HW1 Monday, January 30, 2023, HWs solutions:

Problem 1: Reference particle and reference orbit. 6points

Using accelerator Hamiltonian (M1.19), corresponding differential equations (M1.20), expansion of the vector and scalar potentials (M1.21), show that for a reference particle that is following a reference "trajectory":

$$
\vec{r}=\vec{r}_{o}(s) ; \quad t=t_{o}(s) ; H=H_{o}(s)=E_{o}(s)+\varphi_{o}\left(s, t_{o}(s)\right),
$$

with $x \equiv 0 ; y \equiv 0 ; p_{x} \equiv 0 ; p_{y} \equiv 0$ and $\left.h^{*}\right|_{\text {ref }}=-p_{o}(s)$ result in the following conditions:

$$
\begin{align*}
& K(s) \equiv \frac{1}{\rho(s)}=-\frac{e}{p_{o} c}\left(\left.B_{y}\right|_{r e f}+\left.\frac{E_{o}}{p_{o} c} E_{x}\right|_{r e f}\right) ; \tag{1}\\
&\left.B_{x}\right|_{r e f}=\left.\frac{E_{o}}{p_{o} c} E_{y}\right|_{r e f} ; \tag{2}\\
& \frac{d t_{o}(s)}{d s}= \frac{1}{\mathrm{v}_{o}(s)} \tag{3}\\
& \frac{d E_{o}(s)}{d s}=-\left.e \frac{\partial \varphi}{\partial s}\right|_{r e f} \equiv e E_{2}\left(s, t_{o}(s)\right) . \tag{4}
\end{align*}
$$

Hints:

1. Use condition $\left.\vec{A}\right|_{\text {ref }}=0$ with

$$
\left.x\right|_{r e f}=0 ;\left.y\right|_{r e f}=0 ;\left.P_{1}\right|_{r e f}=\left.p_{x}\right|_{r e f}+\left.\frac{e}{c} A_{1}\right|_{r e f} \equiv 0 ;\left.\quad P_{3}\right|_{r e f}=\left.p_{y}\right|_{r e f}+\left.\frac{e}{c} A_{3}\right|_{r e f} \equiv 0 ;
$$

or in the differential form

$$
\begin{aligned}
& \left.\frac{d x}{d s}\right|_{r e f}=\left.\frac{\partial h^{*}}{d P_{1}}\right|_{r e f}=0 ;\left.\frac{d y}{d s}\right|_{r e f}=\left.\frac{\partial h^{*}}{d P_{3}}\right|_{r e f}=0 ; \\
& \left.\frac{d P_{1}}{d s}\right|_{r e f}=-\left.\frac{\partial h^{*}}{d x}\right|_{r e f}=0 ;\left.\frac{d P_{3}}{d s}\right|_{r e f}=-\left.\frac{\partial h^{*}}{d y}\right|_{r e f}=0 ;
\end{aligned}
$$

2. Keep only necessary (i.e relatively low order) terms in expansion of vector potentials.

Solution: Start from the Hamiltonian

$$
\begin{gather*}
h^{*}=-(1+K x) \sqrt{G}-\frac{e}{c} A_{2}+\kappa x\left(P_{3}-\frac{e}{c} A_{3}\right)-\kappa y\left(P_{1}-\frac{e}{c} A_{1}\right) ; \\
G=\frac{(H-e \varphi)^{2}}{c^{2}}-m^{2} c^{2}-\left(P_{1}-\frac{e}{c} A_{1}\right)^{2}-\left(P_{3}-\frac{e}{c} A_{3}\right)^{2} \tag{4}
\end{gather*}
$$

and equations of motion:

$$
\begin{gather*}
x^{\prime}=\frac{d x}{d s}=\frac{\partial h^{*}}{\partial P_{1}} ; \quad \frac{d P_{1}}{d s}=-\frac{\partial h^{*}}{\partial x} ; \quad y^{\prime}=\frac{d y}{d s}=\frac{\partial h^{*}}{\partial P_{3}} ; \frac{d P_{3}}{d s}=-\frac{\partial h^{*}}{\partial y} \tag{5}\\
t^{\prime}=\frac{d t}{d s}=\frac{\partial h^{*}}{\partial P_{t}} \equiv-\frac{\partial h^{*}}{\partial H} ; \frac{d P_{t}}{d s}=-\frac{\partial h^{*}}{\partial t} \rightarrow \frac{d H}{d s}=\frac{\partial h^{*}}{\partial t}
\end{gather*}
$$

we get rather trivial expression for coordinates derivatives:

$$
\begin{gather*}
x^{\prime}=\frac{\partial h^{*}}{\partial P_{1}}=\frac{1+K x}{\sqrt{G}}\left(P_{1}-\frac{e}{c} A_{1}\right)-\left.\kappa y \rightarrow x^{\prime}\right|_{r e f}=0 \\
y^{\prime}=\frac{\partial h^{*}}{\partial P_{3}}=\frac{1+K x}{\sqrt{G}}\left(P_{3}-\frac{e}{c} A_{3}\right)+\left.\kappa x \rightarrow y^{\prime}\right|_{r e f}=0 \tag{6}\\
t^{\prime}=-\frac{\partial h^{*}}{\partial H}=\left.\frac{1+K x}{\sqrt{G}} \frac{H-e \varphi}{c^{2}} \rightarrow t^{\prime}\right|_{r e f}=\frac{E_{o}}{p_{o} c^{2}}=\frac{1}{\mathrm{v}_{o}(s)},
\end{gather*}
$$

