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Chapter 31510

Classical Cyclotron1511

Abstract This chapter introduces the classical cyclotron, and the theoretical material1512

needed for the simulation exercises. It begins with a brief reminder of the historical1513

context, and continues with beam optics and with the principles and methods which1514

the classical cyclotron leans on, including1515

- ion orbit in a cyclic accelerator,1516

- weak focusing and periodic transverse motion,1517

- revolution period and isochronism,1518

- voltage gap and resonant acceleration,1519

- the cyclotron equation.1520

The simulation of a cyclotron dipole will either resort to an analytical model of the1521

field: the optical element DIPOLE, or will resort to using a field map together with1522

the keyword TOSCA to handle it and raytrace through. An additional accelerator1523

device needed in the exercises, CAVITE, simulates a local oscillating voltage. Run-1524

ning a simulation generates a variety of output files, including the execution listing1525

zgoubi.res, always, and other zgoubi.plt, zgoubi.CAVITE.out, zgoubi.MATRIX.out,1526

etc., aimed at looking up program execution, storing data for post-treatment, produc-1527

ing graphs, etc. Additional keywords are introduced as needed, such as the matching1528

procedure FIT[2]; FAISCEAU and FAISTORE which log local particle data in1529

zgoubi.res or in a user defined ancillary file; MARKER; the ’system call’ command1530

SYSTEM; REBELOTE, a ’do loop’; and some more. This chapter introduces in addi-1531

tion to spin motion in accelerator magnets; dedicated simulation exercises include a1532

variety of keywords: SPNTRK, a request for spin tracking, SPNPRT or FAISTORE,1533

to log spin vector components in respectively zgoubi.res or some ancillary file, and1534

the “IL=2” flag to log stepwise particle data, including spin vector, in zgoubi.plt file.1535

Simulations include deriving transport matrices, beam matrix, optical functions and1536

their transport, from rays, using MATRIX and TWISS keywords.1537
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Notations used in the Text1538

B; B0 magnetic field; at a reference radius R0

B; BR; By field vector; radial component; axial component

BR = p/q magnetic rigidity

C; C0 orbit length, C = 2πR; reference, C0 = 2πR0

E ion energy, E = γm0c2

frev, frf revolution and RF voltage frequencies

G gyromagnetic anomaly, G = 1.7928 for proton, −4.184 for helion

h harmonic number, an integer, h = frf/ frev
k = R

B
dB
dR

radial field index

m; m0; M ion mass; rest mass; in units of MeV/c2

p; p; p0 ion momentum vector; its modulus; reference

q ion charge

R; R0; RE equilibrium orbit radius; reference, R(p0); at energy E

RF Radio-Frequency

s path variable

Trev, Trf revolution and accelerating voltage periods

v; v ion velocity vector; its modulus

V(t); V̂ oscillating voltage; its peak value

W kinetic energy, W = 1
2 mv

2

x, x’, y, y’ radial and axial coordinates
[
(∗)′ = d(∗)

ds

]

α trajectory deviation, or momentum compaction

β = v
c
; β0; βs normalized ion velocity; reference; synchronous

γ = E/m0c2 Lorentz relativistic factor

∆p, δp momentum offset

εu Courant-Snyder invariant (u : x, r, y, l,Y, Z, s, etc.)

θ azimuthal angle

φ RF phase at ion arrival at the voltage gap

1539

3.1 Introduction1540

Cyclotrons are the most widespread type of accelerator, today, used by thousands,1541

with the production of isotopes as the dominant application. This chapter is devoted1542

to the first cyclic accelerator: the early 1930s classical cyclotron which its concept1543

limited to low energy, a few 10s of MeV/nucleon. This limitation overcome a decade1544

later by the azimuthally varying field (AVF) technique, this is the subject of the next1545

chapter.1546

The classical cyclotron is based on four main principles:1547

(i) the use of a cylindrical-symmetry magnetic field in the gap of an electromagnet1548

(Fig. 3.1) to maintain ions on a circular trajectory1549
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(ii) transverse vertical confinement of the beam obtained by a slow radial decrease1550

of the magnetic field. A technique known as weak focusing, applied over the years1551

in all cyclic accelerators: microtron, betatron, synchrocyclotron, synchrotron. These1552

weak focusing accelerator species all are still part of the landscape today1553

(iii) resonant acceleration by synchronization of a fixed-frequency accelerating volt-1554

age on the quasi-constant revolution time (Fig. 3.1). and1555

(iv) use of high voltage, to mitigate the effect of the turn-by-turn RF phase slip.1556

Resonant acceleration has the advantage that a small gap voltage is enough to1557

accelerate with, in principle, no energy limitation, by contrast with the electrostatic1558

techniques developed at the time, which required the generation of the full voltage,1559

such as the Van de Graaf which was limited by sparking at a few tens of megavolts.1560

The cyclotron concept goes back to the late 1920s [1], yet it was not until the early1561

1930s when a cyclotron was first brought to operation [2]. The principles are sum-1562

marized in Fig. 3.1: an oscillating voltage is applied on a pair of electrodes (“dees”)1563

forming an accelerating gap and placed between the two poles of an electromagnet.1564

Ions reaching the gap during the acceleration phase of the voltage wave experience1565

an energy boost; no field is experienced inside the dees. Under the effect of energy1566

increase at the gap every half-revolution, they spiral out in the quasi-constant field1567

of the dipole.
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Fig. 3.1 Left: a cyclotron electromagnet, namely here that used for a model of Berkeley’s 184-
inch cyclotron in the early 1940s [3]. Magnetic field in the gap decreases with radius. Right: a
schematic of the resonant acceleration motion; gap after gap, accelerated ions spiral out (bottom)
in the quasi-uniform field (top). A double-dee (or, a variant, a single-dee facing a slotted electrode)
forms an accelerating gap. The fixed-frequency oscillating voltage V (t) applied is a harmonic
of the revolution frequency. Ions experiencing proper voltage phase at the gap, turn by turn, are
accelerated. A septum electrode allows beam extraction

1568

The first cyclotron achieved acceleration of H+
2

hydrogen ions to 80 keV [2], at1569

Berkeley in 1931. The apparatus used a dee-shaped electrode vis-à-vis a slotted1570

electrode forming a voltage gap, the ensemble housed in a 5 in diameter vacuum1571

chamber and placed in the 1.3 Tesla field of an electromagnet. A ≈ 12 MHz vacuum1572

tube oscillator provided 1 kVolt gap voltage.1573



D
RA

FT

50 3 Classical Cyclotron

One goal foreseen in developing this technology was the acceleration of protons1574

to MeV energy range for the study of atom nucleus. And in background, a wealth1575

of potential applications. An 11 in cyclotron followed which delivered a 0.01 µA1576

