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Solutions of standard accelerator problems 

Q: Why we need parameterization? -> A: To comfortably solve typical accelerator 
problems 

Lecture 17 

Applications of parameterization to standard problems 

Complete parameterization developed in previous lecture can be used to solve most (if 
not all) of standard problems in accelerator. Incomplete list is given below: 

1. Dispersion 

2. Orbit distortions 
3. AC dipole (periodic excitation) 

4. Tune change with quadrupole (magnets) changes 

5. Chromaticity  

6. Beta-beat 

7. Weak coupling 
8. Synchro-betatron coupling 

9. …….. 

We do not plan to go through all these examples while focusing on general methodology 
and use selected examples to demonstrate power of the symplectic linear 
parameterization. 
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Sample I. Let’s start from simplest problems such as dispersion and closed orbit. We 
found a general form of parameterization of linear motion in Hamiltonian system, which 
is solution of homogeneous linear equations, where B is constant vector: 
 

 

dX
ds

= D(s) ⋅X; X = !U(s) ⋅B     (17-1) 

A standards problems is a solution of inhomogeneous equations: 

� 

dX
ds

=D(s) ⋅ X + F(s);    (17-2) 

It can be done analytically by varying the constant B: 

� 

X = ˜ U s( )B s( ) ⇒ ˜ U ⋅ ′ B = F s( ) ⇒ ′ B = ˜ U −1 s( )F s( ) ⇒ B(s) = Bo + ˜ U −1 ξ( )F ξ( )
so

s

∫ dξ  

A general solution is a specific solution of inhomogeneous equation plus arbitrary 
solution of the homogeneous – result you expect in linear ordinary differential equations 
(in this case with s-depended coefficients): 

� 

X s( ) = ˜ U s( )Ao + ˜ U s( ) ˜ U −1 ξ( )F ξ( )
so

s

∫ dξ; ˜ U −1 = i
2

S ⋅ ˜ U T ⋅S    (17-3) 
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For a periodic force (orbit distortions, dispersion function) 

� 

F s+ C( ) = F s( )one can fine 
periodic solution 

� 

X s+ C( ) = X s( ) : 

 

!U−1 s( )× !U s( )Ao + !U s( ) !U−1 ξ( )F ξ( )
so

s

∫ dξ = !U s +C( )Ao + !U s +C( ) !U−1 ξ( )F ξ( )
so

s+C

∫ dξ
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Ao I− Λ( ) = Λ !U−1 ξ( )F ξ( )
s

s+C

∫ dξ ≡ !U−1 ξ( )F ξ( )
s−C

s

∫ dξ ⇒ Ao = I− Λ( )−1 !U−1 ξ( )F ξ( )
s−C

s

∫ dξ

X s( ) = !U s( ) I− Λ( )−1 !U−1 ξ( )F ξ( )
s−C

s

∫ dξ

 (17-4) 

It is easy to see that 

� 

X s+ C( ) = X s( )  exists if none of the eigen values is not equal 1 – 
otherwise matrix 

� 

I− Λ( ) would have zero determinant and can not be inverted! 

It is called integer resonance –  
closed orbit does not exist! 
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Specific examples: Orbit distortions caused by the field errors, transverse dispersion. 
When the conditions for the equilibrium particle and the reference trajectory are slightly 
violated: 

� 

XT = x,P1,y,P3,τ,δ{ };FT = 0, e
c
δBy + Eo

poc
δEx

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,0,

e
c

δBx −
Eo

poc
δEy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,0,0

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

K s( ) ≡ 1
ρ s( )

− e
poc

By ref
+ Eo

poc
Ex ref

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − fx; fx = e

poc
δBy + Eo

poc
δEx

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;

e
poc

Bx ref −
Eo

poc
Ey ref

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = − fy = e

poc
δBx −

Eo

poc
δEy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

.  (17-5) 

Plugging (17-5) into (17-4) will give one the periodic closed orbit for such a case. For 
finding reduces to 

� 

˜ h = P1
2 + P3

2

2po

+ F x 2

2
+ Nxy + G y 2

2
+ L xP3 − yP1( ) +  δ 2

2po

⋅ m2c 2

po
2 + gx xδ + gy yδ  

with  

� 

F = S ∂H
∂X

= 0,−gx,0,− gy,0,−
m2c 2

po
3

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

T

.  (17-6) 
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1D ACCELERATOR 
 

X s( ) =

w(s) w(s)
′w (s)+ i / w(s) ′w (s)− i / w(s)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅

′w ξ( )− i / w ξ( )( )eiψ (s)−iψ ξ( ) 1− eiµ( )−1 -w ξ( )eiψ (s)−iψ ξ( ) 1− eiµ( )−1

- ′w ξ( ) + i / w ξ( )( )eiψ ξ( )−iψ (s) 1− eiµ( )−1 w ξ( )eiψ ξ( )−iψ (s) 1− eiµ( )−1
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

iF ξ( )
2

s−C

s

∫ dξ

 (17-7)

 

 

� 

XT = x, ′ x { };FT = e
poc

δBy 0,1{ }  - orbit; 

� 

FT = K(s) 0,1{ } for dispersion,  i.e. 