where we use $\left.\vec{A}\right|_{\text {ref }}=0,\left.P_{1,3}\right|_{r e f}=0$ to arrive to first two equations, $E_{o}(s)=H-\left.e \varphi\right|_{r e f} \mid$ and $\left.\sqrt{G}\right|_{r e f}=p_{o}(s)$ to arrive to obvious $\mathrm{v}_{o}(s)=\frac{d s}{d t_{o}}$. Three other conditions require just a little bit more of work. Let's keep term(s) that do not vanish at the limit of the reference orbit and reference particle ins square brackets [...]. Let's start from $\frac{d P_{1}}{d s}$: differentiation on \boldsymbol{x} (where most of the terms are turned into zero at the reference orbit, except $\partial_{x} \varphi$ and $\partial_{x} A_{2}$) we have

$$
P_{1}^{\prime}=-\frac{\partial h^{*}}{\partial x}=K \sqrt{G}-\frac{1+K x}{\sqrt{G}}\left(\left[\frac{e E}{c^{2}} \frac{\partial \varphi}{\partial x}\right]+p_{x} \frac{e}{c} \frac{\partial A_{1}}{\partial x}+p_{y} \frac{e}{c} \frac{\partial A_{3}}{\partial x}\right)+\left[\frac{e}{c} \frac{\partial A_{2}}{\partial x}\right]+\kappa p_{y}+\kappa\left(\frac{e}{c} \frac{\partial A_{1}}{\partial x} y-\frac{e}{c} \frac{\partial A_{3}}{\partial x} x\right)
$$

Let's first look at terms colored in red and prove that they are just a boring zero at the reference orbit:

$$
\left.p_{x, y}\right|_{r e f}=0 ; x,\left.y\right|_{r e f}=0 \Rightarrow\left(p_{x} \frac{e}{c} \frac{\partial A_{1}}{\partial x}+p_{y} \frac{e}{c} \frac{\partial A_{3}}{\partial x}\right)_{r e f}=\left(\kappa p_{y}\right)=\kappa\left(\frac{e}{c} \frac{\partial A_{1}}{\partial x} y-\frac{e}{c} \frac{\partial A_{3}}{\partial x} x\right) 0
$$

it means that

$$
\left.P_{1}^{\prime}\right|_{r e f}=p_{o} K-\left.\frac{e E}{p_{o} c^{2}} \frac{\partial \varphi}{\partial x}\right|_{r e f}+\left.\frac{e}{c} \frac{\partial A_{2}}{\partial x}\right|_{r e f}=p_{o} K-\left.\frac{e}{\mathrm{v}_{o}} \frac{\partial \varphi}{\partial x}\right|_{r e f}+\left.\frac{e}{c} \frac{\partial A_{2}}{\partial x}\right|_{r e f}
$$

and we need expressions for potentials

$$
\begin{aligned}
A_{1} & =\left.\frac{1}{2} \sum_{n, k=0}^{\infty} \partial_{x}^{k} \partial_{y}^{n} B_{s}\right|_{r o} \frac{x^{k}}{k!} \frac{y^{n+1}}{(n+1)!} ; A_{3}=-\left.\frac{1}{2} \sum_{n, k=0}^{\infty} \partial_{x}^{k} \partial_{y}^{n} B_{s}\right|_{r o} \frac{x^{k+1}}{(k+1)!} \frac{y^{n}}{n!} \\
A_{2} & =\sum_{n=1}^{\infty}\left\{\partial_{x}^{n-1}\left((1+K x) B_{y}+\kappa x B_{s}\right)_{r o} \frac{x^{n}}{n!}-\partial_{y}^{n-1}\left((1+K x) B_{x}-\kappa y B_{s}\right)_{r o} \frac{y^{n}}{n!}\right\}+ \\
& +\frac{1}{2} \sum_{n, k=1}^{\infty}\left\{\partial_{x}^{n-1} \partial_{y}^{k}\left((1+K x) B_{y}+\kappa x B_{s}\right)_{r o} \frac{x^{n}}{n!} \frac{y^{k}}{k!}-\partial_{x}^{n} \partial_{y}^{k-1}\left((1+K x) B_{x}-\kappa y B_{s}\right)_{r o} \frac{x^{n}}{n!} \frac{y^{k}}{k!}\right\} ; \\
\varphi & =\varphi_{o}(s, t)-\left.\sum_{n=1}^{\infty} \partial_{x}^{n-1} E_{x}\right|_{r o} \frac{x^{n}}{n!}-\left.\sum_{n=1}^{\infty} \partial_{y}^{n-1} E_{y}\right|_{r o} \frac{y^{n}}{n!}-\frac{1}{2} \sum_{n . k=1}^{\infty}\left(\left.\partial_{x}^{n-1} \partial_{y}^{k} E_{x}\right|_{r o}+\partial_{x}^{n} \partial_{y}^{k-1} E_{y}| |_{r o}\right) \frac{x^{n}}{n!} \frac{y^{k}}{k!} ;
\end{aligned}
$$

with a simple consideration that derivatives of potentials containing any power of x higher than one will be zero at reference orbitL

$$
\left.\frac{\partial a_{n m} x^{n+1} y^{m}}{\partial x}\right|_{r e f}=(n+1) a_{n m}\left(x^{n} y\right)_{x, y \rightarrow 0}^{m}=0, n+m>0
$$

hence

$$
-\left.\frac{\partial \varphi}{\partial x}\right|_{r e f}=\left.E_{x}\right|_{r e f} ;\left.\frac{\partial A_{2}}{\partial x}\right|_{r e f}=-\left.B_{y}\right|_{r e f}
$$

gives us connection between curvature of the reference orbit that components of electric and magnetic fields:

$$
\begin{equation*}
K(s) \equiv \frac{1}{\rho(s)}=-\frac{e}{p_{o} c}\left(\left.B_{y}\right|_{r e f}+\left.\frac{c}{\mathrm{v}_{o}} E_{x}\right|_{r e f}\right) \tag{7}
\end{equation*}
$$