H+
2

beam at 1.22 MeV [4], and a 27 in cyclotron later reached 6 MeV (Fig. 3.2) [5].1577

Targets were mounted at the periphery of the 11-inch cyclotron, disintegrations were1578

observed in 1932. And, in 1933: ‘The neutron had been identified by Chadwick1579

in 1932. By 1933 we were producing and observing neutrons from every target1580

bombarded by deuterons.“ [5, M.S. Livingston, p. 22].1581
V

Fig. 3.2 Berkeley 27-inch cyclotron, brought to operation in 1934, accelerated deuterons up to
6 MeV. Left: a double-dee (seen in the vacuum chamber, cover off), 22 in diameter, creates an
accelerating gap: 13 kV, 12 MHz radio frequency voltage is applied for deuterons for instance
(through two feed lines seen at the top right corner). This apparatus was dipped in the 1.6 Tesla
dipole field of a 27 in diameter, 75 ton, electromagnet. A slight decrease of the dipole field with
radius, from the center of the dipole, ensures axial beam focusing. With their energy increasing,
ions spiral out from the center to eventually strike a target (red arrow). Right: ionization of the air
by the extracted beam (1936); the view also shows the vacuum chamber squeezed between the pole
pieces of the electromagnet [3]

Fig. 3.3 Berkeley 184 in di-
ameter, 4,000 ton cyclotron
during construction [3]. The
coil windings around both of
the magnetic poles are clearly
visible. Following the inven-
tion of longitudinal focusing
it was actually operated as
a synchrocyclotron, in 1946.
The man on the right gives the
scale
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A broad range of applications were foreseen: “At this time biological experiments1582

were started. [...] Also at about this same time the first radioactive tracer experiments1583

on human beings were tried [...] simple beginnings of therapeutic use, coming a1584

little bit later, in which neutron radiation was used, for instance, in the treatment1585

of cancer. [...] Another highlight from 1936 was the first time that anyone tried1586

to make artificially a naturally occurring radio-nuclide. (a bismuth isotope) [5,1587

McMillan, p. 26].1588

Berkeley’s 184 in cyclotron, the largest (Fig. 3.3), commissioned in 1941, was to1589

accelerate Deuterons to 100 MeV for meson production. It’s magnet however was1590

diverted to the production of uranium for the atomic bomb during the second world1591

war years [1]. Re-started in 1946, as a consequence of the discovery of phase focusing1592

the accelerator was actually operated as a synchrocyclotron (an accelerator species1593

addressed in Chap. 7).1594

Limitation in energy1595

The understanding of the dynamics of ions in the classical cyclotron took some time,1596

and brought two news, a bad one and a good one,1597

(i) the bad one first: the energy limitation. A consequence of the loss of isochro-1598

nism resulting from the relativistic increase of the ion mass so that “[...] it seems1599

useless to build cyclotrons of larger proportions than the existing ones [...] an accel-1600

erating chamber of 37 in radius will suffice to produce deuterons of 11 MeV energy1601

which is the highest possible [...]” [6], or in a different form: “If you went to graduate1602

school in the 1940s, this inequality (−1 < k < 0) was the end of the discussion of1603

accelerator theory” [7].1604

(ii) the good news now: the energy limit which results from the mass increase can1605

be removed by splitting the magnetic pole into valley and hill field sectors. This is1606

the azimuthally varying field (AVF) cyclotron technology, due to L.H. Thomas in1607

1938 [8]. It took some years to see effects of this breakthrough (Fig. 3.4). The AVF1608

is the object of Chap. 4.1609

With the progress in magnet computation tools, in computer speed and in beam1610

dynamics simulations, the AVF cyclotron ends up being essentially as simple to1611

design and build: it has in a general manner supplanted the classical cyclotron in all1612

energy domains (Fig. 3.4).1613

3.2 Basic Concepts and Formulæ1614

The cyclotron was conceived as a means to overcome the technological difficulty of1615

a long series of high electrostatic voltage electrodes in a linear layout, by, instead,1616

repeated recirculation through a single accelerating gap in synchronism with an1617

oscillating voltage (Fig. 3.5). As the accelerated bunch spirals out in the uniform1618

magnetic field, the velocity increase comes with an increase in orbit length; the1619
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Fig. 3.4 Evolution of the
number of the various cy-
clotron species, over the
years [9]. From the 1950s on
the AVF cyclotron rapidly sup-
planted the 1930s’ classical
cyclotron

Fig. 3.5 Resonant accelera-
tion: in an h = 1 configuration
an ion bunch meets an oscil-
lating field E across gap A,
at time t , at an accelerating
phase; it meets again, half a
turn later, at time t+Trev/2, the
accelerating phase across gap
A’, and so on: the magnetic
field recirculates the bunch
through the gap, repeatedly.
Higher harmonic allows more
bunches: the next possibility
in the present configuration is
h=3, and 3 bunches, 120 de-
grees apart, in synchronism
with E
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Fig. 3.6 An ion which reaches
the double-dee gap at the
RF phase ωrf t = φA or
ωrf t = φB is accelerated. If it
reaches the gap at ωrf t = φC

it is decelerated
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net result is a slow increase of the revolution period Trev with energy, yet, with1620

appropriate fixed frf ≈ h/Trev the revolution motion and the oscillating voltage can1621

be maintained in sufficiently close synchronism, Trev ≈ Trf/h, that the bunch will1622

transit the voltage gap at an accelerating phase (Fig. 3.6) over a large enough number1623

of turns that it acquires a significant energy boost.1624

The orbital motion quantities: radius R, ion rigidity BR, revolution frequency1625

frev, satisfy1626

BR =
p

q
, 2π frev = ωrev =

v

R
=

qB

m
=

qB

γm0
(3.1)

These relationships hold at all γ, so covering the classical cyclotron domain (v ≪ c,1627

γ ≈ 1) as well as the isochronous cyclotron (in which the ion energy increase is1628

commensurate with its mass). To give an idea of the revolution frequency, in the1629

limit γ = 1, for protons, one has frev/B = q/2πm = 15.25 MHz/T.1630

The cyclotron design sets the constant RF frequency frf = ωrf/2π at an interme-1631

diate value of h frev along the acceleration cycle. The energy gain, or loss, by the ion1632

when transiting the gap, at time t, is1633

∆W(t) = qV̂ sin φ(t) with φ(t) = ωrft − ωrevt + φ0 (3.2)

with φ its phase with respect to the RF signal at the gap (Fig. 3.6), φ0 = φ(t = 0),1634

and ωrevt the orbital angle. Assuming constant field B, the increase of the revolution1635

period with ion energy satisfies1636

∆Trev

Trev
= γ − 1 (3.3)

