yn−mZm

m!(n − m)!
ª®®¬

(14.8)

where G(2q)(X) = d2qG(X)/dX2q . In the case of pure dipole field for instance10746

V1(X,Y, Z) = G(X) Z − G
′′(X)
8
(Y2
+ Z2) + G

(4)(X)
512

(Y2
+ Z2) Z ... (14.9)

and10747
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BX (X,Y, Z) = −∂V1

∂X
= G′(X) Z − G

′′′(X)
8
(Y2
+ Z2) ...

BY (X,Y, Z) = −∂V1

∂Y
= −G

′′(X)
4

Y +
G(4)(X)

256
Y Z ..

BZ (X,Y, Z) = −∂V1

∂Z
= G(X) − G

′′(X)
4

Z +
G(4)(X)

512
(Y2
+ 3Z2) ... (14.10)

The longitudinal form factor G(X) accounts for the field fall-offs at the ends of the10748

magnet, it is modeled using the Enge model discussed in Sect. 14.3.3.10749

Fig. 14.3 Longitudinal field

form factor G(X) (normalized

to one) in BNL AGS main

bend, taken along the magnet

reference axis. Solid line:

from Eqs. 14.11, 14.12; square

markers : measured field data.

X = 0 is the origin in the field

map frame, the vertical dashed

line at XEFB = −5.62 cm is

the location of the EFB -.3 -.2 -.1 0.0 0.1 0.2

0.2

0.4

0.6

0.8

1.
Zgoubi|Zpop                                                                        G(X) v.s. X (m)  (measured & model)                              

         E                                                       
         F                                                       
         B                                                       

    A                          B                              

14.3.3 Fringe Field, Modeling, Overlapping10750

A fringe field model is described here, which is resorted to in several optical elements10751

of zgoubi’s library.10752

Field shape at the EFBs of magnetic or electrostatic devices can be simulated10753

using a hard-edge model (the field is assumed to change following a Heaviside step).10754

When using stepwise ray-tracing techniques however, a smooth change of the field10755

can accurately be accounted for. An efficient model is Enge’s field form factor [6]10756

F(d) = 1

1 + exp P(d) (14.11)

P(d) = C0 + C1

(
d

λ

)
+ C2

(
d

λ

)2

+ C3

(
d

λ

)3

+ C4

(
d

λ

)4

+ C5

(
d

λ

)5

where d is the distance to the field boundary, and λ ≈ gap aperture is the extent of10757

the fall-off. The latter is normally commensurate with gap aperture in a dipole, or10758

rpole tip/(n − 1) in a multipole (n = 2, 3, ... for quadrupole, sextupole...).10759
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As an illustration, Fig. 14.3 shows F(d) as matched to the measured end fields of10760

BNL AGS main magnet [8, 9], using10761

λ = gap aperture ≈ 10 cm and (14.12)

C0 = 0.45473, C1 = 2.4406, C2 = −1.5088, C3 = 0.7335, C4 = C5 = 0

These Ci coefficient values result from an interpolation to measured field data, which10762

are also represented in the figure. The location of the EFB results from the following10763

constraint, which is part of the matching: the field integral on the down side of the10764

fall-off (the region from A to X=0 in Fig. 14.3) is equal to the complement to 1 of10765

the field integral on the rising side of the fall-off (X=0 to B region in the figure),10766

which writes10767 ∫ XEFB

XA

F(X) dX =

∫ XB

XEFB

dX −
∫ B

XEFB

F(X) dX ⇒ XEFB = XB −
∫ B

A

F(X) dX

(14.13)

A convenient property of this model is that changing the slope of the fall-off (i.e.,10768

changing λ) will not affect the location of the EFB.10769

Inward fringe field extents may overlap when simulating an optical element10770

(Fig. 14.4). A way to ensure continuity of the resulting field form factor in such10771

case is to use10772

F = FE + FS − 1 or F = FE ∗ FS (14.14)

where FE (FS) is the entrance (exit) form factor and follows Eq. 14.11. Both expres-10773

sions can be extended to more than two EFBs (for instance 4, to account for the 410774

faces of a dipole magnet: entrance and exit faces, inner and outer radial boundaries).10775

Note that in that case of overlapping field extents, the field integral is affected, de-10776

creasing with more pronounced overlapping, it is therefore necessary to change the10777

field value (B0 in Eq. 14.4 for instance) to recover the proper integrated strength.10778

Overlapping Fringe Fields10779

Zgoubi allows a superposition technique to simulate the field in a series of neighbor-10780

ing magnets. The method consists in computing the mid-plane field at any location10781

(r, θ) by adding individual contributions, namely [5]10782

BZ (r, θ) =
∑

i=1,N

BZ,i(r, θ) =
∑

i=1,N

BZ,0,i Fi(r, θ) Ri(r)

∂k+lBZ (r, θ)
∂θk∂r l

=

∑
i=1,N

∂k+lBZ,i(r, θ)
∂θk∂r l

(14.15)

with Fi(r, θ) and Ri(r) taken independently for each individual dipole in the series10783

(for instance as per Eqs. 10.7, 10.15). Note that, in doing so it is not meant that field10784

superposition would apply in reality (FFAG magnets are closely spaced, cross-talk10785
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may occurs), however it appears to allow closely reproducing magnet computation10786

code outcomes.10787

Short Optical Elements10788

In some cases, an optical element in which fringe fields are taken into account (of10789

any kind: dipole, multipole, electrostatic, etc.) may be given small enough a length,10790

L, that it finds itself in the configuration schemed in Fig. 14.4: the entrance and/or10791

the exit EFB field fall-off extends inward enough that it overlaps with the other EFB’s10792

fall-off. In zgoubi notations, this happens if L < XE + XS . As a reminder [1]: in10793

the presence of fringe fields, XE (resp. XS) is the stepwise integration extent added10794

upstream (resp. added downstream) of the actual extent L of the optical element.10795

In such case, zgoubi computes field and derivatives along the element using a10796

field form factor F = FE × FS . FE (respectively FS) is the value of the Enge model10797

coefficient (Eq. 14.11) at distance dE (resp. dS) from the entrance (resp. exit) EFB.10798

This may have the immediate effect, apparent in Fig. 14.4, that the integrated10799

field is not the expected value B × L from the input data L and B, and may require10800

adjusting (increasing) B so to recover the required
∫

B dl.10801

Fig. 14.4 A sketch of overlap-

ping entrance field form factor

FE (dE ) (at the entrance

“EFB-E”) and exit FS (dS ) (at

the exit “EFB-S”). The result-

ing form factor F = FE × FS

is actually accounted for in

modeling the field

0E 0S

FE(dE) FS(dS)