� 

FT = f s( ) 0,1{ }  

� 

X s( ) =

Re w(s)w ξ( )ei(ψ(s)−ψ ξ( )−µ / 2) e− iµ / 2 − eiµ / 2

−i
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

......

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

f ξ( )
s−C

s

∫ dξ  

i.e. 

� 

x s( ) = w(s)
2sinµ /2

f ξ( )w ξ( )cos(ψ(s)−ψ ξ( ) − µ /2)dξ
C
∫

    (17-8)
 



7 

First example: orbit distortion 

� 

fx s( ) = −
eδBy s( )
poc

;  fy s( ) =
eδBx s( )
poc

 

� 

δx s( ) = − w(s)
2sinµ /2

eδBy ξ( )
poc

w ξ( )cos(ψ(s)−ψ ξ( ) − µ /2)dξ
C
∫

δy s( ) = w(s)
2sinµ /2

eδBx ξ( )
poc

w ξ( )cos(ψ(s)−ψ ξ( ) − µ /2)dξ
C
∫

 (17-9)

 

but this is not the end of the story for horizontal motion! (what about change of the 
orbiting time?) 
Second example: Dispersion 

� 

fx s( ) = Ko(s)π l = Ko(s)πτ /βo;   

� 

x s( ) = D(s) ⋅ π l = D(s) ⋅ πτ /βo;   

� 

D s( ) = − w(s)
2sinµ /2

Ko ξ( )w ξ( )cos(ψ(s)−ψ ξ( ) − µ /2)dξ
C
∫   (17-10) 
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Sample II: Beta-beat – 1D case 
It is simple fact that any solution can be expanded upon the eigen vectors of periodic 
system (FOD cell repeated again and again is an example). Let ‘s consider that at azimuth 
s=so initial value of “injected” eigen vector V being different from the periodic solution 
Y. We expand it as  

� 

V (so) = aYk (so)+ bYk
*(so) =

vo

′ v o + i
vo

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
;Yk =

wo

′ w o + i
wo

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

a = 1
2i

 Yk
*T (so)SV (so)  ; b = 1

−2i
 Yk

T (so)SV (so)

a = 1
2i

vo ′ w o − wo ′ v o + i vo

wo

+ wo

vo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
;b = − 1

2i
vo ′ w o − wo ′ v o + i vo

wo

− wo

vo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
;

d
ds

˜ Y (s) =D s( ) ⋅ ˜ Y (s);  ˜ Y (s) = Y (s)eiψ(s);Y (s + C) = Y (s)

  (17-11) 
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It is self-evident that  

� 

˜ ′ V = D ˜ V ;  ˜ V (s) = a ˜ Y k (s)+ b ˜ Y k
*(s) =

v
′ v + i

v

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
eiϕ = Yk = a

w
′ w + i

w

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
eiψ + b

w
′ w − i

w

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
e− iψ

 v 2 =
w 2

4
aeiψ + be− iψ 2

=
w 2

4
a 2 + b 2 − 2Re ab*e2iψ( )( )

  (17-12) 

i.e. beta-function will beat with double of the betatron phase. 
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Sample III: Perturbation theory (ala quantum mechanics)  

 

Small variation of the linear Hamiltonian terms (including coupling) 

 

dX
ds

= D(s)+ εD1(s)( ) ⋅X = SH(s)+ εSH1(s)( ) ⋅X
d !Yk (s)
ds

= D(s) !Yk (s);k = 1,..,n.
    (18-13) 

Assuming that changes are very small we can express the changes in the eigen vectors 
using basis of (15): 

 

!Y1k = !Yke
iδφk + εck !Yk

* + ε akj !Yj + bkj !Y
*
j( ) +O(ε 2 )

j≠k
∑ ; k = 1,...,n

!Y1k
* = !Yk

*e− iδφk + εc*k !Yk
* + ε a*kj !Y

*
j + b

*
kj
!Yj( ) +O(ε 2 )

j≠k
∑ ;

d !Y1k
ds

= D(s)+ εD1(s)( ) ⋅ !Y1k + o(ε 2 );