The mis-match so induced between the RF and cyclotron frequencies is a turn-by-turn1637

cumulative effect and sets a limit to the tolerable isochronism defect, ∆Trev/Trev ≈1638

2 − 3%, or highest velocity β = v/c ≈ 0.22. This results for instance in a practical1639

limitation to ≈ 25 MeV for protons, and ≈ 50 MeV for D and α particles, a limit1640

however dependent on energy gain per turn.1641

Over time multiple-gap accelerating structures where developed, whereby a1642

“multiple-∆” electrode pattern substitutes to a “double-D”. An example is GANIL1643

C0 injector with its 4 accelerating gaps and h = 4 and h = 8 RF harmonic opera-1644

tion [10].1645

3.2.1 Fixed-Energy Orbits, Revolution Period1646

In a laboratory frame (O;x,y,z), with (O;x,z) the bend plane (Fig. 3.7), assume

B|y=0 = By , constant. An ion is launched from the origin with a velocity

v =

(
dx

dt
,

dy

dt
,

dz

dt

)
= (v sinα, 0, v cosα)
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at an angle α from the z-axis. Solving

Fig. 3.7 Circular motion of
an ion in the plane normal
to a uniform magnetic field
B. The orbit is centered
at xC = −v cosα/ωrev,
zC = v sinα/ωrev, its radius
is v/ωrev

O

z
α

V

x

B

C

cz xc

y

1647

mÛv = qv × B (3.4)

with B = (0, By, 0) yields the parametric equations of motion1648





x(t) = v

ωrev
cos(ωrevt − α) − v cosα

ωrev
y(t) = constant

z(t) = v

ωrev
sin(ωrevt − α) + v sinα

ωrev

(3.5)

which result in1649

(
x +

v cosα

ωrev

)2

+

(
z − v sinα

ωrev

)2

=

(
v

ωrev

)2

(3.6)

a circular trajectory of radius R = v/ωrev centered at (xC, zC) = (− v cosα
ωrev
, v sinα

ωrev
).1650

Stability of the cyclic motion - The initial velocity vector defines a reference closed1651

orbit in the median plane of the cyclotron dipole; a small perturbation in α or v1652

results in a new orbit in the vicinity of the reference. An axial velocity component vy1653

on the other hand, causes the ion to drift away from the reference, vertically, linearly1654

with time, as there is no axial restoring force. The next Section will investigate the1655

necessary field property to ensure both horizontal and vertical confinement of the1656

cyclic motion in the vicinity of a reference orbit in the median plane.1657

3.2.2 Weak Focusing1658
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In the early accelerated turns in a classical cyclotron (central region of the electro-1659

magnet, energy up to tens of keV/u), the accelerating electric field provides vertical1660

focusing for particles with proper RF phase [11, Sect. 8], whereas a flat magnetic1661

field with uniformity dB/B < 10−4 is sufficient to maintain isochronism. Beyond1662

this low energy region however, at greater radii, a magnetic field gradient must be1663

introduced to ensure transverse stability: field must decrease with R.1664

Fig. 3.8 Moving frame
(M0; s, x, y) along the ref-
erence circular orbit. The cur-
vature 1/R0 is constant along
the orbit and (M0; s, x, y)
can be considered equiva-
lent to the cylindrical frame
(C; θ, R0, y)

   

B

reference

0
M

M x

y

v   

s

C

r(s)

0
R

Ion coordinates in the following are defined in the moving frame (M0; s, x, y)1665

(Fig. 3.8), which moves along the reference orbit (radius R0), with its origin M01666

the projection of ion location M on the reference orbit; the s axis is tangent to the1667

latter, the x axis is normal to s, the y axis is normal to the bend plane. Median-plane1668

symmetry of the field is assumed, thus the radial field component BR |y=0 = 0 at all1669

R (Fig. 3.9).1670

Consider small motion excursions x(t) = r(t) − R0 ≪ R0; introduce Taylor1671

expansion of the field components,1672

By(R0 + x) = By(R0) + x
∂By

∂R

����
R0

+

x2

2!

∂2By

∂R2

�����
R0

+ ... ≈ By(R0) + x
∂By

∂R

����
R0

BR(0 + y) = y
∂BR

∂y

����
0︸ ︷︷ ︸

=
∂By

∂R

���
R0

+

y
3

3!

∂3BR

∂y3

����
0

+ ... ≈ y
∂By

∂R

����
R0

(3.7)

Using these, and noting Û(∗) = d(∗)/dt, the linear approximation of the differential1673

equations of motion in the moving frame writes1674
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Fx = m Üx = −qvBy(R) +
mv

2

R0 + x
≈ −qv

(

By(R0) +
∂By

∂R

����
R0

x

)

+

mv
2

R0

(
1 − x

R0

)

→ m Üx = −mv
2

R2
0

(
R0

B0

∂By

∂R

����
R0

+ 1

)

x (3.8)

Fy = m Üy = qvBR(y) = qv
∂BR

∂y

����
y=0

y + higher order → m Üy = qv
∂By

∂R
y

Fig. 3.9 Axial motion stabil-
ity requires proper shaping of
field lines: By has to decrease
with radius. The Laplace force
pulls a positive charge with
velocity pointing out of the
page, at I, toward the median
plane. Increasing the field
gradient (k closer to -1, gap
opening up faster) increases
the focusing

F
B=B y    

BF
I

I

r

Magnet pole, South

Magnet pole, North

plane
Median

B

y

g
(r

)

1675

Fig. 3.10 Geometrical focus-
ing: take k=0; two circular
trajectories which start from
r = R0±δR (solid lines, going
counter-clockwise) undergo
exactly one oscillation around
the reference orbit r = R0.
A negative k (triangles), for
axial focusing, decreases the
radial convergence; a positive
k (square markers) increases
the radial convergence - and
increases vertical divergence

 0  0.05  0.1  0.15  0.2

k=0

k<0

k>0

R
0

R
0
-δ

R

R
0
+

δ
R

Note By(R0) = B0 and introduce1676

ω2
R = ω

2
rev

(
1 +

R0

B0

∂By

∂R

)
, ω2

y = −ω2
rev

R0

B0

∂By

∂R
(3.9)

substitute in Eqs. 3.8, this yields1677
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Fig. 3.11 Radial motion
stability. Trajectory arcs at
p = mv are represented:
case of k = 0 (thin black
lines), of −1 < k < 0
(thick blue lines), and of
k = −1 (dashed concentric
circles). k decreasing towards
−1 reduces the geometrical
focusing, increases axial
focusing. The resultant of
the Laplace and centrifugal
forces, Ft = −qvB + mv2/r ,
is zero at I, motion is stable if
Ft is toward I at i, i.e. qvBi <

mv2/Ri , and toward I as well
at e, i.e. qvBe > mv2/Re

2

force toward Iforce toward I

BR<mv/q BR>mv/q  BR=
mv/q

rB
decreases        

  increases       
 R

mv /R

                   

s

x

I

y

i e

qvB    

O

R0

C

Üx + ω2
Rx = 0 and Üy + ω2

y y = 0 (3.10)