EFB-E EFB-S

dE,dS

F=FE*FS

14.3.4 Toroidal Condenser10802

This is the ELCYLDEF element in zgoubi. With proper parameters, it can be used10803

as a spherical, a toroidal or a cylindrical deflector.10804

Motion along the optical axis, an arc of a circle of radius r normal to electric field

E, satisfies

Er = v
p

q
= v(Bρ)

with p = mv the particle momentum, q its charge and (Bρ) = p/q the particle10805

rigidity.10806

The first order transport matrix of an electrostatic bend writes10807
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Tcondenser =

©­­­­­­­­«

Cx Sx 0 0 0
2−β2

p2
x
r0(1 −Cx )

C′x S′x 0 0 0
2−β2

r0
Sx

0 0 Cy Sy 0 0

0 0 C′y S′y 0 0

− 2−β2

r0
Sx − 2−β2

p2
x
r0(1 −Cx ) 0 0 1 r0α

[
1
γ2 −

(
2−β2

p2
x

)2

(1 − Sx

r0α
)
]

0 0 0 0 0 1

ª®®®®®®®®¬
(14.16)

with



α = deflection angle

C = cos pα

C ′ = dC
ds
= − p2

r2 S

S = r
p

sin pα

S′ = dS
ds
= C

(∗)x : p = px =

√
2 − β2 − r0/R0

(∗)y : p = py =
√

r0/R0

14.4 Focusing10808

Particle beams are maintained confined along a reference propagation axis by means10809

of focusing techniques and devices. Methods available in zgoubi to simulate those10810

are addressed here.10811

14.4.1 Wedge Focusing10812

Wedge focusing is sketched in Fig. 14.5. A wedge angle ε causes a particle at10813

local excursion x to experience a change
∫

By ds = xBy tan ε in the field integral,10814

compared to the field integral through the sector magnet. In the linear approximation10815

this causes a change in trajectory angle10816

∆x ′ =
1

Bρ

∫
By ds = x

tan ε

ρ0

(14.17)

with Bρ the particle rigidity and ρ0 its trajectory curvature radius in the field B010817

of the dipole. Vertical focusing results from the non-zero off-mid plane radial field10818

component Bx in the fringe field region (Fig. 14.7): from (Maxwell’s equations)10819

∂
∂y

∫
Bx ds = ∂

∂x

∫
By ds and Eq. 14.17 the change in trajectory angle comes out to10820

be10821

∆y
′
=

1

Bρ

∫
Bx ds = −y tan ε

ρ0

(14.18)

A first order correction ψ to the vertical kick accounts for the fringe field extent10822

(it is a second order effect for the horizontal kick):10823
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α

O

missing

field is

field is

added

x

ε<0

α

O

field is

x

ε>0

field is

missing

added

Fig. 14.5 Left: a focusing wedge (ε < 0 by convention); opening the sector increases the horizontal

focusing. Right: a defocusing wedge (ε > 0); closing the sector decreases the horizontal focusing.

The effect is the opposite in the vertical plane, opening/closing the sector decreases/increases the

vertical focusing

Fig. 14.6 Field components

in the By (s) field fall-off at a

dipole EFB

y B

Bs

B

Bs

By

By

s

B (s)y

IRON

Fig. 14.7 Field components

off mid-plane, in the fringe

field region at the ends of a

dipole (y > 0, here, referring

to Fig. 14.6). B// parallel to

the particle velocity has no

effect. Bx pulls a positively

charged particle away from the

median plane, under the effect

of a v × Bx force component.

Inspection of the y < 0 region

gives the same result: the

charge is pulled away from the

median plane

B                 

B                 //

qv x B  force
qv x B  force ρ

0

s
B                 s B                   x

xB                 

x
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∆y
′
= −y tan(ε − ψ)

ρ0

(14.19)

with10824

ψ = I1

λ

ρ0

1 + sin2 ε

cos ε
with I1 =

∫
edge

B(s) (B0 − B(s))
λ B2

0

ds (14.20)

λ is the fringe field extent, I1 quantifies the flutter (see Sect. 4.2.1); a longer/shorter10825

field fall-off (smaller/greater flutter) decreases/increases the vertical focusing.10826

Linear approach10827

A wedge focusing first order transport matrix writes10828

Twedge =

©­­­­­­­«

1 0 0 0 0 0
tan ε
ρ

1 0 0 0 0

0 0 1 0 0 0

0 0 − tan ε
ρ

1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ª®®®®®®®¬
(14.21)

Substitute ε−ψ to ε in the R43 coefficient, when accounting for fringe field extent λ.10829

14.4.2 Quadrupole10830

Quadrupoles are the optical lenses of charged particle beams, they ensure confine-10831

ment of the beam in the vicinity of the optical axis. Most of the time in beam lines and10832

cyclic accelerators, guiding and focusing are separate functions, focusing is assured10833

by quadrupoles, magnetic most frequently, possibly electrostatic at low energy.10834

The field in quadrupole lenses results from hyperbolic equipotentials, V = axy.10835

Pole profiles follow these equipotentials, in a 2π/4-symmetrical arrangement for10836

technological simplicity.10837

14.4.2.1 Magnetic Quadrupole10838

Magnetic quadrupoles are the optical lenses of high energy beams.10839

The theoretical field in a quadrupole can be derived from Eq. 14.8 for the scalar10840

potential, with n = 2 which yields10841

V2(X,Y, Z) = G(X)Y Z− G
′′(X)
12

(Y2
+Z2)Y Z+

G(4)(X)
384

(Y2
+Z2)2Y Z− ... (14.22)
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F

B

B

x

yB
N

NS

S

s

y

F

F

F

x

Fig. 14.8 Left: a quadrupole magnet [11]. Right: field lines and forces (assuming positive charges

moving out of the page) over the cross section of an horizontally focusing / vertically defocusing

quadrupole

and10842

BX (X,Y, Z) = −∂V2

∂X
= G′(X)Y Z − G

′′′(X)
12

(Y2
+ Z2)Y Z + ... (14.23)

BY (X,Y, Z) = −∂V2

∂Y
= G(X)Z − G

′′(X)
12

(3Y2
+ Z2)Z + ... (14.24)