Second transverse coordinate:

$$
\begin{gathered}
P_{3}^{\prime}=-\frac{\partial h^{*}}{\partial y}=-\frac{1+K x}{\sqrt{G}}\left(\left[\frac{e E}{c^{2}} \frac{\partial \varphi}{\partial y}\right]+p_{x} \frac{e}{c} \frac{\partial A_{1}}{\partial y}+p_{y} \frac{e}{c} \frac{\partial A_{3}}{\partial y}\right)+\left[\frac{e}{c} \frac{\partial A_{2}}{\partial y}\right]-\kappa p_{x}+\kappa\left(\frac{e}{c} \frac{\partial A_{1}}{\partial y} y-\frac{e}{c} \frac{\partial A_{3}}{\partial y} x\right) \\
\left.P_{2}^{\prime}\right|_{r e f}=-\left.\frac{e E}{p_{o} c^{2}} \frac{\partial \varphi}{\partial y}\right|_{r e f}+\left.\frac{e}{c} \frac{\partial A_{2}}{\partial y}\right|_{r e f}=0
\end{gathered}
$$

where we eliminated terms in red as zeros at the reference orbit with the remaining need of two field components

$$
-\left.\frac{\partial \varphi}{\partial y}\right|_{r e f}=\left.E_{y}\right|_{r e f} ;\left.\frac{\partial A_{2}}{\partial y}\right|_{r e f}=\left.B_{x}\right|_{r e f}
$$

to arrive to "absence of curvature" in y direction:

$$
\begin{equation*}
\left.B_{x}\right|_{r e f}=\left.\frac{E_{o}}{p_{o} c} E_{y}\right|_{r e f} \tag{8}
\end{equation*}
$$

Finally, let's look at evolution of Hamiltonian of the reference particle:

$$
\begin{gathered}
\frac{d H_{o}(s)}{d s}=\left.\frac{\partial h^{*}}{\partial t}\right|_{r e f}=(1+K x)_{r e f} \frac{\left(\left[\frac{e E}{c^{2}} \frac{\partial \varphi}{\partial t}\right]+p_{x} \frac{e}{c} \frac{\partial A_{1}}{\partial t}+p_{y} \frac{e}{c} \frac{\partial A_{3}}{\partial t}\right)_{r e f}}{\left.\sqrt{G}\right|_{r e f}} \\
-\left(\frac{e}{c} \frac{\partial A_{2}}{\partial t}\right)_{r e f}+\kappa\left(\frac{e}{c} \frac{\partial A_{1}}{\partial x} y-\frac{e}{c} \frac{\partial A_{3}}{\partial x} x\right)_{r e f}=\left.\frac{e E_{o}}{p_{o} c^{2}} \frac{\partial \varphi}{\partial t}\right|_{r e f} \\
\frac{d H_{o}(s)}{d s}=\left.\frac{\partial h^{*}}{d t}\right|_{r e f}=\left.\frac{e E_{o}}{p_{o} c^{2}} \frac{\partial \varphi}{\partial t}\right|_{r e f}
\end{gathered}
$$

which can be transferred using $H=E+e \varphi$ and $d \varphi_{o}\left(s, t_{o}(s)\right)=\frac{\partial \varphi_{o}}{\partial s} d s+\frac{\partial \varphi_{o}}{\partial t} \frac{d s}{\mathrm{v}_{\mathrm{o}}(s)}$ into the energy gain of the reference particle along is trajectory:

$$
\begin{equation*}
\frac{d E_{o}(s)}{d s}=\frac{d\left(H_{o}(s)-\varphi_{o}\left(s, t_{o}(s)\right)\right.}{d s}=-\left.e \frac{\partial \varphi}{\partial s}\right|_{r e f} \equiv e E_{2}\left(s, t_{o}(s)\right) \tag{9}
\end{equation*}
$$

Problem 2: Trace and determinant. 4 points

Solution of any linear n-dimensional differential equation

$$
\frac{d X}{d s}=\mathbf{D}(s) X
$$

can be expressed in a form of transport matrix

$$
X(s)=\mathbf{M}(s) X_{o} ; X_{o}=X(s=0)
$$

with

$$
\begin{equation*}
\frac{d \mathbf{M}(s)}{d s}=\mathbf{D}(s) \mathbf{M}(s) ; \mathbf{M}(s=0)=\mathbf{I} \tag{1}
\end{equation*}
$$

where I is unit $n x n$ matrix. Prove that

$$
\operatorname{det}(\mathbf{M}(s))=\exp \left(\int_{0}^{s} \operatorname{Trace}(\mathbf{D}(\zeta)) d \zeta\right)
$$

Hints:

1. Prove first that

$$
\frac{d}{d s} \operatorname{det} \mathbf{M}=\operatorname{Trace}(\mathbf{D}) \cdot \operatorname{det} \mathbf{M}
$$

2. Use infinitesimally small step in eq. (1) to conclude that

$$
\begin{gather*}
d \mathbf{M}(s)=\mathbf{D}(s) \mathbf{M}(s) d s+O\left(d s^{2}\right) \Rightarrow \mathbf{M}(s+d s)=(\mathbf{I}+\mathbf{D}(s) d s) \cdot \mathbf{M}(s)+O\left(d s^{2}\right) ; \\
\operatorname{det} \mathbf{M}(s+d s)=\operatorname{det}(\mathbf{I}+\mathbf{D}(s) d s) \cdot \operatorname{det} \mathbf{M}(s)+O\left(d s^{2}\right) \rightarrow \tag{1}\\
\frac{1}{\operatorname{det} \mathbf{M}} \frac{d(\operatorname{det} \mathbf{M})}{d s}=\frac{\operatorname{det}(\mathbf{I}+\mathbf{D}(s) d s)-1}{d s} ;
\end{gather*}
$$