A restoring force (linear terms in x and y, Eq. 3.10) arises from the radially varying1678

field, characterized by a field index1679

k =
R0

B0

∂By

∂R

����
R=R0,y=0

(3.11)

Radial stability: radially this force adds to the geometrical focusing (curvature term1680

“1” in ω2
R

, Eq. 3.9, Fig. 3.10). In the weakly decreasing field B(R) an ion with mo-1681

mentum p = mv moving in the vicinity of the R0-radius reference orbit experiences1682

in the moving frame a resultant force Ft = −qvB + m
v

2

r
(Fig. 3.11) of which the1683

(outward) component fc = m v2

r
decreases with r at a higher rate than the decrease1684

of the Laplace (inward) component fB = −qvB(r). In other words, radial stability1685

requires BR to increase with R, ∂BR
∂R
= B + R ∂B

∂R
> 0, this holds in particular at R0,1686

thus 1 + k > 0.1687

Axial stability requires a restoring force directed toward the median plane. Refer-1688

ring to Fig. 3.9, this means Fy = −a× y (with a a positive quantity) and thus BR < 0,1689

at all (r, y , 0). This is achieved by designing a guiding field which decreases with1690

radius, ∂BR

∂y
< 0. Referring to Eq. 3.11 this means k < 0.1691

From these radial and axial constraints the condition of “weak focusing” for1692

transverse motion stability around the circular equilibrium orbit results, namely,1693

−1 < k < 0 (3.12)

Note regarding the geometrical focusing: the focal distance associated with the1694

curvature of a magnet of arc length L is obtained by integrating d2x
ds2 +

1
R2

0

x = 0 and1695

identifying with the focusing property ∆x ′
= −x/ f , namely,1696
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∆x ′
=

∫
d2x

ds2
ds ≈ −x

R2

∫
ds =

−xL
R2
, thus f =

R2

L (3.13)

Isochronism: the axial focusing constraint, B decreasing with R, contributes break-1697

ing the isochronism (in addition to the effect of the mass increase) by virtue of1698

ωrev ∝ B.1699

Paraxial Transverse Coordinates1700

Introduce the path variable s as the independent variable in Eq. 3.10 and neglect the1701

transverse velocity components (1 + x
R0

≈ 1, y ≪ 0) so that1702

ds =
[
r2(s)dθ2 + dr2

+ dy2
]1/2 ≈ |v|dt

ds

ds

dr

0

0R

M0

θ

r

d

(3.14)

thus the equations of motion in the moving frame (Eq. 3.10) take the form1703

d2x

ds2
+

1 + k

R2
0

x = 0 and
d2

y

ds2
− k

R2
0

y = 0 (3.15)

Given −1 < k < 0 the motion is that of a harmonic oscillator, in both planes, with1704

respective restoring constants (1 + k)/R2
0

and −k/R2
0
, both positive quantities. The1705

solution is a sinusoidal motion,1706

{
r(s) − R0 = x(s) = x0 cos

√
1+k
R0

(s − s0) + x ′
0

R0√
1+k

sin
√

1+k
R0

(s − s0)
r ′(s) = x ′(s) = −x0

√
1+k
R0

sin
√

1+k
R0

(s − s0) + x ′
0

cos
√

1+k
R0

(s − s0)
(3.16)

1707 {
y(s) = y0 cos

√
−k
R0

(s − s0) + y
′
0

R0√
−k

sin
√
−k
R0

(s − s0)
y
′(s) = −y0

√
−k
R0

sin
√
−k
R0

(s − s0) + y
′
0

cos
√
−k
R0

(s − s0)
(3.17)

Radial and axial wave numbers can be introduced,1708

νR =
ωR

ωrev
=

√
1 + k and νy =

ωy

ωrev
=

√
−k (3.18)

i.e., the number of sinusoidal oscillations of the paraxial motion about the reference1709

circular orbit over a turn, respectively radial and axial. Both are less than 1: there1710

is less than one sinusoidal oscillation in a revolution. In addition, as a result of the1711

revolution symmetry of the field,1712

ν2R + ν
2
y = 1 (3.19)
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Off-Momentum Orbit1713

In a structure with revolution symmetry, the equilibrium trajectory at momentum
{

p0

p = p0 + ∆p
is at radius

{
R0 with B0R0 =

p0

q

R with BR =
p

q

, where

{
B = B0 +

(
∂B
∂x

)

0
∆x + ...

R = R0 + ∆x

On the other hand

BR =
p

q
⇒

[
B0 +

(
∂B

∂x

)

0

∆x + ...

]
(R0 + ∆x) = p0 + ∆p

q

which, neglecting terms in (∆x)2, and given B0R0 =
p0

q
, leaves∆x

[(
∂B
∂x

)

0
R0 + B0

]
=1714

∆p

q
. With k =

R0

B0

(
∂B
∂x

)

0
this yields

R

y

A B

R0 R

Magnet pole

Magnet pole R

R

p
0

.

p0

Fig. 3.12 The equilibrium radius at location A is R0, momentum is p0, rigidity is B0R0. The
equilibrium radius at B is R, momentum p, rigidity BR

1715

∆x = D
∆p

p0
with D =

R0

1 + k
the dispersion function (3.20)

The dispersion D is an s-independent quantity as a result of the revolution symmetry1716

of the field (k and R=p/qB are s-independent).1717

To the first order in the coordinates, the vertical coordinates y(s), y’(s) (Eq. 3.17)1718

are unchanged under the effect of a momentum offset, the horizontal trajectory angle1719

x’(s) (Eq. 3.16) is unchanged as well (the circular orbits are concentric, Fig. 3.12)1720

whereas x(s) satisfies1721

x(s, p0 + ∆p) = x(s, p0) + ∆p
∂x

∂p

����
s,p0

= x(s, po) + D
∆p

p0
(3.21)
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Orbit and revolution period lengthening1722

A δp momentum offset results in (Eq. 3.20)1723

δC
C =

δR

R
=

δx

R
= α
δp

p
with α =

1

1 + k
=

1

ν2
R

(3.22)

with α the momentum compaction, a positive quantity: orbit length increases with1724

momentum. Substituting
δβ

β
=

1
γ2

δp

p
, the change in revolution period Trev = C/βc1725

with momentum writes1726

δTrev

Trev
=

δC
C

− δβ
β
=

(
α − 1

γ2

)
δp

p
(3.23)