BZ (X,Y, Z) = −∂V2

∂Z
= G(X)Y − G

′′(X)
12

(Y2
+ 3Z2)Y + ... (14.25)

G(X) is given by Eq. 14.4 whereas10843

G0 =
B0

a
and K =

G0

Bρ
(14.26)

define respectively the quadrupole gradient and strength, the latter relative to the10844

rigidity Bρ. The quadrupole is horizontally focusing and vertically defocusing if10845

K > 0, and the reverse if K < 0, this is illustrated in Fig. 14.9 which shows the effect10846

of a doublet of quadrupoles with focusing strengths of opposite signs.10847

Linear approach10848

The first order transport matrix of a quadrupole with length L, gradient G and10849

strength K = G/Bρ writes10850
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Fig. 14.9 Horizontal and ver-

tical projections of particle

trajectories across a stigmatic

quadrupole doublet. The first

quadrupole (QF) is horizon-

tally focusing (K > 0; thus

vertically defocusing), the

second one (QD) has reverse

sign (K < 0) and reverse

effect
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Tquad =

©­­­­­­­­­«

Cx Sx 0 0 0 0

C ′x S′x 0 0 0 0

0 0 Cy Sy 0 0

0 0 C ′y S′y 0 0

0 0 0 0 1
L

γ2

0 0 0 0 0 1

ª®®®®®®®®®¬

with



Cx = cos L
√

K; C ′x =
dCx

dL
= −KSx

Sx =
1√
K

sin L
√

K; S′x =
dSx

dL
= Cx

Cy = coshL
√

K; C ′y =
dCy

dL
= KSy

Sy =
1√
K

sinhL
√

K; S′y =
dSy

dL
= Cy

(14.27)

K > 0 for a focusing quadrupole (by convention, in the (x, x ′) plane, thus defocusing10851

in the (y, y′) plane). Permute the horizontal and vertical 2 × 2 sub-matrices in the10852

case of a defocusing quadrupole.10853

14.4.2.2 Electrostatic Quadrupole10854

The hypotheses are those of Sect. 2.2.2: paraxial motion, field normal to velocity, etc.10855

Take the notations of Eqs. 2.25, 2.26 for the field and potential, case of electrodes10856

in the horizontal and vertical planes (Fig. 2.14). Electrode potential is ±V/2, pole10857

tip radius a, so that K = −V/2a2 in Eq. 2.26. The equations of motion then write10858 [
d2x
ds2 + Kx x = 0
d2y

ds2 + Ky y = 0
with Kx = −Ky =

−qV

a2mv2
= ± V

a2

1

|Eρ|︸︷︷︸
electrical

rigidity

(14.28)

The transport matrix is the same as for the magnetic quadrupole, Eq. 14.27, taken10859

for that K value.10860
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14.4.3 Solenoid10861

Assume a solenoid magnet with longitudinal axis (OX). In a cylindrical frame10862

(O; X, r, φ), Fig. 14.10 (r is the radial coordinate, the angle φ is taken in the X-10863

normal plane), Bφ(X, r, φ) ≡ 0. Take solenoid length L, mean coil radius r0 and an10864

asymptotic field B0 = µ0NI/L, with NI = number of ampere-Turns, µ0 = 4π×10−7.10865

The asymptotic field value is defined by

Fig. 14.10 A sketch of a

solenoid, and quantities used

to define it L

X

r
0

O

NI

10866 ∫ ∞

−∞
BX (X, r < r0) dX = µ0NI = B0L independent of r (14.29)

There is a variety of methods to compute the field vector B(X, r). Opting for one10867

in particular may be a matter of compromise between computing speed and field10868

modeling accuracy. A simple model is the on-axis field10869

BX (X, r = 0) = B0

2


L/2 − X√

(L/2 − X)2 + r2
0

+

L/2 + X√
(L/2 + X)2 + r2

0


(14.30)

with X = r = 0 taken at the center of the solenoid. This model assumes that the coil10870

thickness is small compared to its mean radius r0. The magnetic length comes out10871

to be10872

Lmag ≡
∫ ∞
−∞ BX (X, r < r0)dX

BX (X = r = 0) = L

√
1 +

4r2
0

L2
> L (14.31)

so satisfying

on-axis BX (X = r = 0) = µ0NI

L

√
1 +

4r2
0

L2

r0≪XL

−−−−−−→ µ0NI

L

Maxwell’s equations and Taylor expansions provide the off-axis field B(X, r) =10873

(BX (X, r), Br (X, r)). One has in particular in the r0 ≪ XL limit,10874
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BX (X, r) =
µ0NI

L
and Br (X, r) =

−r

2

dBX

dX
(14.32)

An other way to compute the field vector B(X, r) is the elliptic integrals technique10875

developed in [12], which constructs BX (X, r) and Br (X, r) from respectively10876

BX (X, r) =
µ0NI

4π

ck

r
X

[
K +

r0 − r

2r0

(Π − K)
]

(14.33)

Br (X, r) = µ0NI
1

k

√
r0

r

[
2(K − E) − k2 K

]
wherein K , E and Π are the three complete elliptic integrals, X is an X- and L-

dependent form factor, and

k = 2
√

r0r/
√
(r0 + r)2 + X2 ; c = 2

√
r0r/(r0 + r)
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Fig. 14.11 Left: Horizontal (Y) and vertical (Z) projections of a particle trajectory across a L = 1 m

solenoid, with additional 1 m extents upstream and downstream of the coil to account for the

extended field fall-offs. The particle is launched with zero incidence, from transverse position

Y = Z = 0.5 mm. Sample solenoid radius/length values in the range 0.001 ≤ r0/L ≤ 0.2 show

that only for smallest r0/L = 0.001 does the trajectory end with Y = Z = 0.5 mm and quasi-zero

incidence (the thicker Y(X) and Z(X) curves), whereas greater r0/L causes final Y(X) and Z(X) to

be offset. Right: field BX (X, r) experienced along the trajectory for the various r0/L values, the

steep fall-off case is for r0/L = 0.001

As an illustration, Fig. 14.11 displays a trajectory across a L = 1 m solenoid10877

and its and field fall-offs, and the field experienced along that trajectory, in the10878

axial model of Eq. 14.30. In the paraxial approximation, a pitch requires a distance10879

l = 2π/K , with K = B0/Bρ the solenoid strength, which is a condition satisfied here10880

if the fringe field extent is short enough (solenoid radius r0 is small enough).10881
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Linear approach10882