3. What remained is to prove us that

$$
\operatorname{det}(\mathbf{I}+\varepsilon \mathbf{D})=1+\varepsilon \cdot \operatorname{Trace}[\mathbf{D}]+O\left(\varepsilon^{2}\right)
$$

where ε is infinitesimally small real number and term $O\left(\varepsilon^{2}\right)$ contains second and higher orders of ε.
4. First, fist look on the product of diagonal elements $\prod_{m=1}^{n}\left(1+\varepsilon a_{m m}\right)$ in $\operatorname{det}[I+\varepsilon A]$ in the first order of ε. Then prove that contributions to determinant from non-diagonal terms $a_{k m} ; k \neq m$ is $O\left(\varepsilon^{2}\right)$ or higher order of ε. It is possible to do it directly for an arbitrary $n x n$ matrix, or start from $n=1$ and use induction from n to $n+1$.

Solution: Fist, let's assume that $\operatorname{det}(\mathbf{I}+\varepsilon \mathbf{D})=1+\varepsilon \cdot \operatorname{Trace}[\mathbf{D}]+O\left(\varepsilon^{2}\right)$, then

$$
\begin{gather*}
\operatorname{det}(\mathbf{I}+\mathbf{D} d s)=1+\operatorname{Trace} \mathbf{D} d s ; \mathbf{M}(0)=\mathbf{I} \rightarrow \operatorname{det} \mathbf{M}(0)=1 ; \\
\frac{1}{\operatorname{det} \mathbf{M}} \frac{d(\operatorname{det} \mathbf{M})}{d s}=\frac{d}{d s} \ln (\operatorname{det} \mathbf{M})=\operatorname{Trace} \mathbf{D} \rightarrow \ln (\operatorname{det} \mathbf{M}(s))=\int_{0}^{s} \operatorname{Trace} \mathbf{D}(\zeta) d \zeta \tag{3}\\
\operatorname{det} \mathbf{M}(s)=\mathrm{e}^{\int_{0}^{s} \operatorname{Trace} \mathbf{D}(\zeta) d \zeta}
\end{gather*}
$$

Just for fun. let's use induction. For $n=1$ we have

$$
\operatorname{det}\left(1+\varepsilon d_{11}\right)=1+\varepsilon d_{11} ; O\left(\varepsilon^{2}\right)=0
$$

For $\mathrm{n}=2$

$$
\operatorname{det}\left[\begin{array}{cc}
1+\varepsilon d_{11} & d_{12} \tag{5}\\
d_{21} & 1+\varepsilon d_{22}
\end{array}\right]=\left(1+\varepsilon d_{11}\right)\left(1+\varepsilon d_{22}\right)+\varepsilon^{2} d_{12} d_{21}=1+\varepsilon\left(d_{11}+d_{22}\right)+O\left(\varepsilon^{2}\right)
$$

Let's assume that for $n x n$ matrix our ration is correct

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{I}_{n x n}+\varepsilon \mathbf{D}_{n x n}\right)=1+\varepsilon \operatorname{Trace} \mathbf{D}_{n x n}+O\left(\varepsilon^{2}\right) \tag{6}
\end{equation*}
$$

and add element to expand to $(n+1) x(n+1)$:

$$
\begin{gather*}
\operatorname{det}\left[\begin{array}{cccc}
1+\varepsilon d_{1,1} & \ldots & \varepsilon d_{1, n} & \varepsilon d_{1, n+1} \\
\ldots & \ldots & \ldots & \ldots \\
\varepsilon d_{n, 1} & \ldots & 1+\varepsilon d_{n, n} & \varepsilon d_{n, n+1} \\
\varepsilon d_{n+1,1} & \ldots & \varepsilon d_{n+1,} & 1+\varepsilon d_{n+1, n+1}
\end{array}\right]= \tag{7}\\
\left(1+\varepsilon d_{n+1, n+1}\right) \operatorname{det}\left(I_{n x n}+\varepsilon D_{n x n}\right)+\varepsilon \sum_{k=1}^{n}\left(d_{n+1, k} \cdot r e s_{n+1, k}+d_{k, n+1} \cdot r e s_{k, n+1}\right)
\end{gather*}
$$

The blue term is easy to evaluate

$$
\begin{align*}
& \left(1+\varepsilon d_{n+1, n+1}\right) \operatorname{det}\left(I_{n x n}+\varepsilon D_{n x n}\right)=\left(1+\varepsilon d_{n+1, n+1}\right)\left(1+\varepsilon \operatorname{Trace} D_{n x n}+O\left(\varepsilon^{2}\right)\right)= \tag{8}\\
& 1+\varepsilon\left(\operatorname{Trace}^{n x n}+d_{n+1, n+1}\right)+O\left(\varepsilon^{2}\right)=1+\varepsilon \operatorname{Trace} D_{n+1 \times n+1} O\left(\varepsilon^{2}\right)
\end{align*}
$$

Part of the determinant containing $\varepsilon d_{n+1, k}$ or $\varepsilon d_{k, n+1}$ with $\mathrm{k} \neq \mathrm{n}+1$ eliminated two noninfinite components $1+\varepsilon d_{k, k}$ and $1+\varepsilon d_{n+1, n+1}$. Since this part of the determinant contain the product contains $n+l$ elements, and only maximum $n-1$ of them are not infinitesimal, it means that its lowers power is ε^{2}. Hence, all this terms can be neglected when $\varepsilon->0$.