  (18-14) 
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We need substitute the expansion of the new eigen vectors into the differential equation 
and to keep first order term of ε  

 

!Y1k = !Yke
iδφk + εck !Yk

* + ε akj !Yj + bkj !Y
*
j( ) +O(ε 2 )

j≠k
∑ ; k = 1,...,n

! ′Yke
iδφk +δ ′φk !Yke

iδφk + ε ′ck !Yk
* + εck ! ′Yk

* + ε ′akj !Yj + ′bkj !Y
*
j( )

j≠k
∑ + ε akj ! ′Yj + bkj ! ′Y

*
j( )

j≠k
∑ =

D !Yke
iδφk + εck !Yk

* + ε akj !Yj + bkj !Y
*
j( )

j≠k
∑⎛

⎝⎜
⎞

⎠⎟
+ εD1(s) !Yke

iδφk +O(ε 2 )

! ′Yj = D !Yk; ! ′Y
*
j = D !Y

*
j .

 

and all terms in red cancel each other leaving us with 

 
δ ′φk !Yke

iδφk + ε ′ck !Yk
* + ε ′akj !Yj + ′bkj !Y

*
j( )

j≠k
∑ = εD1(s) !Yke

iδφk  

which we can split into individual equations for each component using symplectic 
orthogonality of the eigen vectors 

 
!Yk
*S !Yj = − !YkS !Y

*
j = 2iδ ik; !YkS !Yj = !Yk

*S !Yj
* = 0  
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Multiplying by  
!Ym
*S  or  

!YmS  from the left yields: 

 

−2δ ′φk = ε !Y *
kSD1(s) !Yk →δ ′φ = ε

2
Yk

*TH1(s)Yk; SD1 = −H1;

−2i ′c = !Y T
kSD1(s) !Yke

iδφk → ′c = 1
2i
Yk

TH1(s)Yke
i 2ψ k+δφk( ) ≅ 1

2i
Y T

kH1Yke
2iψ k

2i ′akj = !Y
*
jD1(s) !Yke

iδφk → ′akj =
−1
2i
Yj
*TH1(s)Yke

i ψ k−ψ j+δφk( ) ≅ −1
2i
Yj
*TH1(s)Yke

i ψ k−ψ j( ); j ≠ k

−2i ′bkj = !Y
*
jD1(s) !Yke

iδφk → ′bkj =
1
2i
Yj

TH1(s)Yke
i ψ k+ψ j+δφk( ) ≅ 1

2i
Yj

TH1(s)Yke
i ψ k+ψ j( ); j ≠ k.

 

with solutons in form of integrals: 

 

δφ(s) = φo +
ε
2

Yk
*TH1Yk dξ

0

s

∫ ; c(s) = co +
1
2i

dξYk
TH1Yke

i 2ψ k+δφk( )

0

s

∫ ;

akj = akjo −
1
2i

dξYj
*TH1Yke

i ψ k−ψ j+δφk( )
o

s

∫ ;bkj = bkjo +
1
2i

dξYj
TH1Yke

i ψ k+ψ j+δφk( )
o

s

∫ ;

!Y1ke
− i ψ k+δφk( ) = Yk + εckYk

*e− i 2ψ k+δφk( ) co +
1
2i

dξYk
TH1Yke

i 2ψ k+δφk( )

0

s

∫
⎛
⎝⎜

⎞
⎠⎟
+

ε

Yje
− i ψ k−ψ j+δφk( ) akjo −

1
2i

dξYj
*TH1Yke

i ψ k−ψ j+δφk( )
o

s

∫
⎛
⎝⎜

⎞
⎠⎟
+

Y *
je

− i ψ k+ψ j+δφk( ) bkjo +
1
2i

dξYj
TH1Yke

i ψ k+ψ j+δφk( )
o

s

∫
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

+O(ε 2 )
j≠k
∑  
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Now we want to have periodic eigen vectors, e.g.  

 
!Y1k (s +C) = !Y1k (s)e

iµ1k ;µ1k = µk +
ε
2

Yk
*TH1Yk dξ

0

C

∫ ;

 

we need to choose the initial conditions to make a coefficient looking like: 

d(s) = e− iθ s( ) do −
1
2i

dξ f ξ( )eiθ ξ( )

o

s

∫
⎛
⎝⎜

⎞
⎠⎟
; f ξ +C( ) = f ξ( ).