The equations of motion write, to the first order in the coordinates, in respectively10883

the central region (field Bs) and at the ends (at s = sEFB),10884

���� x ′′ − K z′ = 0

z′′ + K x ′ = 0
and

�������
x ′′ − K

2
z δ(s − sEFB) = 0

z′′ +
K

2
x δ(s − sEFB) = 0

(14.34)

The first order transport matrix of a solenoid with length L writes10885

Tsol =

©­­­­­­­­­«

C2 2
K
SC SC 2

K
S2 0 0

−K
2
SC C2 −K

2
S2 SC 0 0

−SC − 2
K
S2 C2 2

K
SC 0 0

K
2
S2 −SC −K

2
SC C2 0 0

0 0 0 0 1
L

γ2

0 0 0 0 0 1

ª®®®®®®®®®¬

with


K =

Bs

Bρ

C = cos KL
2

S = sin KL
2

(14.35)

A solenoid rotates the decoupled axis longitudinally by an angle α = KL/2 =10886

BsL/2Bρ.10887

14.5 Data Treatment Keywords10888

14.5.1 Concentration Ellipse: FAISCEAU, FIT[2], MCOBJET, ...10889

It is often useful to associate the projection of a particle bunch in the horizontal,10890

vertical or longitudinal phase space with an rms phase space concentration ellipse10891

(CE). Various keywords in zgoubi resort to concentration ellipses:10892

- FAISCEAU for instance prints out, in zgoubi.res, CE parameters drawn from10893

particle coordinates,10894

- random particle distributions by MCOBJET are defined using CE parameters,10895

- ellipse parameters computed from CEs are possible constraints in FIT[2] pro-10896

cedures.10897

Transverse phase space graphs by zpop also compute CEs.10898

The CE method is resorted to in various exercises, for instance for comparison10899

of the ellipse parameters it gets from the rms matching of a bunch, with theoretical10900

beam parameters derived from first order transport formalism (such as computed10901

from rays by MATRIX, or TWISS).10902

The CE method used in these various keywords and data treatment procedures is10903

the following. Let zi(s), z′
i
(s) be the phase space coordinates of i = 1, n particles in10904

a set observed at some azimuth s along an optical sequence. The second moments10905

of the particle distribution are10906
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z2(s) = 1

n

n∑
i=1

(zi(s) − z(s))2

zz′(s) = 1

n

n∑
i=1

(zi(s) − z(s))(z′i (s) − z′(s)) (14.36)

z′2(s) = 1

n

n∑
i=1

(z′i (s) − z′(s))2

From these, a concentration ellipse is defined, encompassing a surface Sz(s), with10907

equation10908

γc(s)z2
+ 2αc(s)zz′ + βc(s)z′2 = Sz(s)/π (14.37)

Noting ∆ = z2(s) z′2(s) − zz′
2(s), the ellipse parameters write10909

γc(s) =
z′2(s)
√
∆

, αc(s) = −
zz′(s)
√
∆

, βc(s) =
z2(s)
√
∆

, Sz(s) = 4π
√
∆ (14.38)

With these conventions, the rms values of the z and z′ projected densities satisfy10910

σz =

√
βz

Sz

π
and σz′ =

√
γz

Sz

π
(14.39)

14.5.2 Transport Coefficients: MATRIX, OPTICS, TWISS, etc.10911

Zgoubi does not know about matrix transport, it does not define optical elements10912

by a transport matrix, it defines them by electrostatic and/or magnetic fields in10913

space (and time possibly). Well, except for a couple of optical elements, for instance10914

TRANSMAT, which pushes particle coordinates using a matrix, or SEPARA, an10915

analytical mapping through a Wien filter. Zgoubi does not transport particles using10916

matrix products either, it does that by numerical integration of Lorentz force equation10917

through these E and/or B fields.10918

However it is often useful to dispose of a matrix representation of an optical10919

element or a beam line, or of paraxial parameters drawn from the first or second order10920

one-turn mapping of a ring accelerator. Several commands in zgoubi perform the10921

required treatment to derive these informations from particle coordinates. Examples10922

are MATRIX: computation of matrix transport coefficients up to 3rd order, from10923

initial and current coordinates of a particle sample. OPTICS transports a beam10924

matrix, given its initial value using OBJET[KOBJ=5.1] (see Sect. 14.5.2.2). TWISS10925

derives a periodic beam matrix from a 1-turn mapping of a periodic sequence, and10926

transports it from end to end so generating the optical functions along the sequence10927

(Sects. 14.5.2.2, 14.5.2.3).10928

These capabilities are resorted to in the exercises. It may be required for instance10929

to compare transport coefficients derived from raytracing, with the matrix model10930
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of the optical element(s) concerned. Or to compute a periodic beam matrix in a10931

periodic optical sequence, this is how betatron functions are produced, often for the10932

mere purpose of comparisons with matrix code outcomes, or with expectations from10933

analytical models.10934

14.5.2.1 Coordinate Transport10935

In the Gauss approximation (i.e., trajectory angle θ ∼ sin θ), particles follow paths10936

which can be described with simple functions: parabolic, sinusoidal or hyperbolic.10937

A consequence is that a string of optical elements, and coordinate transport through10938

the latter, can be handled with a simple mathematics toolbox. Taylor expansion (also10939

known as transport) techniques are part of it, whereby a coordinate excursion v2i10940

(with index i = 1 → 6 standing for x, x ′, y, y′, δs or δp/p) from some reference10941

trajectory at a location s2 along the line is obtained from the excursions v1i at an10942

upstream location s1, via10943

v2i =

6∑
j=1

Ri j v1 j +

6∑
j,k=1

Ti jk v1 j v1k +

6∑
j,k,l=1

v1i jkl v1 j v1k v1l + ... (14.40)

This Taylor development can be written under matrix form, for instance to the first10944

order in the coordinates, for non-coupled motion,10945

©­­­­­­­«

x

x ′

y

y
′

δs

δp/p

ª®®®®®®®¬2

=

©­­­­­­­«

T11 T12 0 0 0 T16

T21 T22 0 0 0 T26

0 0 T33 T34 0 T36

0 0 T43 T44 0 T46

0 0 0 0 T55 T56

0 0 0 0 T65 T66

ª®®®®®®®¬

©­­­­­­­«

x

x ′

y

y
′

δs

δp/p

ª®®®®®®®¬1

= T(s2 ← s1)

©­­­­­­­«

x

x ′

y

y
′

δs

δp/p

ª®®®®®®®¬1

(14.41)