Munch more simple and straightforward is this prove:
The contribution to determinant from the diagonal elements is

$$
\begin{equation*}
\prod_{m=1}^{n}\left(1+\varepsilon a_{m m}\right)=1+\varepsilon \sum_{m=1}^{n} a_{m m}+O\left(\varepsilon^{2}\right)=1+\varepsilon \cdot \operatorname{Trace}[A]+O\left(\varepsilon^{2}\right) \tag{1}
\end{equation*}
$$

A generic term containing a non-diagonal element $a_{k m} ; k \neq m$, excludes from the product at least two diagonal elements $1+\varepsilon a_{m m}$ and $1+\varepsilon a_{k k}$.

$$
\pm e_{m \ldots} e_{k \ldots \ldots} \varepsilon a_{m, k} \prod_{i \neq m, j \neq k}^{n} a_{i, j}\left(\delta_{i j}+\varepsilon a_{i, j}\right)
$$

Since the total number of elements in the product is n , such term contains at least two nondiagonal elements, each of which contains ε. This proves that non-diagonal terms can contribute only second and higher order term into $O\left(\varepsilon^{2}\right)$.
Problem 3: Proving solutions of Vlasov and Fokker-Plank equation. 15 points
Part 1. 5 points. Prove that for uncoupled vertical oscillations

$$
\begin{equation*}
\frac{d y}{d s}=y^{\prime} ; \frac{d y^{\prime}}{d s} \equiv y^{\prime \prime}=-K_{1}(s) y ; \tag{1}
\end{equation*}
$$

the phase space distribution

$$
\begin{equation*}
F\left(y, y^{\prime}, s\right)=f\left(\zeta\left(y, y^{\prime}, s\right)\right) ; \zeta\left(y, y^{\prime}, s\right)=\left(\mathrm{w}(s) y^{\prime}-\mathrm{w}^{\prime}(s) y\right)^{2}+\left(\frac{y}{\mathrm{w}(s)}\right)^{2} \tag{2}
\end{equation*}
$$

with an arbitrary differentiable $f(\zeta)$ and beam envelope

$$
\begin{equation*}
\mathrm{w}^{\prime \prime}(s)+K_{1}(s) \mathrm{w}(s)=\frac{1}{\mathrm{w}(s)^{3}} \tag{3}
\end{equation*}
$$

satisfied Vlasov equation:

$$
\begin{equation*}
\frac{\partial F}{\partial s}+\frac{\partial F}{\partial y} y^{\prime}+\frac{\partial F}{\partial y^{\prime}} y^{\prime \prime}=0 . \tag{4}
\end{equation*}
$$

Hint: Use well-known $\frac{\partial_{y, y^{\prime}, s} f(\zeta)}{\partial y, y^{\prime}, s}=\frac{d f(\zeta)}{d \zeta} \cdot \frac{\partial_{y, y^{\prime}, s} \zeta}{\partial y, y^{\prime}, s}$ and equations (1) and (3) to prove (4)
Part 2. 10 points. Prove that phase space distribution

$$
\begin{equation*}
F\left(y, y^{\prime}, s\right)=f(\zeta)=c \cdot \exp \left(-\frac{\zeta}{2 \varepsilon}\right) \tag{5}
\end{equation*}
$$

satisfies phase-averaged Fokker Plank equation:

$$
\begin{equation*}
\frac{\partial F}{\partial s}+\frac{\partial F}{\partial y} y^{\prime}-\frac{\partial}{\partial y^{\prime}} F\left(K_{1} y-\xi y^{\prime}\right)=\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(F \cdot D_{y y}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y \partial y^{\prime}}\left(F \cdot D_{y y^{\prime}}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y^{\prime 2}}\left(F \cdot D_{y^{\prime} y^{\prime}}\right)=0 \tag{6}
\end{equation*}
$$

for uncoupled vertical oscillations with additional damping terms and random noise (diffusion)

$$
\begin{gather*}
\frac{d y}{d s}=y^{\prime} ; \frac{d y^{\prime}}{d s} \equiv y^{\prime \prime}=-K_{1}(s) y-\xi(s) y^{\prime}+v(s) \cdot \sum_{i=1}^{N} r n d_{i} \cdot \delta\left(s-s_{i}\right) ; s_{i} \in(0, C) \tag{7}\\
\langle r n d\rangle=0 ;\left\langle r n d^{2}\right\rangle=1
\end{gather*}
$$

with constant emittance $\varepsilon=\frac{\left\langle D_{y^{\prime} y^{\prime}}, \mathrm{w}^{2}\right\rangle}{2\langle\xi\rangle}$.
Step 1: First, eliminate fast oscillating terms using eq. (4): $\frac{\partial F}{\partial s}=-\frac{\partial F}{\partial y} y^{\prime}-\frac{\partial F}{\partial y^{\prime}} y^{\prime \prime}$.
Step 2: Evaluate three diffusion coefficients

$$
D_{u v}=\lim _{\tau \rightarrow 0} \frac{1}{\tau}(u(s+\tau)-u(s))(v(s+\tau)-v(s))
$$

Show that $D_{y y}=0$ by finding that $(y(s+\tau)-y(s))^{2} \sim \tau^{2}$, and that $\left\langle D_{y y^{\prime}}\right\rangle=0$, when averaging is taken of the random kicks with $\left\langle g\left(y, y^{\prime}\right) \cdot r n d\right\rangle=g\left(y, y^{\prime}\right) \cdot\langle r n d\rangle=0$. Finally, calculate $\left\langle D_{y^{\prime} y^{\prime}}\right\rangle$ using following manipulations:

$$
y^{\prime}(s+\tau)=y^{\prime}(s)+K\left(s^{*}\right) y\left(s^{*}\right)+\sum_{s_{i}\{\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i} ; s^{*} \in\{s, s+\tau\}
$$