Given that −1 < k < 0 and γ & 1, it results that α − 1/γ2 > 0: the revolution period1727

increases with energy, the increase in radius is faster than the velocity increase.1728

3.2.3 Quasi-Isochronous Resonant Acceleration1729

The energy W of an accelerated ion (in the non-relativistic energy domain of the1730

classical cyclotron) satisfies the frequency dependence1731

W =
1

2
mv

2
=

1

2
m (2πR frev)2 =

1

2
m

(
2πR

frf

h

)2

(3.24)

Observe in passing: given the cyclotron size (radius R), frf and h set the limit for1732

the acceleration range. The revolution frequency decreases with energy and the1733

condition of synchronism with the oscillating voltage, frf = h frev, is only fulfilled1734

at that particular radius where ωrf = qB/m (Fig. 3.13-left). The out-phasing ∆φ of1735

the RF at ion arrival at the gap builds-up turn after turn, decreasing in a first stage1736

(towards lower voltages in Fig. 3.13-right) and then increasing back to φ = π/2 and1737

beyond towards π. Beyond φ = π the RF voltage is decelerating.1738

With ωrev constant between two gap passages, differentiating φ(t) (Eq. 3.2) yields1739

Ûφ = ωrf −ωrev. Between two gap passages on the other hand, ∆φ = Ûφ∆T = ÛφTrev/2 =1740

Ûφ πR
v

, yielding a phase-shift of1741

half-turn ∆φ = π

(
ωrf

ωrev(R)
− 1

)
= π

(
mωrf

qB(R) − 1

)
(3.25)

The out-phasing is thus a gap-after-gap, cumulative effect. Due to this the classical1742

cyclotron requires quick acceleration (small number of turns), which means high1743

voltage (tens to hundreds of kVolts). As expected, withωrf and B constant, φ presents1744

a minimum ( Ûφ = 0) at ωrf = ωrev = qB/m where exact isochronism is reached1745

(Fig. 3.13). The upper limit to φ is set by the condition ∆W > 0: acceleration.1746
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Fig. 3.13 Left: a sketch of the synchronism condition at one point (h=1 assumed). Right: the span
in phase of the energy gain ∆W = qV̂ sinφ (Eq. 3.2) over the acceleration cycle

Fig. 3.14 A graph of the
cyclotron equation (Eq. 3.26),
for three different accel-
erating voltages: 100, 200
and 400 kV/gap (respectively
square, circle and triangle
markers). The sole settings re-
sulting in −1 < cosφ(E) < 1,
∀E , allow complete accelera-
tion to top energy. φi = π/4
at injection for instance, does
not (upper three curves).
φi = 3π/4 works (lower
three curves), with as low as
100 kV/gap

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20

100 kV

200 kV

400 kV

φ
i
=π/4

φ
i
=π/2

φ
i
=3π/4

c
o

s(
φ

)

W  [MeV]

The cyclotron equation determines the achievable energy range, depending on1747

the injection energy Ei , the RF phase at injection φi , the RF frequency ωrf and gap1748

voltage V̂ . It writes [12]1749

cos φ = cos φi + π

[
1 − ωrf

ωrev

E + Ei

2M

]
E − Ei

qV̂
(3.26)

Equation 3.26 is represented in Fig. 3.14 for various values of the peak voltage1750

and phase at injection φi . M [eV/c2] and E [eV] are respectively the rest mass and1751

relativistic energy, qV̂ is expressed in electron-volts, the index i denotes injection1752

parameters.1753
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3.2.4 Beam Extraction1754

From R = p/qB and assuming B(R) ≈constant (this is legitimate as k is normally1755

small), in the non-relativistic approximation (W ≪ M , W = p2/2M) one gets1756

dR

R
=

1

2

dW

W
(3.27)

Integrating yields1757

R2
= R2

i

W

Wi

(3.28)

with Ri , Wi initial conditions. From Eqs. 3.27, 3.28, assuming Wi ≪ W and constant1758

acceleration rate dW such that W = n dW after n turns, one gets the scaling laws1759

R ∝
√

n, dR ∝ R

W
∝ 1

R
∝ dW,

dR

dn
=

R

2n
(3.29)

The turn separation dR is proportional to the energy gain per turn and inversely1760

proportional to the orbit radius.1761

Fig. 3.15 The radial distance
between successive turns
decreases with energy, in
inverse proportion to the
orbit radius. The red and
blue segments here figure the
accelerating gap
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The radial distance between successive turns decreases with energy, toward zero1762

(Fig. 3.15), eventually resulting in insufficient spacing for insertion of an extraction1763

septum.1764

Orbit modulation1765

Consider an ion bunch injected in the cyclotron with some (x0, x
′
0
) conditions in1766

the vicinity of the reference orbit, and assume slow acceleration. While accelerated1767

the bunch undergoes an oscillatory motion around the equilibrium orbit (Eq. 3.16).1768

Observed at the extraction septum this oscillation modulates the distance of the1769
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bunch to the local equilibrium orbit, moving it outwards or inwards depending on1770

the turn number, which modulates the distance between the accelerated turns. This1771

effect can be resorted to, so to increase the separation between the final two turns1772

and so enhance the extraction efficiency [9].1773

3.2.5 Spin Dance1774

“Much of the physics of spin motion can be illustrated using the simplest model of a1775

storage ring consisting of uniform horizontal bending and no straight sections.” [13].1776

By virtue of this statement, a preliminary introduction to spin motion in magnetic1777

fields is given in the present chapter. In support to this in addition, comes the fact that1778

cyclotrons happened to be the first circular machines to acelerate polarized beams1779

(first acceleration of polarized beams had happened earlier in the 1960s, using1780

electrostatic columns at voltage generators, when polarized proton and deuteron1781

sources began operating [14]).1782

The magnetic field B of the cyclotron dipole exerts a torque on the spin angular1783

momentum S of an ion, causing it to precess following the Thomas-BMT differential1784

equation [15]1785

dS

dt
= S × q

m

[
(1 + G)B‖ + (1 + Gγ)B⊥

]

︸                                  ︷︷                                  ︸
ωsp

(3.30)

where t is the time; ωsp the precession vector: a combination of B‖ and B⊥ compo-1786

nents of B respectively parallel and orthogonal to the ion velocity vector. G is the1787

gyromagnetic anomaly,1788

G=1.7928474 (proton), -0.178 (Li), -0.143 (deuteron), -4.184 (3He) ...1789

S in this equation is in the ion rest frame, all other quantities are in the laboratory1790

frame.1791

In the case of an ion moving in the median plane of the dipole, B‖ = 0, thus the1792

precession axis is parallel to the magnetic field vector, By , so that ωsp =
q

m
(1 +1793

Gγ)By . The spin precession angle over a trajectory arc L is1794

θsp, Lab =
1

v

∫

(L)
ωsp ds = (1 + Gγ)