These are the quantities which such keywords as MATRIX [1, cf. Sect. 6.5] and10946

OPTICS [1, cf. Sect. 6.4] compute, from particle coordinates. Most of the time they10947

are resorted to for mere comparison with theoretical matrices such as recalled in10948

Sects. 14.2-14.4.10949

14.5.2.2 Beam Matrix10950

OPTICS and TWISS keywords cause the transport of a beam matrix. The former10951

requires initial beam ellipse parameters: these are provided as part of the initial10952

object definition, by OBJET. The latter first derives a periodic beam matrix from10953

initial and final particle coordinates resulting from raytracing throughout an optical10954

sequence. Basic principles are recalled here, regarding the way these keywords work10955

in zgoubi. They are resorted to quite often in the exercises.10956
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In the linear approximation, the transverse phase space ellipse associated with a10957

particle distribution (for instance, the concentration ellipse, Sect. 14.5.1) is written10958

(with z standing for indifferently x or y)10959

γz(s)z2
+ 2αz(s)zz′ + βz(s)z′2 =

εz

π
(14.42)

in which the ellipse parameters10960

βz(s), αz(s) = −
1

2

dβz

ds
, γz(s) =

1 + α2

βz
(14.43)

are functions of the observation location s along the optical sequence. The surface10961

εz of the ellipse is an invariant if the beam travels in magnetic fields, however field10962

non-linearities, phase space dilution, etc. may distort the distribution and change the10963

surface of its rms matching concentration ellipse. In the presence of acceleration or10964

deceleration the invariant quantity is βγεz instead, with β = v/c and γ the Lorentz10965

relativistic factor.10966

The ellipse Eq. 14.42 can be written under the matrix form10967

[z, z′] σz(s)
[

z

z′

]
= 1 (14.44)

with σz the beam matrix:10968

σz =
εz

π

(
βz(s) −αz(s)
−αz(s) γz(s)

)
(14.45)

The ellipse parameters can be transported from s1 to s2 using10969

σz,2 = T σz,1 T̃ (14.46)

with T = T(s2 ← s1) the transport matrix (Eq. 14.41) and T̃ its transposed. This can10970

also be written under the form10971

©­«
βz
αz
γz

ª®¬2

=
©­«

T2
11

−2T11T12 T2
12

−T11T21 T21T12 + T11T22 −T12T22

T2
21

−2T21T22 T2
22

ª®¬s2←s1

©­«
βz
αz
γz

ª®¬1

(14.47)

(subscripts 1, 2 normally hold for horizontal plane motion, z = x: change to 3, 410972

for vertical motion, z = y). This beam matrix formalism can be extended to the10973

longitudinal phase space and coordinates (δs, δp/p). Thus a 6 × 6 beam matrix can10974

be defined,10975
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σ =

©­­­­­­­«

σ11 σ12 0 0 0 σ16

σ21 σ22 0 0 0 σ26

0 0 σ33 σ34 0 σ36

0 0 σ43 σ44 0 σ46

0 0 0 0 σ55 σ56

0 0 0 0 σ65 σ66

ª®®®®®®®¬
(14.48)

This can be generalized to non-zero anti-diagonal terms, if motions are coupled.10976

14.5.2.3 Periodic Structures10977

In the hypothesis of an S- periodic structure: a long beam line with repeating pattern,10978

a cyclic accelerator, transverse motion stability requires the transport matrix over a10979

period, from s to s + S to satisfy10980

[Ti j](s + S ← s) = I cos µ + J sin µ (14.49)

where µ =
∫
(S) ds/β is the betatron phase advance over the period (independent of10981

the origin),10982

I =

(
1 0

0 1

)
is the identity matrix, J =

(
αz(s) βz(s)
−γz(s) −αz(s)

)
(and J2

= −I) (14.50)

14.6 Exercises10983

14.1 Magnetic Sector Dipole10984

Solution: page 599.10985

(a) Simulate a ρ = 0.5 m radius, α = 60 degree sector dipole with n=-0.6 field10986

index, in both cases of hard edge and of soft fall-off fringe field model. Find the10987

reference arc, such that
∫
arc

B ds = BL with L the arc length in the hard-edge model10988

and B the field along that arc.10989

Make sure that the reference arc has the expected length.10990

Produce the field along the reference arc, for a few different values of the fringe-10991

field extent.10992

(b) A possible check of the first order: OBJET[KOBJ=5], MATRIX[IORD=1,IFOC=0]10993

can be used to compute the transport matrix from the rays. Compare what it gives10994

with theory.10995

(c) Consider a sector dipole with parallel gap, uniform field. Show the well known10996

geometrical property of point-to-point focusing represented in Fig. 14.12.10997

Produce the aberration curve x ′(x) in the horizontal phase-space at the image10998

plane.10999

Test the convergence of the numerical solution versus integration step size.11000
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Fig. 14.12 Symmetric point to point focusing, case of a 60 deg or a 180 deg sector dipole

(d) Transport a proton along the reference axis, injected with its spin tangent to11001

the axis. Compare spin rotation with theory.11002

Test the convergence of the numerical solution versus integration step size.11003

14.2 Quadrupole Doublet11004

Solution: page 604.11005

Reproduce Fig. 14.9.11006

14.3 Solenoid11007

Solution: page 605.11008

An introduction to SOLENOID.11009

(a) Reproduce Fig. 14.11. Use both field models of Eqs. 14.30, 14.33 and compare11010

their outcomes, including the first order paraxial transport matrices, and some higher11011

order coefficients as well (computed from in and out trajectory coordinates).11012

(b) Compare final coordinates in (a) with outcomes from the first order transport11013

formalism (Sect. 14.4.3).11014

(c) Make a 1-dimensional (on-axis) field map of a r0 = 10 cm, L = 1 m solenoid11015

(namely, a map BX,i(Xi) of the field at the nodes of a X-mesh with mesh size11016

Xi+1 − Xi). Reproduce the trajectory in (a) (case r0 = 10 cm) using that field map,11017

with the keyword BREVOL. Check the convergence of the final particle coordinates,11018

using the field map, depending on the mesh size.11019

14.7 Solutions of Exercises of Chapter 3: Optical Elements and11020

Keywords, Complements11021

14.1 Magnetic Sector Dipole11022

DIPOLE input data.11023

(a) A simulation of a ρ = 0.5 m radius, 60 degree sector dipole with n=-0.611024

field index, in the hard-edge field model, is given in Tab. 14.1. A simulation which11025

includes fringe fields is given in Tab. 14.2.11026

A major difference between the two is in the angular extent of the field domain,11027