Show that after averaging over random kick strength, the only non-zero term originates only from square of the random kicks $\left\langle\left(\sum_{s_{i}\{\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i}\right)^{2}\right\rangle \rightarrow \sum_{s_{i}\{\{s, s+\tau\}} v^{2}\left(s_{i}\right) \cdot\left\langle r n d_{i}^{2}\right\rangle$
Here you need to use the fact stand random kicks are not correlated:

$$
\left\langle r n d_{i} \cdot r n d_{j \neq i}\right\rangle=0
$$

to arrive to $\left\langle D_{y^{\prime} y^{\prime}}\right\rangle$ independent on y and y^{\prime}, which allows you to take it out of $\frac{1}{2} \frac{\partial^{2}}{\partial y^{\prime 2}}\left(F \cdot D_{y^{\prime} y^{\prime}}\right)$.
Step 3: after completing all differentiations, use expression for y and y^{\prime}

$$
y=a \mathrm{w}(s) \cdot \cos \varphi ; y^{\prime}=a\left(\mathrm{w}^{\prime}(s) \cdot \cos \varphi-\frac{\sin \varphi}{\mathrm{w}(s)}\right)
$$

and average over betatron phases φ arrive to equation in form of $F\left(y, y^{\prime}, s\right) \cdot g\left(\xi(s), \mathrm{w}(s) D_{y^{\prime} y^{\prime}}(s), a^{2}, \varepsilon\right)=0$, which means that $g=0$.

Step 3: Assuming that a^{2}, ε (i.e. practically are constants!) are slow function compared with $\xi(s), \mathrm{w}(s) D_{y^{\prime} y^{\prime}}(s)$, average over the ring circumference to arrive to conclusion that $\varepsilon=\frac{\left\langle D_{y^{\prime} y^{\prime}} \mathrm{w}^{2}\right\rangle_{C}}{2\langle\xi\rangle_{C}}$ satisfies the Fokker-Plank equation.

Solution:

Part one: Let's differentiate one by one, take $\frac{d f}{d \zeta}$ outside of the bracket use, equation of motion $y^{\prime \prime}=k y$, combine terms and find that they cancel each other to get pure zero:

$$
\begin{gathered}
\frac{d F}{d s}=\frac{\partial F}{\partial s}+\frac{\partial F}{\partial y} y^{\prime}+\frac{\partial F}{\partial y^{\prime}} y^{\prime \prime}=0 ; F\left(y, y^{\prime}, s\right)=f\left(\left(\mathrm{w} y^{\prime}-\mathrm{w}^{\prime} y\right)^{2}+\left(\frac{y}{\mathrm{w}}\right)^{2}\right) \\
\frac{\partial F}{\partial s}=\frac{d f}{d \zeta}\left(\left(\mathrm{w} y^{\prime}-\mathrm{w}^{\prime} y\right)\left(\mathrm{w}^{\prime} y^{\prime}-\mathrm{w}^{\prime \prime} y\right)-\frac{y^{2}}{\mathrm{w}^{3}} \mathrm{w}^{\prime}\right) \\
y^{\prime} \frac{\partial F}{\partial y}=-\frac{d f}{d \zeta} \cdot y^{\prime}\left(\mathrm{w}^{\prime}\left(\mathrm{w} y^{\prime}-\mathrm{w}^{\prime} y\right)-\frac{y}{\mathrm{w}^{2}}\right) \\
\frac{d f}{d \zeta}\left\{y^{2} \mathrm{w}^{\prime}\left(\mathrm{w}^{\prime \prime}+K_{1} \mathrm{w}-\frac{1}{\mathrm{w}^{3}}\right)-y^{\prime 2}\left(\mathrm{w}^{\prime}-\mathrm{ww}^{\prime}\right)-y^{\prime} y\left(\mathrm{w}^{\prime 2}-\mathrm{w}^{\prime 2}+\mathrm{w}\left(\mathrm{w}^{\prime \prime}+K_{1} \mathrm{w}-\frac{1}{\mathrm{w}^{2}}\right)^{2}\right)\right\}=0 \\
\frac{\partial F}{\partial y^{\prime}}=-\frac{d f}{d \zeta}\left(K_{1} \mathrm{w}^{2} y y^{\prime}-K_{1} \mathrm{ww}^{\prime} y^{2}\right) ; \mathrm{w}^{\prime \prime}+K_{1} \mathrm{w}=\frac{1}{\mathrm{w}^{3}} ; y^{\prime \prime}=k y \\
\partial y \\
y^{\prime}+\frac{\partial F}{\partial y^{\prime}} K y=0
\end{gathered}
$$

It is quate natural, because $\zeta=\left(\mathrm{w} y^{\prime}-\mathrm{w}^{\prime} y\right)^{2}+\left(\frac{y}{\mathrm{w}}\right)^{2}=a^{2}=i n v$, is invariant of motion, which means that

$$
\text { Step } \frac{d F}{d s}=\frac{d f}{d \zeta} \cdot \frac{d \zeta}{d s}=\frac{d f}{d \zeta} \cdot \frac{d a^{2}}{d s}=0
$$