∫
(L) B ds

BR
= (1 + Gγ)α (3.31)

with α the velocity vector precession (Fig. 3.16). The precession angle in the moving1795

frame (the latter rotates by an angle α along L) is1796

θsp = Gγα (3.32)

thus the number of 2π spin precessions per ion orbit around the cyclotron is Gγ. By1797

analogy with the wave numbers (Eq. 3.18) this defines the “spin tune”1798
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Fig. 3.16 Spin and velocity
vector precession in a constant
field, from S to S′ and v to
v′ respectively. In the moving
frame the spin precession
along the arc L = Rα

is Gγα, in the laboratory
frame the spin precesses by
(1 +Gγ)α

R

y

v

S x

α

xy

S

x’
G

γα

(1
+

G
γ)α

S
’

v’

νsp = Gγ (3.33)
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3.3 Exercises1799

Note: some of the input data files for these simulations are available in zgoubi1800

sourceforge repository at1801

https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/book/zgoubiMaterial/cyclotron_classical/1802

3.1 Modeling a Cyclotron Dipole: Using a Field Map1803

Solution: page 711804

In this exercise, ion trajectories are ray-traced, various optical properties addressed1805

in the foregoing are recovered, using a field map to simulate the cyclotron dipole.1806

Fabricating that field map is a preliminary step of the exercise.1807

The interest of using a field map is that it is an easy way to account for fancy1808

magnet geometries and fields, including field gradients and possible defects. A1809

field map can be generated using mathematical field models, or from magnet com-1810

putation codes, or from magnetic measurements. The first method is used, here.1811

TOSCA[MOD.MOD1=22.1] keyword [16, cf. INDEX] is used to ray-trace through1812

the map.1813

Working hypotheses: A 2-dimensional m(R, θ) polar meshing of the median plane1814

is considered (Fig. 3.17). It is defined in a (O; X,Y ) frame and covers an angular1815

sector of a few tens of degrees. The mid-plane field map is the set of values BZ (R, θ) at1816

the nodes of the mesh. During ray-tracing, TOSCA[MOD.MOD1=22.1] extrapolates1817

the field along 3D space (R, θ, Z) ion trajectories from the 2D polar map [16].1818

Fig. 3.17 Principle of a 2D
field map in polar coordinates,
covering a 180o sector (over
the right hand side dee).
The mesh nodes m(R, θ)
are distant ∆R radially, ∆θ
azimuthally. The map is used
twice to cover the 360o

cyclotron dipole as sketched
here, while allowing insertion
of an accelerating gap between
the two dees

O

X

Y

m(R,  )θ

θ

R

R∆

    

∆θ  

(a) Construct a 180o two-dimensional map of a median plane field BZ (R, θ),1819

proper to simulate the field in a cyclotron as sketched in Fig. 3.1. Use one of1820

the following two methods: either (i) write an independent program, or (ii) use1821

zgoubi and its analytical field model DIPOLE, together with the keyword OP-1822

TIONS[CONSTY=ON] [16, cf. INDEX].1823

Besides: use a uniform mesh (Fig. 3.17) covering from Rmin=1 to Rmax=76 cm,1824

with radial increment ∆R = 0.5 cm, azimuthal increment ∆θ = 0.5 [cm]/R0 with R01825
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some reference radius (say, 50 cm, in view of subsequent exercises), and constant1826

axial field BZ = 5 kG. The appropriate 6-column formatting of the field map data1827

for TOSCA[MOD.MOD1=22.1] to read is the following:1828

R cos θ, Z, R sin θ, BY, BZ, BX1829

with θ varying first, R varying second; Z is the vertical direction (normal to the map1830

mesh), Z ≡ 0 in the present case. Note that proper functioning of TOSCA requires1831

the field map to begin with the following line of numerical values:1832

Rmin [cm] ∆R [cm] ∆θ [deg] Z [cm]1833

Produce a graph of the BZ (R, θ) field map content.1834

(b) Ray-trace a few concentric circular mid-plane trajectories centered on the1835

center of the dipole, ranging in 10 ≤ R ≤ 80 cm. Produce a graph of these concentric1836

trajectories in the (O; X,Y ) laboratory frame.1837

Initial coordinates can be defined using OBJET, particle coordinates along tra-1838

jectories during the stepwise ray-tracing can be logged in zgoubi.plt by setting IL=21839

under TOSCA. In order to find the Larmor radius corresponding to a particular1840

momentum, the matching procedure FIT can be used. In order to repeat the latter for1841

a series of different momenta, REBELOTE[IOPT=1] can be used.1842

Explain why it is possible to push the ray-tracing beyond the 76 cm radial extent1843

of the field map.1844

(c) Compute the orbit radius R and the revolution period Trev as a function of1845

kinetic energy W or rigidity BR. Produce a graph, including for comparison the1846

theoretical dependence of Trev.1847

(d) Check the effect of the density of the mesh (the choice of ∆R and ∆θ values,1848

i.e., the number of nodes Nθ × NR = (1+ 180o

∆θ
) × (1+ 80 cm

∆R
)), on the accuracy of the1849

trajectory and time-of-flight computation.1850

(e) Check the effect of the integration step size on the accuracy of the trajectory1851

and time-of-flight computation, by considering a small ∆s = 1 cm and a large1852

∆s = 10 cm, at 200 keV and 5 MeV (proton), and comparing with theory.1853

(f) Consider a periodic orbit, thus its radius R should remain unchanged after1854

stepwise integration of the motion over a turn. However, the size ∆s of the numerical1855

integration step has an effect on the final value of the radius:1856

For two different cases, 200 keV (a small orbit) and 5 MeV (a larger one), provide a1857

graph of the dependence of the relative error δR/R after one turn, on the integration1858

step size ∆s (consider a series of ∆s values in a range ∆s : 0.1 mm → 20 cm).1859

REBELOTE[IOPT=1] do-loop can be used to repeat the one-turn raytracing with1860

different ∆s.1861

3.2 Modeling a Cyclotron Dipole: Using an Analytical Field Model1862

Solution: page 801863

This exercise is similar to exercise 3.1, yet using the analytical modeling DIPOLE,1864

instead of a field map. DIPOLE provides the Z-parallel median plane field B(R, θ, Z =1865

0) ≡ BZ (R, θ, Z = 0) at the projected m(R, θ, Z = 0) ion location (Fig. 3.18), while1866