AT, in order to allow encompassing the fringe field extents, however there is more,11028

as follows.11029
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Fig. 14.13 Parameters used to

define the geometry of a dipole

magnet with index, using

DIPOLE [13, see DIPOLE]
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Hard edge model11030

The effective field boundaries (EFB) have to be placed on the angular opening

limits, which means, in the representation of Fig. 14.13, and according to the users’

guide [13, see DIPOLE],

ω+ = ACENT > 0, ω− = −AT + ACENT < 0, ω+ − ω− = AT > 0

Otherwise, in the case AT would be greater than the magnet deflection angle α =11031

60 deg, particles would jump from zero field to plateau field value over the EFB,11032

and so miss part of the field integral. Note that for mere code-specific, geometry11033

computation reasons, it also requires that ACENT=AT/2, so that, in fine, ω+ =11034

−ω− = AT/2.11035

Soft edge model11036

AT has to be greater than the magnet deflection angle α = 60 deg in order to

encompass the fringe field extent beyond the entrance and exit EFBs, so that, in the

representation of Fig. 14.13, and according to the users’ guide,

ACENT > ω+, |ω− | < AT − ACENT

Integration-wise, particles will smoothly traverse the field fall-off regions, step by

step, no field discontinuity there. Note that motion integration accuracy requires the

step size to be small enough, compared to the fringe field extent. In the notations

of Fig. 14.13, the resulting additional optical axis lengths lE and lS within the AT

sector, on entrance and exit side respectively, to account for the field fall-offs, write
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lE = RM × tan(ACENT − ω+), lS = RM × tan[AT − (ACENT − ω−)]

Checking back one fortunately finds

atan

(
lE

RM

)
︸        ︷︷        ︸

entrance

fringe field

+ ω+ − ω−︸    ︷︷    ︸
magnet body

+ atan

(
lS

RM

)
︸        ︷︷        ︸

exit

fringe field

= AT

It also results from the fringe field modeling that the reference trajectory (which is

ideally the trajectory that coincides with R=RM in the body of the magnet) enters

the AT sector at radius RE, with an incidence TE. These two quantities have to be

accounted for in setting the entrance and exit reference frames, however this is user’s

matter, regarding the choice of reference frames: most often (in synchrotron rings for

instance) the reference curve is R=RM, so that Y and T coordinates of the reference

particle are zero (the moving frame has its origin at the origin of the polar frame

in which the field is defined, and rotates with the particle, clockwise in Fig. 14.13

representation). Thus, one has to set

TE = −(ACENT − ω+) < 0, RE = RM/cosTE

Note that, because of the small deflection due to fringe fields, RS and TS need be

adjusted if the DIPOLE process has to end up with the reference particle featuring

zero Y and T coordinates. Expectedly, that would be satisfied with RS and TS values

near

TS = AT − (ACENT − ω−) > 0, RS = RM/cosTS

The radius R of the reference arc, such that
∫
arc

B ds = BL with L the arc length in11037

the hard-edge model, has to be found. Same thing for the arcs at ±0.1% momentum11038

offset. FIT can be used for that.11039

(b) First order transport.11040

This is left to the reader. Theoretical matrices are given in Eqs. 14.6, 14.7.11041

Refer to exercises in earlier chapters, such comparison is often performed.11042

(c) Point-to-point focusing.11043

The hard-edge model DIPOLE of Tab. 14.1 can be used, with the following11044

modifications and addenda in order to simulate the symmetric 60d́eg sector and11045

drifts configuration of Fig. 14.12:11046

- add OBJET[KOBJ=1,IMAX=41] so to generate 41 particles launched with11047

T0 ∈ [−20, 20]mrad, like so:11048

’OBJET’11049

64.6244440371798511050

111051

1 41 1 1 1 111052

0. 1. 0. 0. 0. 0.11053
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Table 14.1 Input data file: definition of a dipole with index in the hard-edge field model. Definition

of the [#S_60dSectDip_hardE:#E_60dSectDip_hardE] segment, mostly for the purpose of possible

further INCLUDE. This file is used under the name sectorDIP_hardE.inc in subsequent exercises

! File sectorDIP.inc (hard-edege, here)

’MARKER’ #S_60dSectDip_hardE ! Label should not exceed 20 characters.

’DIPOLE’ ! Analytical definition of a dipole field.

2 ! IL=2, only purpose is to log trajectories to zgoubi.plt, for further plotting.

60. 50. ! Sector angle AT; reference radius RM.

30. 5. -0.6 0. 0. ! Reference azimuthal angle ACN; BM field at RM; indices, N=-0.6 at RM=50cm.

0. 0. ! EFB 1 is hard-edge,

4 .1455 2.2670 -.6395 1.1558 0. 0. 0. ! hard-edge only possible with sector magnet.

30. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 2.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

-30. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 3 (unused).

0 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.E6 -1.E6 1.E6 1.E6 0.

4 10.

0.5 ! Integration step size. The smaller, the more accurately the orbits close.

2 0. 0. 0. 0. ! Magnet positioning RE, TE, RS, TS.

’MARKER’ #E_60dSectDip_hardE ! Label should not exceed 20 characters.

’END’

Table 14.2 Input data file: definition of a dipole with index in the soft-edge field model. The

field extent in the Enge model (Eq. 14.11) is taken to be g = 5 cm (λE = λS = g in Users’

Guide’s notations), so subtended by an angle atan(g/RM) = 5.71059 deg, thus well comprised in

a 10 deg angular aperture. ACENT value is free, 30 deg as adopted here is arbitrary, it is just left

to the value it was given in the hard edge settings (Tab. 14.1). This input includes the definition

of the [#S_60dSectDip_softE:#E_60dSectDip_softE] segment. This file is used under the name

sectorDIP_softE.inc in subsequent exercises

! File sectorDIP.inc (soft-edege, here)

’MARKER’ #S_60dSectDip_softE ! Label should not exceed 20 characters.

’DIPOLE’ ! Analytical definition of a dipole field.

2 ! IL=2, only purpose is to log trajectories to zgoubi.plt, for further plotting.

80. 50. ! Sector angle AT=60 deg deflection+2*10deg for fringes; reference radius RM.

30. 5. -0.6 0. 0. ! Reference angle ACENT (arbitrary value); field at RM; indices, N=-0.6 at RM=50cm.