Part two: by adding friction and random kicks :

$$
\begin{gathered}
\frac{d y}{d s}=y^{\prime} ; \frac{d y^{\prime}}{d s} \equiv y^{\prime \prime}=-K_{1}(s) y-\xi(s) y^{\prime}+v(s) \cdot \sum_{i=1}^{N} r n d_{i} \cdot \delta\left(s-s_{i}\right) ; s_{i} \in(0, C) \\
\langle r n d\rangle=0 ;\left\langle r n d^{2}\right\rangle=1
\end{gathered}
$$

we have some old and some new terms in the Fokker-plank equation:

$$
\begin{aligned}
& \frac{\partial F}{\partial s}+\frac{\partial F}{\partial y} y^{\prime}-\frac{\partial}{\partial y^{\prime}} F\left(K_{1} y-\xi y^{\prime}\right)=D T ; D T=\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(D_{y y} F\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y \partial y^{\prime}}\left(D_{y y^{\prime}} F\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y^{\prime 2}}\left(D_{y^{\prime} y^{\prime}} F\right) \\
& \frac{\partial F}{\partial s}+\frac{\partial F}{\partial y} y^{\prime}-\frac{\partial}{\partial y^{\prime}} F\left(K_{1} y-\xi y^{\prime}\right)=\left(\frac{\partial F}{\partial s}+\frac{\partial F}{\partial y} y^{\prime}-\frac{\partial F}{\partial y^{\prime}} K_{1} y\right)-\frac{\partial f}{\partial y^{\prime}} \xi y^{\prime}-\xi f=D T
\end{aligned}
$$

where can use previously found $\frac{\partial F}{\partial s}+\frac{\partial F}{\partial y} y^{\prime}-\frac{\partial F}{\partial y^{\prime}} K_{1} y=0$ to reduce it to

$$
\xi \cdot \frac{\partial\left(y^{\prime} F\right)}{\partial y^{\prime}}+D T=0
$$

Now it is time to calculate diffusion coefficients. Let's start from easy one:

$$
D_{y y}=\lim _{\tau \rightarrow 0} \frac{1}{\tau}(y(s+\tau)-y(s))^{2}=\lim _{\tau \rightarrow 0}\left(y^{\prime}\left(s^{*}\right)^{2} \tau\right)=0
$$

where we used well known formular from math analysis:

$$
y(s+\tau)-y(s)=y^{\prime}\left(s^{*}\right) \cdot \tau ; s^{*} \in\{s, s+\tau\} .
$$

Mixed term takes a bit more efforts because we need first find that

$$
\begin{aligned}
& y^{\prime}(s+\tau)-y^{\prime}(s)=\int_{s}^{s+\tau} d z\left\{v(s) \cdot \sum_{i=1}^{N} r n d_{i} \cdot \delta\left(z-s_{i}\right)-K_{1}(z) y-\xi(z) y^{\prime}\right\}= \\
& \sum_{s_{i}\{\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i}-\tau\left(K_{1}\left(s_{1}\right) y\left(s_{1}\right)-\xi\left(s_{2}\right) y^{\prime}\left(s_{2}\right)\right) ; s_{1,2} \in\{s, s+\tau\} .
\end{aligned}
$$

and recognizing that regular (non-random) term is $\sim \tau^{2}$ and vanishes

$$
\begin{gathered}
D_{y y^{\prime}}=\lim _{\tau \rightarrow 0} \frac{1}{\tau}(y(s+\tau)-y(s))\left(y^{\prime}(s+\tau)-y^{\prime}(s)\right)= \\
-\lim _{\tau \rightarrow 0}\left(y^{\prime}\left(s^{*}\right) \cdot\left(\left(K\left(s_{1}\right) y\left(s_{1}\right)+\xi\left(s_{2}\right) y^{\prime}\left(s_{2}\right)\right) \tau-\sum_{s_{i} \in\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i}\right)\right)=\lim _{\tau \rightarrow 0}\left(y^{\prime}\left(s^{*}\right) \cdot \sum_{s_{i} \in\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i}\right) ; \\
\left\langle D_{y y^{\prime}}\right\rangle=\lim _{\tau \rightarrow 0}\left(y^{\prime}\left(s^{*}\right) \cdot \sum_{s_{i}\{\{s, s+\tau\}}^{N} v\left(s_{i}\right) \cdot\left\langle r n d_{i}\right\rangle\right)=0 ;
\end{gathered}
$$

while mixed product vanishes because zero average value of random kicks $\left\langle r n d_{i}\right\rangle=0$.
What is left is to calculate non-vanishing diffusion coeeficient

$$
\begin{gathered}
D_{y^{\prime} y^{\prime}}=\lim _{\tau \rightarrow 0} \frac{1}{\tau}\left(y^{\prime}(s+\tau)-y^{\prime}(s)\right)^{2}=\lim _{\tau \rightarrow 0} \frac{1}{\tau}\left(r e g \cdot \tau-\sum_{s_{i} \in\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i}\right)^{2} ; r e g=K\left(s_{1}\right) y\left(s_{1}\right)+\xi\left(s_{2}\right) y^{\prime}\left(s_{2}\right) \\
D_{y^{\prime} y^{\prime}}=\lim _{\tau \rightarrow 0} \frac{1}{\tau}\left(r e g^{2} \cdot \tau^{2}-2 r e g \cdot \tau \sum_{s_{i} \in\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i}+\left(\sum_{s_{i} \in\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i}\right)^{2}\right)
\end{gathered}
$$

by eliminating regular term $\sim \tau^{2}$, and product of the regular term with random kicks:

$$
\begin{gathered}
\lim _{\tau \rightarrow 0} \frac{1}{\tau}(r e g \cdot \tau)^{2}=0 ; \\
\lim _{\tau \rightarrow 0} \frac{1}{\tau}(r e g \cdot \tau) \sum_{s_{i}\{\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i}=r e g \cdot \sum_{s_{i}\{\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i} \\
\left\langle r e g \cdot \sum_{s_{i} \in\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i}\right\rangle=r e g \cdot \sum_{s_{i} \in\{s, s+\tau\}} v\left(s_{i}\right) \cdot\left\langle r n d_{i}\right\rangle=0 .
\end{gathered}
$$