 

into periodic functions, 

e− iθ s+C( ) do + dξ f ξ( )eiθ ξ( )

o

s+C

∫
⎛
⎝⎜

⎞
⎠⎟
= e− iθ s( ) do + dξ f ξ( )eiθ ξ( )

o

s

∫
⎛
⎝⎜

⎞
⎠⎟
;

dξ f ξ( )eiθ ξ( )

o

s+C

∫ = eiΔθ C( ) −1( ) do + dξ f ξ( )eiθ ξ( )

o

s

∫
⎛
⎝⎜

⎞
⎠⎟
;

do + dξ f ξ( )eiθ ξ( )

o

s

∫
⎛
⎝⎜

⎞
⎠⎟
= 1
eiΔθ C( ) −1

dξ f ξ( )eiθ ξ( )

o

s+C

∫ .
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to get final 

 

!Y1ke
− i ψ k+δφk( ) = Yk + ε

Yk
*

2i 1− ei 2µk+δµk( )( ) dξYk
TH1Yke

i 2ψ k+δφk( )

s

s+C

∫ +

ε

−
Yj

2i 1− ei µk−µ j+δµk( )( ) dξYj
*TH1Yke

i ψ k−ψ j+δφk( )
s

s+C

∫ +

Yj
*

2i 1− ei µk+µk+δµk( )( ) dξYj
TH1Yke

i ψ k+ψ j+δφk( )
s

s+C

∫

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

+O(ε 2 )
j≠k
∑  (18-15) 

We should note, that while it was easy to keep δµk ,δφk  in the final expression (18-15), it 
belongs to the next order correction and generally speaking should be dropped.  

One should be aware of the resonant case 

� 

ei µk −µ i( ) =1, including parametric resonance 
e2iµk = 1 , when one should solve self-consistently the set of (18-14). It is well known case 
well described in weak coupling resonance case or in the case of parametric resonance. 
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Sample IV: small variation of the gradient. It can come from errors in quadrupoles or 
from a deviation of the energy from the reference value. In 1D case (reduced) it is simple 
addition to the Hamiltonian: (including sextupole term!) 

  

� 

H1 = δK1
z2

2
; z = {x,y};

π l = p / po −1

δK1 x,y = ∓δ e
pc

∂By

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = ∓ e

pc
δ
∂By

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −K1π l ∓

e
pc

∂ 2By

∂x 2 Dx

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ π l + o π l

2( )
 (17-16) 

Plugging our parameterization into the residual Hamiltonian we get: 

� 

z = w(s) 2I cos ψ s( ) + ϕ( )
H1 = δK1(s) ⋅ w

2(s) ⋅ I ⋅ cos2 ψ s( ) + ϕ( )
  (17-17) 
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The easiest way is to average the Hamiltonian (on the phase of fast betatron oscillation – 
our change is small! And does not effect them strongly) to have a well-know fact that the 
beta-function is also a Green function (modulo 4π) of the tune response on the variation 
of the focusing strength. 
 

� 

H1 =
δK1(s) ⋅ w

2(s)
2

⋅ I ≡
δK1(s) ⋅ β(s)

2
⋅ I

′ ϕ =
∂ H1

∂I
=

δK1(s) ⋅ β(s)
2

;

Δϕ = 1
2

δK1(s) ⋅ β(s)ds;  ∫ ΔQ = Δϕ
2π

= 1
4π

δK1(s) ⋅ β(s)ds;  ∫

 (17-18) 

 
Direct way will be to put it into the equations (43) and to find just the same, that <I’>=0 
and the above result. 
Finally, putting a weak thin lens as a perturbation gives a classical relation: 

� 

δK1(s) = 1
f
δ s− so( )

ΔQ = Δϕ
2π

= 1
4π

βo(s)
f

    (17-19) 



17 
In general case of change in Hamiltonian of linear motion 

H = 1
2
XT Ho +H1( )X; X→ ϕk , Ik{ }→ H1 ϕk , Ik , s( );

Δµk =
∂
∂I

H1 ϕk , Ik , s( )
ϕk
ds

o

C

∫ .
 (17-20) 

 

H1 ϕk , Ik , s( ) = 1
2
AT !UTδH1

!UA =

1
8

2Ik
k=1

n

∑ Yke
i ψ k+ϕk( ) +Y *

ke
i ψ k+ϕk( )( )⎧

⎨
⎩

⎫
⎬
⎭

T

δH1 2Ik
k=1

n

∑ Yke
i ψ k+ϕk( ) +Y *

ke
i ψ k+ϕk( )( )⎧

⎨
⎩

⎫
⎬
⎭

H1 ϕk , Ik , s( )
ϕ
= 1
2

Ik Re Y
*
kδH1(s) !Yk( )

k=1

n

∑ ; dϕk

ds
=
∂ H1

∂Ik
= 1
2
Re Y *

kδH1(s) !Yk( );
or

dϕk

ds
= ∂H1

∂Ik
= 1
4
!Yke

i ψ k+ϕk( ) + !Yke
i ψ k+ϕk( )( )δH1 2Ik

k=1

n

∑ !Yke
i ψ k+ϕk( ) + !Yke

i ψ k+ϕk( )( )⎧
⎨
⎩

⎫
⎬
⎭

dϕk

ds
= ∂H1

∂Ik
= 1
2
Re Y *

kδH1(s) !Yk( ).