5. 0. ! Entry EFB: lambda~gap=5 cm, well comprised in RM*tan(10deg)=; same gap at all R -> nappa=0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0. ! Enge coefficients at entry.

20. 0. 1.E6 -1.E6 1.E6 1.E6 ! omega^+ = +20 deg from ACENT leaves 10deg room (8.8cm) for entry fringe.

5. 0. ! Exit EFB: lambda~gap=5 cm, well comprised in RM*tan(10deg)=; same gap at all R -> nappa=0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0. ! Enge coefficients at exit.

-40. 0. 1.E6 -1.E6 1.E6 1.E6 ! omega^- =-40 deg from ACENT leaves 10deg room (8.8cm) for exit fringe.

0. 0. ! EFB 3 (unused).

0 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.E6 -1.E6 1.E6 1.E6 0.

4 10.

0.5 ! Integration step size. The smaller, the more accurately the orbits close.

2 0. 0. 0. 0. ! Magnet positioning RE, TE, RS, TS.

’MARKER’ #E_60dSectDip_softE ! Label should not exceed 20 characters.

’REBELOTE’

’END’

50. 0. 0. 0. 0. 3.868505233911054

- following OBJET add a drift with length RM/tan(30◦) = 86.6025403784 cm,11055

- in DIPOLE: set the field index to zero,11056

- following DIPOLE add a drift with length RM/tan(30◦),11057

- add AUTOREF[I=3,I1=1,I2=2,I3=3] after DIPOLE: that will cause computation11058

of the location of the waist formed by particles 1, 2 and 3,11059

- add FAISTORE[FNAME=zgoubi.fai,IP=1] after AUTOREF, before END. This11060

logs particle data at that location.11061

In the execution listing zgoubi.res one finds:11062
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Table 14.3 Input data file: find closed orbits, using FIT or FIT2, and log stepwise data in

zgoubi.plt. Closed orbits are found for the reference particle (a particle with rigidity Bρ =

5[kG] × 50[cm] kG cm) and for particles with ±δp/p momentum offset. FIT starts with initial

Y0 radius values resulting from a hard edge model, i.e., Y0 = Bρ/B = 250[kG cm]/5[kG] and

±0.1%. This file produces the field along these trajectories, an effect of DIPOLE[IL=2]. The

[#S_60dSectDip_softE:#E_60dSectDip_softE] segment of Tab. 14.2 is INCLUDEd; simply sub-

stitute [#S_60dSectDip_hardE:#E_60dSectDip_hardE] (as defined in Tab. 14.1) to work with the

hard edge model instead

Uniform field sector with index. Field on orbits at different momenta.

’MARKER’ DIPOLEField_S ! Just for edition purposes.

! First stage: find closed orbit at 1 MeV, for some k value.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2 ! Particles are defined one by one.

3 1 ! 3 particles, classified in a single momentm set.

50. 0. 0. 0. 0. 3.8685052339 ’o’ ! Y_0=50cm is hard edge case -> 2.9886MeV proton.

50.125472 0. 0. 0. 0. 3.8723737392 ’p’ ! +0.001 mom. offset. Circular orbit Y_0 is hard edge case.

49.875465 0. 0. 0. 0. 3.8646367287 ’m’ ! -0.001 mom. offset. Circular orbit Y_0 is hard edge case.

1 1 1 ! As many ’1’ as there are particles (that dates from programs on punched cards!

’INCLUDE’

1

./sectorDIP.inc[#S_60dSectDip_softE:#E_60dSectDip_softE] ! DIPOLE with fringe, RM=50cm n=-0.6.

!./sectorDIP.inc[#S_60dSectDip_hardE:#E_60dSectDip_hardE] ! DIPOLE with hard-edge, RM=50cm n=-0.6.

’FIT’ ! This matching procedure finds the closed orbit radius.

3 nofinal

2 30 0 .9 ! Variable : Y_0. Variation allowed up to 90%.

2 40 0 .9 ! Variable : Y_0. Variation allowed up to 90%.

2 50 0 .9 ! Variable : Y_0. Variation allowed up to 90%.

3 1e-15 99 ! Penalty; max numb of calls to the function.

3.1 1 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0, particle 1.

3.1 2 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0, particle 2.

3.1 3 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0, particle 3.

’MARKER’ DIPOLEField_E ! Just for edition purposes.

’END’

Fig. 14.14 Aberration curve

at the focal point of a 180 deg

uniform field dipole: a second

order (sextupole) aberration,

Y ∝ T 2, typical of a bend

non-linearities
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Horizontal phase-space, from zgoubi.fai.

’./zgoubi.fai’ u ($10 *cm2m):($11 *mrd2rd):(i)

6 Keyword, label(s) : AUTOREF11063

Change of reference, horizontal, XC= -0.00011588 cm, YC = 49.999999 cm, A= -0. deg11064

TRAJ 1 IEX,D,Y,T,Z,P,S,time : 1 3.869 -1.1786E-16 0. 0. 0. 225.56 9.44931E-0211065

This indicates that AUTOREF confirms expectations: it found the waist11066

- at XC = 0, which means right at the end of the downstream drift,11067

- at a radial excursion YC = 50 cm as expected (the origin of the Y axis is at11068

DIPOLE curvature center),11069
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- with the reference frame X axis at an angle A = 0 to particle 1 direction of11070

motion.11071

QED.11072

The following gnuplot script can be used to print the horizontal phase space T(Y )11073

at the image plane (Fig. 14.14)11074

cm2m = 1e-2; mrd2rd = 1e-311075

plot ’./zgoubi.fai’ u ($10 *cm2m):($11 *mrd2rd) w p ps .9 pt ; pause 211076

In the case of an α = 180 deg dipole, the previous input data file can be used,11077

changing DIPOLE angles to AT = ω+ − ω− = 180 deg with for instance ω+ =11078

−ω− = 90 deg. Remove the drifts in order to obtain the 180 deg sector configuration11079

of Fig. 14.12.11080

Step size:11081

The method is the same as in exercise 2.2 (b), case of a toroidal condenser, which11082

can be referred to.11083

(d) Spin precession.11084

Add SPNTRK[KSO=1] at the beginning of the input data file to track spin, starting11085

aligned on the X axis. Tracking spin also requires PARTICUL, in order to define11086

particle’s mass, charge and anomalous magnetic moment.11087

The theoretical value of the spin precession angle in the moving frame is Gγα11088

(Eq. 3.32), with α = π/3 or α = π in the previous two deflection cases considered.11089

This is the value which the stepwise integration produces.11090

14.2 Quadrupole Doublet11091

The input data file for this problem is given in Tab. 14.4.11092
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Table 14.4 Input data file: a double-focus quadrupole doublet
100 particles on an ellipse, through drift

’OBJET’

1000.