B(R, θ, Z) at particle location is obtained by extrapolation.1867
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Fig. 3.18 DIPOLE provides
the value BZ (m) of the
median plane field at m,
projection of particle position
M(R, θ, Z) in the median
plane. B(R, θ, Z) is obtained
by extrapolation

z

  = 0

mR

θ

θ

M

ZB

(a) Simulate a 180o sector dipole; DIPOLE requires a reference radius [16,1868

Eqs. 6.3.19-21], noted R0 here; for the sake of consistency with other exercises, it is1869

suggested to take R0 = 50 cm. Take a constant axial field BZ = 5 kG.1870

Explain the various data that define the field simulation in DIPOLE: geometry,1871

role of R0, field and field indices, fringe fields, integration step size, etc.1872

Produce a graph of BZ (R, θ).1873

(b) Repeat question (b) of exercise 3.1.1874

(c) Repeat question (c) of exercise 3.1.1875

(d) As in question (e) of exercise 3.1, check the effect of the integration step size1876

on the accuracy of the trajectory and time-of-flight computation.1877

Repeat question (f) of exercise 3.1.1878

(e) From the two series of results (exercise 3.1 and the present one), comment on1879

various pros and cons of the two methods, field map versus analytical field model.1880

3.3 Resonant Acceleration1881

Solution: page 841882

Based on the earlier exercises, using indifferently a field map (TOSCA) or an1883

analytical model of the field (DIPOLE), introduce a sinusoidal voltage between the1884

two dees, with peak value 100 kV. Assume that ion motion does not depend on RF1885

phase: the boost through the gap is the same at all passes, use CAVITE[IOPT=3] [16,1886

cf. INDEX] for that. Note that using CAVITE requires prior PARTICUL in order to1887

specify ion species and data, necessary to compute the energy boost (Eq. 3.2).1888

(a) Accelerate a proton with initial kinetic energy 20 keV, up to 5 MeV, take1889

harmonic h=1. Produce a graph of the accelerated trajectory in the laboratory frame.1890

(b) Provide a graph of the proton momentum p and total energy E as a function1891

of its kinetic energy, both from this numerical experiment (ray-tracing data can be1892

stored using FAISTORE) and from theory, all on the same graph.1893

(c) Provide a graph of the normalized velocity β = v/c as a function of kinetic1894

energy, both numerical and theoretical, and in the latter case both classical and1895

relativistic.1896
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(d) Provide a graph of the relative change in velocity∆β/β and orbit length∆C/C1897

as a function of kinetic energy, both numerical and theoretical. From their evolution,1898

conclude that the time of flight increases with energy.1899

(e) Repeat the previous questions, assuming a harmonic h=3 RF frequency.1900

3.4 Spin Dance1901

Solution: page 881902

Cyclotron modeling in the present exercise can use Exercise 3.1 or Exercise 3.21903

technique (i.e., a field map or an analytical field model), indifferently.1904

(a) Add spin transport, using SPNTRK [16, cf. INDEX]. Produce a listing1905

(zgoubi.res) of a simulation, including spin outcomes.1906

Note: PARTICUL is necessary here, for the spin equation of motion (Eq. 3.30) to1907

be solved [16, Sect. 2]. SPNPRT can be used to have local spin coordinates listed in1908

zgoubi.res (at the manner that FAISCEAU lists local particle coordinates).1909

(b) Consider proton case, take initial spin longitudinal, compute the spin preces-1910

sion over one revolution, as a function of energy over a range 12 keV→5 MeV. Give1911

a graphical comparison with theory.1912

FAISTORE can be used to store local particle data, which include spin coor-1913

dinates, in a zgoubi.fai style output file. IL=2 [16, cf. INDEX] (under DIPOLE or1914

TOSCA, whichever modeling is used) can be used to obtain a print out of particle1915

and spin motion data to zgoubi.plt during stepwise integration.1916

(c) Inject a proton with longitudinal initial spin Si . Give a graphic of the lon-1917

gitudinal spin component value as a function of azimuthal angle, over a few turns1918

around the ring. Deduce the spin tune from this computation. Repeat for a couple of1919

different energies.1920

Place both FAISCEAU and SPNPRT commands right after the first dipole sector,1921

and use them to check the spin rotation and its relationship to particle rotation, right1922

after the first passage through that first sector.1923

(d) Spin dance: the input data file optical sequence here is assumed to model a1924

full turn. Inject an initial spin at an angle from the horizontal plane (this is in order1925

to have a non-zero vertical component), produce a 3-D animation of the spin dance1926

around the ring, over a few turns.1927

(e) Repeat questions (b-d) for two additional ions: deuteron (much slower spin1928

precession), 3He2+ (much faster spin precession).1929

3.5 Synchronized Spin Torque1930

Solution: page 941931

A synchronized spin kick is superimposed on orbital motion. An input data file for1932

a complete cyclotron is considered as in question 3.4 (d), for instance six 60 degree1933

DIPOLEs, or two 180 degree DIPOLEs.1934

Insert a local spin rotation of a few degrees around the longitudinal axis, at the1935

end of the optical sequence (i.e., after one orbit around the cyclotron). SPINR can be1936

used for that, rather than a local magnetic field, so to avoid any orbital effect. Track1937

4 particles on their respective equilibrium orbit, with energies 0.2, 108.412, 118.8781938

and 160.746 MeV.1939
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Produce a graph of the motion of the vertical spin component Sy along the circular1940

orbit.1941

Produce a graph of the spin vector motion on a sphere.1942

3.6 Weak Focusing1943

Solution: page 971944

(a) Consider a 60o sector as in earlier exercises (building a field map and using1945

TOSCA as in exercise 3.1, or using DIPOLE as in exercise 3.2), construct the sector1946

accounting for a non-zero radial index k in order to introduce axial focusing, say1947

k = −0.03, assume a reference radius R0 for a reference energy of 200 keV (R0 and1948

B0 are required in order to define the index k, Eq. 3.11). Ray-trace that 200 keV1949

reference orbit, plot it in the lab frame: make sure it comes out as expected, namely,1950

constant radius, final and initial angles zero.1951

(b) Using FIT[2], find and plot the radius dependence of orbit rigidity, BR(R),1952

from ray-tracing over a BR range covering 20 keV to 5 MeV; superpose the theoretical1953

curve. REBELOTE[IOPT=1] can be used to perform the scan.1954

(c) Produce a graph of the paraxial axial motion of a 1 MeV proton, over a few1955

turns (use IL=2 under TOSCA, or DIPOLE, to have step by step particle and field1956

data logged in zgoubi.plt). Check the effect of the focusing strength by comparing1957

the trajectories for a few different index values, including close to -1 and close to 0.1958