The remaining term requres a little bit of work by recognizing that randdom kicks occuring in different positions are uncorreltated and the only non-zero term comes from square of the kicks:

$$
\begin{gathered}
D_{y^{\prime} y^{\prime}}=\lim _{\tau \rightarrow 0} \frac{1}{\tau}\left(\sum_{s_{i}\{\{s, s+\tau\}} v\left(s_{i}\right) \cdot r n d_{i}\right)^{2}=\lim _{\tau \rightarrow 0} \frac{\sum_{i} \sum_{j \neq i} v\left(s_{i}\right) v\left(s_{j}\right) \cdot r n d_{i} \cdot r n d_{j}}{\tau}+\lim _{\tau \rightarrow 0} \frac{\sum_{s_{i}\{\{s, s+\tau\}} v^{2}\left(s_{i}\right) \cdot r n d_{i}^{2}}{\tau} ; \\
\left\langle r n d_{i} \cdot r n d_{j \neq i}\right\rangle=0 ;\left\langle D_{\left.y^{\prime} y^{\prime}\right\rangle}\right\rangle=\lim _{\tau \rightarrow 0} \frac{\left\langle\sum_{s_{i} \in\{s, s+\tau\}} v^{2}\left(s_{i}\right) \cdot\left\langle r n d_{i}^{2}\right\rangle\right\rangle}{\tau}=\frac{N}{C}\left\langle v^{2}(s)\right\rangle
\end{gathered}
$$

where we instriduce average frequency of kisk $\frac{N}{C}$ and their average RMS strenth $\left\langle v^{2}(s)\right\rangle$. In other words, this diffusion coefficient is completely defined by the frequency and strength of the random kicks and does not depend on y and y' - hence we can take is out from the differential:

$$
\xi \cdot \frac{\partial\left(y^{\prime} F\right)}{\partial y^{\prime}}+\frac{D_{y^{\prime} y^{\prime}}}{2} \frac{\partial^{2} F}{\partial y^{\prime 2}}=0
$$

Now we need to use specific expression for F :

$$
F\left(y, y^{\prime}, s\right)=c \cdot \exp \left(-\frac{\left(\mathrm{w}(s) y^{\prime}-\mathrm{w}^{\prime}(s) y\right)^{2}+\left(\frac{y}{\mathrm{w}(s)}\right)^{2}}{2 \varepsilon}\right)
$$

and calcuate the derivatives:

$$
\begin{gathered}
\frac{\partial F}{\partial y^{\prime}}=-\frac{F \mathrm{w}}{\varepsilon}\left(\mathrm{w} y^{\prime}-\mathrm{w}^{\prime} y\right) ; \frac{\partial^{2} F}{\partial y^{\prime 2}}=\frac{F \mathrm{w}^{2}}{\varepsilon^{2}}\left\{\left(\mathrm{w} y^{\prime}-\mathrm{w}^{\prime} y\right)^{2}-\varepsilon \mathrm{w}^{2}\right\} \\
\frac{\partial}{\partial y^{\prime}}\left(F \xi y^{\prime}\right)=F \xi\left(1-\frac{\mathrm{w}}{\varepsilon}\left(\mathrm{w}^{\prime 2}-\mathrm{w}^{\prime} y y^{\prime}\right)\right)
\end{gathered}
$$

combining the terms we get to

$$
F\left(\xi-D_{y^{\prime} y^{\prime}} \frac{\mathrm{w}^{2}}{2 \varepsilon}\right)-\frac{F}{\varepsilon}\left(\xi\left(\mathrm{w}^{2} y^{\prime 2}-\mathrm{ww}^{\prime} y^{2}\right)-D_{y^{\prime} y^{\prime}} \frac{\mathrm{w}^{2}\left(\mathrm{w}^{\prime}-\mathrm{w}^{\prime} y\right)^{2}}{2 \varepsilon}\right)=0
$$

where we need to introduce expressions for y and y^{\prime} :

$$
\mathrm{w}^{\prime} y=a \cdot \mathrm{ww}^{\prime} \cdot \cos \varphi ; \mathrm{w}^{\prime}=a\left(\mathrm{w}^{\prime} \cdot \cos \varphi-\sin \varphi\right) ; \mathrm{w}^{\prime}-\mathrm{w}^{\prime} y=-a \cdot \sin \varphi
$$

and averrage ofve the betatron phases

$$
\left\langle\mathrm{w}^{2} y^{\prime 2}-\mathrm{ww}^{\prime} y^{2}\right\rangle_{\varphi}=\frac{a^{2}}{2} ; \mathrm{w}^{2}\left\langle y^{\prime 2}\right\rangle_{\varphi}-\mathrm{ww}^{\prime}\left\langle y y^{\prime}\right\rangle_{\varphi}=\frac{a^{2}}{2}
$$

to get the desirable final product

$$
F\left(1-\frac{a^{2}}{2 \varepsilon}\right)\left(\xi-D_{y^{\prime} y^{\prime}} \frac{\mathrm{w}^{2}}{2 \varepsilon}\right)=0
$$

With

$$
\frac{a^{2}}{2 \varepsilon} \cong \text { const } ; F=f\left(a^{2}\right) \cong \text { const } .
$$

being either constabt or very slow variable, we must concluded that

$$
\left\langle\xi-D_{y^{\prime} y^{\prime}} \frac{\mathrm{w}^{2}}{2 \varepsilon}\right\rangle_{C}=0 \Rightarrow \varepsilon=\frac{1}{2} \frac{\left\langle D_{y^{\prime} y^{\prime}}(s) \mathrm{w}^{2}(s)\right\rangle_{C}}{\langle\xi(s)\rangle_{C}} \equiv \frac{1}{2} \frac{\left\langle D_{y^{\prime} y^{\prime}}(s) \beta_{y}(s)\right\rangle_{C}}{\langle\xi(s)\rangle_{C}}
$$

where we average both the product of diffusion coefficient with vertical β-function and the decrement of the vertical oscillations over the circumference of the storage ring, C.

