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6-D Phase Space
A complete description of a charged
particle motion with respect to the ‘ideal
particle’ must be done in 6D phase space.

• Longitudinal dynamics is important in
– Storage rings
– Beam transport in linacs
– Applications, such as Free Electron Lasers
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Charged Particle passing an RF Cavity
From previous lectures: Let us consider 
a ultra-relativistic particle passing a RF 
cavity, with the field E and voltage V.

The energy gain of one charged particle 
with position z in a bunch:

T is transit time factor
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Synchrotron Motion in a Storage Ring

• Longitudinal motion in circular accelerators is called synchrotron 
oscillation

• The origin of this term originates from “synchrotron” where 
particles are “synchronized” with oscillating electric field in RF 
cavity(ies)
– Like “betatron” motion name for transverse degrees of freedom originated 

from betatron, it is purely historical slang
• Hence, the terminology of transverse oscillations is extended to the 

synchrotron oscillations and synchrotron tune, Qs, for stable 
oscillations

• In contrast with transverse motion, where particles typically can 
execute multiple oscillations per tur,  synchrotron oscillations are 
usually very slow with Qs <<1

• The later is used for a simplified description of slow synchrotron 
oscillations by separating them from “fast” betatron oscillations



RF Synchronization in a ring

Circumference:Co
Revolution frequency:ωo

The frequency of the cavity
must be integer harmonic of 
the revolution frequency:

h is called harmonic number.

h ideal particles can circulate in the ring.
They are called synchronous particles

ω o ≡ω rev ≡ 2π fo; fo =
1
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=
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ω rf = hω o; h− integer



Charged Particle in RF Cavity II

• We name the synchronous particle’s phase 
• For number of very good reasons, we don’t want the particle to 

experience the highest accelerating voltage (on crest).

ΔE = eVRF sin φ +φs( )
φs

φs



Energy change by the RF cavity

The energy of a particle displaced by distance z=-ct from synchronous particle changes 
as

Synchronous particle energy change in the cavity is given by its synchronous phase

Non-zero value of energy change can be related to acceleration/deceleration of 
the beam or compensation for energy losses in the ring (such as radiation losses)

ΔE = eVRF sin φ +φs( )

E2 = p2c2 +m2c4

ΔE <<E⇒EΔE = c2 pΔp

Δδ = Δp
po

= ΔE
Eo

Eo
cpo

⎛

⎝⎜
⎞

⎠⎟

2

= ΔE
Eoβo

2 ;βo =
cpo
Eo

≡
vo
c

Δδ =
eVrf
Eoβo

2 sin φs − kz( )



One turn map

Using relative values, we can re-write the above equations in dimensionless form

Now we know, how the momentum deviation evolves, and we 
need to determine evolution of the arrival time

δ changes between nth to (n+1)th turn in the ring as: 

δ n+1 = δ n +
eVrf
Eoβo

2 sinφn − sinφs( )
φn = φs +ωtn ≡ φs − kzn

zs = 0; Δδ s =
eVrf
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2 sinφs

Synchronous particles arrive to RF at t=0 and the relative change of their 
momentum is



Revolution time of a particle
Circumference:Co
Revolution frequency:ωo
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Revolution time of a particle

• Let’s consider the consequence of the energy deviation

– Its velocity changes:

– And the pass length change

• The arrival time difference
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Change in RF phase

Then we can translate the arriving time to the rf phase variable:

Change to turn by turn mapping format:

Combined with the earlier change in the energy change, we have the 
longitudinal one-turn map:

Δφ =ω rfΔT =ω rf Toηδ ; ω rf To = 2πh
ΔT = Toηδ

φn+1 = φn + 2πhη ⋅δ n+1

δ n+1 = δ n +
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φn+1 = φn + 2πhη ⋅δ n+1



Fixed Points
• For any nonlinear map, the first step is attempt to find fixed point(s)   

• The fixed point is defined as:

• And located at

• Next step is to find if fixed points are stable are not?
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φn+1 = φn + 2πhη ⋅δ n+1

δ n+1 = δ n φn+1 = φn

φn+1 = φn → δ = 0
δ n+1 =δ n → sinφ = sinφs
φ = φs & φ = π −φs



An Example

• Consider the example with following 
parameters:
– Proton beam with 100 GeV or 15 GeV
– Cavity voltage 5 MV, 360 harmonic
– Compaction factor 0.002
– No net acceleration.
– Initial condition: φ = φs

δ o = ε << 1



Phase stability for 15GeV

�s = 0



Phase stability, cont’d

�s = 0



Phase stability cont’d



Phase stability cont’d



Phase stability for 100 GeV

�s = ⇡



Phase stability for 100 GeV



From Map to Hamiltonian
Finite differential map:

Can be approximately described by differential equations when variations are small

with the turn number as independent variable and  an effective Hamiltonian of a 
pendulum!
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Hamiltonian equations of motion