(d) Produce a graph of the magnetic field experienced by the ion along these1959

trajectories.1960

3.7 Loss of Isochronism1961

Solution: page 1061962

Compare on a common graphic the revolution period Trev(R) for a field index1963

value k ≈ −0.95, −0.5, −0.03, 0−. The scan method of exercise 3.6, based on1964

REBELOTE[IOPT=1] preceded by FIT[2], can be referred to.1965

3.8 Ion Trajectories1966

Solution: page 1081967

In this exercise individual ion trajectories are computed. DIPOLE or TOSCA1968

magnetic field modeling can be used, indifferently. No acceleration here, ions circle1969

around the cyclotron at constant energy.1970

(a) Produce a graph of the horizontal x(s) and vertical y(s) trajectory coordinates1971

of an ion with rigidity close to BR(R0) (R0 is the reference radius in the definition of1972

the index k), over a few turns around the cyclotron. From the number of turns, give1973

an estimate of the wave numbers. Check the agreement with the expected νR(k),1974

νy(k) values (Eq. 3.18).1975

(b) Consider now protons at 1 MeV and 5 MeV, far from the reference energy1976

E(R0); the wave numbers change with energy: consistency with theory can be1977

checked. Find their theoretical values, compare with numerical outcomes.1978

(c) Consider proton, 200 keV energy, plot as a function of s the difference between1979

x(s) from raytracing and its values from Eq. 3.16. Same for y(s) compared to Eq. 3.17.1980
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IL=2 can be used to store in zgoubi.plt the step-by-step particle coordinates across1981

DIPOLE.1982

(d) Perform a scan of the wave numbers over 200 keV−5 MeV energy inter-1983

val, computed using OBJET[KOBJ=5] and MATRIX[IORD=1,IFOC=11], or OB-1984

JET[KOBJ=6] and MATRIX[IORD=2,IFOC=11], together with REBELOTE[IOPT=1]1985

to repeat MATRIX for a series of energy values.1986

3.9 RF Phase at the Accelerating Gap1987

Solution: page 1141988

Consider the cyclotron model of exercise 3.6: field index k = −0.03 defined at1989

R0 = 50 cm, field B0 = 5 kG on that radius. two dees, double accelerating gap.1990

Accelerate a proton from 1 to 5 MeV: get the turn-by-turn phase-shift at the gaps;1991

use CAVITE[IOPT=7] to simulate the acceleration. Compare the half-turn ∆φ so1992

obtained with the theoretical expectation (Eq. 3.25). Produce similar graphs B(R)1993

and ∆W(φ) to Fig. 3.13.1994

Accelerate over more turns, observe the particle decelerating.1995

3.10 The Cyclotron Equation1996

Solution: page 1161997

The cyclotron model of exercise 3.3 is considered: two dees, double accelerating1998

gap, uniform field B = 5 kG, no field gradient needed here (no vertical motion).1999

(a) Set up an input data file for the simulation of a proton acceleration from2000

0.2 to 20 MeV. In particular, assume that cos(φ) reaches its maximum value at2001

Wm = 10 MeV; find the RF voltage frequency from d(cos φ)/dW = 0 at Wm.2002

(b) Give a graph of the energy-phase relationship (Eq. 3.26), for φi =
3π
4 ,

π
2 ,

π
4 ,2003

from both simulation and theory.2004

3.11 Cyclotron Extraction2005

Solution: page 1182006

(a) Acceleration of a proton in a uniform field B = 5 kG is first considered (field2007

hypotheses as in exercise 3.3). RF phase is ignored: CAVITE[IOPT=3] can be used2008

for acceleration. Take a 100 kV gap voltage.2009

Compute the distance ∆R between turns, as a function of turn number and of2010

energy, over the range E : 0.02 → 5 MeV. Compare graphically with theoretical2011

expectation.2012

(b) Assume a beam with Gaussian momentum distribution and rms momentum2013

spread δp/p = 10−3. An extraction septum is placed half-way between two successive2014

turns, provide a graph of the percentage of beam loss at extraction, as a function of2015

extraction turn number. COLLIMA can be used for that simulation and for particle2016

counts, it also allows for possible septum thickness.2017

(c) Repeat (a) and (b) considering a field with index: take for instance B0 = 5 kG2018

and k = −0.03 at R0 = R(0.2 MeV) = 12.924888 cm.2019

(d) Investigate the effect of injection conditions (Yi,Ti) on the modulation of the2020

distance between turns.2021
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Try and confirm numerically that, with slow acceleration, the oscillation is mini-2022

mized for an initial |Ti | = | x0νR

R
| (after Ref. [9, p. 133]).2023

3.12 Acceleration and Extraction of a 6-D Polarized Bunch2024

Solution: page 1232025

The cyclotron simulation hypotheses of exercise 3.10-a are considered; account2026

or k = −0.02 field index.2027

Add a short “high energy” extraction line, say 1 meter, following REBELOTE in2028

the optical sequence, ending up with a “Beam_Dump” MARKER for instance.2029

(a) Create a 1,000 ion bunch with the following initial parameters:2030

- random Gaussian transverse phase space densities, centered on the equilibrium2031

orbit, truncated at 3 sigma, normalized rms emittances εY = εZ = 1 πµm, both2032

emittances matched to the 0.2 MeV orbit optics,2033

- uniform bunch momentum density 0.2×(1−10−3) ≤ p ≤ 0.2×(1+10−3)MeV,2034

matched to the dispersion, namely (Eq. 3.21), ∆x = D
∆p

p
,2035

- random uniform longitudinal distribution −0.5 ≤ s ≤ 0.5 mm,2036

Note: two ways to create this object are, (i) using MCOBJET[KOBJ=3] which2037

generates a random distribution, or (ii) using OBJET[KOBJ=3] to read an external2038

particle coordinate file.2039

Add spin tracking request (SPNTRK), all initial spins normal to the bend plane.2040

Produce a graph of the three initial 2-D phase spaces: (Y,T), (Z,P), (δl,δp/p),2041

matched to the 200 keV periodic optics. Provide Y, Z, dp/p, δl and SZ histograms2042

(HISTO can be used), check the distribution parameters.2043

(b) Accelerate this polarized bunch to 20 MeV, using the following RF conditions:2044

- 200 kV peak voltage,2045

- RF harmonic 1,2046

- initial RF phase φi = π/4.2047

Produce a graph of the three phase spaces as observed downstream of the extrac-2048

tion line. Provide the Y, Z, dp/p, δl and SZ histograms. Compare the distribution2049

parameters with the initial values.2050

What causes the spins to spread away from vertical?2051

3.4 Solutions of Exercises of Chapter 3: Classical Cyclotron2052

3.1 Modeling a Cyclotron Dipole: Using a Field Map2053

2054

(a) A field map of a 180o sector of a classical cyclotron magnet.2055

The first option is retained here: a Fortran program, geneSectorMap.f, given in2056

Tab. 3.1. constructs the required map of a field distribution BZ (R, θ), to be subse-2057

quently read and raytraced through using the keyword TOSCA [16, lookup INDEX].2058