2

9 1

0. 0. 0. 0. 0. 1. ’o’

0. 1. 0. 0. 0. 1. ’a’

0. -1. 0. 0. 0. 1. ’b’

0. 2. 0. 0. 0. 1. ’c’

0. -2. 0. 0. 0. 1. ’d’

0. 0. 0. 1. 0. 1. ’e’

0. 0. 0. -1. 0. 1. ’f’

0. 0. 0. 2. 0. 1. ’g’

0. 0. 0. -2. 0. 1. ’h’

1 1 1 1 1 1 1 1 1 1

’FAISCEAU’

’MARKER’ dum .plt

’DRIFT’

70. split 100 2

’QUADRUPO’ QF

2

40. 10. 4.7907188 ! 11.1111

0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

1.

1 0 0 0

’DRIFT’

100. split 100 2

’QUADRUPO’ QD

2

40. 10. -4.7907188 ! -11.1111

0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

1.

1 0 0 0

’DRIFT’

70. split 100 2

’MARKER’ dum .plt

’FAISCEAU’

! ’FIT’ ! This FIT procedure

! 2 ! varies QF and QD fields so to get

! 5 12 0 .4 ! common focus point in both planes, 3.2 meters downstream of the object.

! 7 12 0 .4

! 4 1E-15

! 3 6 2 #End 0. 1. 0

! 3 11 2 #End 0. 1. 0

! 3 2 4 #End 0. 1. 0

! 3 3 4 #End 0. 1. 0

’IMAGE’

’IMAGEZ’

’DRIFT’

20. split 100 2

’END’

14.3 Solenoid11093

(a) The paraxial trajectory pitch is l = 2π Bρ/B0 (Sect. 14.4.3). Take L = 1 m11094

(Fig. 14.11) and Bρ = 1 T m for simplicity, thus B0 = 2π T. Assume a particle11095

launched from Y = Z = 1 mm with zero incidence. Scan the solenoid radius value11096

in the range 1 ≤ r0 ≤ 200 mm to reproduce the figure. The data to be plotted11097

(X, Y, Z, BX ) are read from zgoubi.plt.11098

The beam optics model is given in Tab. 14.5. Note the use of KOBJ=2 in OBJET,11099

which allows creating particles in an arbitrary number (just one, here), with arbitrary11100

initial coordinates. REBELOTE[IOPT=1] is used to repeat the sequence, varying11101

the parameter R0 under SOLENOID.11102
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Table 14.5 Input data file: a 1 m long solenoid, with 1 m upstream and downstream fringe field

extents. The initial coil radius is r0 = 0.1 cm, it is scanned (by REBELOTE) over the range

1 ≤ r0 ≤ 20 cm. For each r0 a particle is launched with initial position Y = Z = 1 mm and initial

angles T = P = 0

A 1 meter long solenoid.

’MARKER’ opticalLmntsProbSolenoA_S

’OBJET’

1000.

2 ! OBJET style KOBJ=2.

1 1

0.1 0. 0.1 0. 0. 1. ’o’ ! Initial coordinates Yo, To, Zo, Po, Xo, Do.

1

’SOLENOID’

200 ! Log particle data to zgoubi.plt, every other 100 steps.

100. .1 62.8318530718 ! length (cm); radius (cm); field (kG); [MODL=1] default.

100. 100. ! Extent of integration regions upstream and downstream of coil.

.01

1 0. 0. 0.

’FAISCEAU’

’REBELOTE’ ! Used to repeat the sequence.

10 0.1 0 1 ! Repeat 10 times.

1

SOLENOID 11 1.:20. ! Vary parameter 11 (= R0) under SOLENOID.

’MARKER’ opticalLmntsProbSolenoA_E

’END’

Table 14.6 Input data file: track a particle along the central axis of the solenoid, to generate a 3 m

long, 1D field map, with mesh step 5 cm

! A 3 meter long solenoid field map.

’MARKER’ opticalLmntsProbSolenoC_S

’OBJET’

1000.

2 ! OBJET style KOBJ=2.

1 1

0. 0. 0. 0. 0. 1. ’o’ ! Initial coordinates Yo, To, Zo, Po, Xo, Do.

1

’SOLENOID’

200 ! Log particle data to zgoubi.plt, every other 100 steps.

100. .1 62.8318530718 ! length (cm); radius (cm); field (kG); [MODL=1] default.

100. 100. ! Extent of integration regions upstream and downstream of coil.

5.

1 0. 0. 0.

’FAISCEAU’

’END’

(b) To allow comparison, theoretical matrices (Eq. 14.35) must be computed for11103

the theoretical length, L, of the matrix transport solenoid model. Tracking must11104

extend upstream and downstream of the solenoid, over a distance much greater than11105

the solenoid diameter (the latter determines the field fall extent, Eq. 14.30).11106

(c) A 1-dimensional (on-axis) field map of the solenoid field, BX,i(Xi), can simply11107

be generated by tracking a particle along the solenoid axis. It has to extend upstream11108

and downstream of the solenoid, over a distance much greater than the solenoid11109

diameter. The integration step size will be the mesh size, take it in the centimeter11110

range (. r0), 5 cm here. An intermediate stage is necessary, which consists in11111

reading X, BX (X) from zgoubi.plt and re-writing it in a dedicated ASCII file in a11112

format proper for use by the keyword BREVOL.11113

The input file to generate the field and log to zgoubi.plt is given in Tab. 14.6.11114

Similar exercises, generating a 1D field map and using BREVOL, can be found11115

be found in zgoubi sourceforge repository [14].11116
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Table 14.7 Input data file: track a particle in the solenoid, in a similar manner to the input data file

of Tab. 14.6, using a field map model instead

A 1 meter long solenoid, 3 meter long field map.

’OBJET’

1000.

2

1 1

0. 0. 0. 0. 0. 1. ’o’

1

’BREVOL’

0 0

1. 1.

Test solenoid 1D field map

61 ! Number of nodes of the 1D mesh.

solenoid_1meter.map

0 0. 0. 0.

2

1.

1 0 0 0

’FAISCEAU’

’END’
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