H = 2πhη ⋅δ
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At zero accelerating phase 
- simple pendulum

‘MASS’
(not unique)

Stable phase

Bucket height
For stable motion

Angular frequency 
for small oscillation
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Energy conservation and trajectories
H δ ,φ( ) = 2πhη ⋅δ

2
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Small amplitude approximation
Stability criterion

Back to the 2nd order differential equation

For small phase deviations we can linearize it

And find stability condition:
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Synchrotron tune

• Typical Numbers
– Hadron rings: Qs ~ 10-3

– Electron rings:   Qs ~ 10-2

Synchrotron tune for zero crossing

The ‘tune’ is defined as 

Qs =
Ωs

2π
= −
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Small Amplitude Approximation
Hamiltonian

When the phase is close to the synchronous phase:

The phase space trajectory will be upright ellipse for fixed ‘energy’ 
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Transition energy
Transition happens when:

Below transition: High energy particles arrives earlier

Above transition: High energy particles arrives later

η =α c −
1
γ o
2 → 0

γ T = 1/ α c when α c > 0

γ <γ T , η < 0

γ > γ T , η > 0



Physics Picture

Above 
Transition

Below
Transition



Non-zero acceleration phase
• In lepton (electron & positron) storage rings, as well in future 

high (TeVs) energy hadron rings , we need acceleration for 
synchronous particle to compensate energy loss.

• For now, we assume that the energy loss per turn is energy 
independent, and not net acceleration for synchronous particle.

Stable 
region

Effective 
potential
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Phase space 

�s = ⇡/6 �s = 5⇡/6

15 GeV 100 GeV



Longitudinal Phase Space

• We can define longitudinal phase space area 
from the conjugate variables

• The phase space area remain constant even in 
acceleration

• If we stay with,           , the phase space area is 
constant only without net acceleration. 

(�, �)

t = φ /ω rf ,ΔE = βo
2Eo ⋅δ{ }



Longitudinal Phase Space II

• We may take a Gaussian beam distribution 
then the rms phase space area is simply:

• The shape in phase space is conserved only 
–When the beam distribution matches the bucket
–When the beam oscillation is very small (linear).

Arms = πσ tσ E

A95% = 6Arms



Phase Space Area
Examples and Evolution I

A Matched case
(Perfect injection):

Initial conditions match:

aδ
aφ

=
Qs
h η



Phase Space Area
Examples and Evolution II

An unmatched case
aδ
aφ

=
3Qs
h η



Phase Space Area
Examples and Evolution III

Time jitter at 
injection, other wise 
same as the matched 
case:

The phase error is:

φerr = π / 4



What have we learned today?
• Stable longitudinal (e.g. energy – arrival time) motion 

of particles in circular accelerators is called synchrotron 
oscillations

• Synchrotron motion is described with respect to a 
synchronous (ideal, or moving as designed) particle, 
which may experience acceleration, deceleration or 
energy loss by various processes such as radiation

• RF frequency is a integer harmonic (h) of the 
synchronous particle revolution frequency and has to be 
adjusted if velocity of the beam changes

• h bunches can be operated (accelerated) simultaneously 
in such storage ring/synchrotron. Area in energy-phase 
space for each bunch is called “RF bucket”
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• Accurate description of synchrotron motion is described by a map, e.g. 
change of the energy and the phase in finite differentials.  Synchrotron 
oscillation have stability areas separated by trajectory (called 
separatrix) from area of unstable motion.

• Synchrotron oscillations are typically very slow, Qs<<1, which allows 
to describe them by differential equation identical that that of a 
pendulum. Such description has time independent Hamiltonian (e.g. it 
is a constant!) and use the Hamiltonian contour plot as particles 
trajectories in the phase space

• When synchronous particles have zero energy change in RF cavity (no 
acceleration, no energy loss), separatrices a symmetric and particles 
outsize the separatrix acceptance are drifting in phase without being 
“lost”: particles with higher energy above the separatrix never cross to 
the lower part and vice versa.

E-Eo
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What have we learned today?



What have we learned today?
• When synchronous particles gaining or losing energy, topology of the phase 

space changes: particles can cross from the upper part to the bottom part (typical 
for qn acceleration or a energy  loss case) or from the bottom to top (for a 
deceleration case) – these particles will be lost by hitting energy acceptance of 
the lattice

• Synchrotron oscillations are intrinsically nonlinear and asynchronous: 
oscillations with larger amplitudes are slower than at small amplitudes. Period 
turns into infinity at the separatrix: particle never reaches a saddle point.

• Pair (-t, E) is a canonical pair and Liouville theorem guaranties preservation of 
the phase space occupied by particles 

• During injection of particles, phase and energy errors as well as mismatch of the 
particles distribution can lead to effective “emittance” growth by particles 
entrapping “empty space”. Nonlinearity is the cause of this mixing.

t
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Credits

• Credit to Prof. Yue Hao are for the animations 
of the particle's motions in slides 33-35 