 (17-22) 

with 

ΔQk =
Δµk

2π
= 1
4π

Re Y *
k (s)δH1(s) !Yk (s)( )

0

c

∫ ds    (17-23) 
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Just to drive it home: 1D case 

ΔQk =
Δµk

2π
= 1
4π

Re w ′w + i
w

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

δK1 0
0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

w

′w + i
w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟0

c

∫ ds =

1
4π

w2 δK1
0

c

∫ ds = 1
4π

β s( )δK1 s( )
0

c

∫ ds

 (17-24) !
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Traditional method

so  so+C

δK1 → δK1l( )δ s − so( ) = 1
f
δ s − so( ) δK1 → δ K1l( )δ s − so( )

T (so ) = I cosµ + J sinµ =
cosµ +α sinµ β sinµ

−γ sinµ cosµ +α sinµ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T ' =
1 0

−δK1l 1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
T =

cosµ +α sinµ β sinµ
..... cosµ +α sinµ − βK1l sinµ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

TraceT ' = TraceT − βK1l sinµ;

cos ′µ = cosµ − βδK1l
2

sinµ;βK1l <<1→ ′µ = µ +δµ

cos µ +δµ( ) ≅ cosµ −δµ sinµ→δµ = βδK1l
2

≡ β
2 f
;δQ = β

4π f
.

…..…..



20 
Sample V: Going beyond Hamiltonian system – taking dissipation into account  
 
Let’s consider that an additional linear term is no longer a Hamiltonian 

dX
ds

= D(s)+ εd(s)( ) ⋅X; D = SH;Trace D[ ] = 0;Trace d[ ]≠ 0   (18-25) 

e.g. the overall motion is no longer symplectic 

X s( ) = R s( )Xo →
dR
ds

= D+ εd( )R→
d det R(s)[ ]

ds
= Trace d(s)[ ]

det R(s)[ ] = ε Trace d(ξ )[ ]dξ
o

s

∫ ;
  (18-26) 

Such contributions can come form natural dissipative (or anti-dissipative) processes such 
as radiation reaction (synchrotron radiation damping), ionization cooling or from special 
accelerator systems, such as electron or stochastic cooling. Here we are not specifying 
what is the source of the non-Hamiltonian force and only assume that it is linear. 
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Similarly to regular parameterization, we can assume that motion can be expanded as a 
set of eigen modes  

X(s) = !V (s)χ(s) ⋅B = !Vk (s)e
χk s( )bk

k=1

n

∑ ;det !V (s) =1;    (18-27) 

than (18-26)  

d
ds

χ k s( )
k=1

2n

∑ = εTrace d(s)[ ]

χ k s( )
k=1

2n

∑ = ε Trace d(ξ )[ ]dξ
o

s

∫ ;

   (18-27) 

which is commonly know as a the sum of decrements theorem: sum of the decrements (or 
increments!) of all eigen modes is equal to the integral of the trace of the dissipative 
matrix. This is to a degree the most trivial and well known relation for ordinary 
differential equation.  



22 

What is more interesting is to find decrements (increments) of the amplitudes of 
individual modes. Rewriting already established expansion (18-1) 

X(s) = 1
2
!U(s) ⋅A(s) = Re Yk (s)e

i(ψ k (s)+ϕk )ak (s)
k=1

n

∑ ; d
ds
!U(s) = D(s) ⋅ !U(s)

Re Yk (s)e
i(ψ k+ϕk ) dak

dsk=1

n

∑ = εd ⋅Re Yme
i(ψm+ϕm )am

m=1

n

∑ ;

 (18-28) 

Using symplectic orthogonality of the eigen vectors we get equations of the evolution for 
individual amplitudes:  

dak
ds

= ε
2i

⋅e− i(ψ k+ϕk ) Y *T
k Sd( )Ymei(ψ m+ϕm )am +Y

*T
k Sd( )Y *

me
− i(ψ m+ϕm )a*m

m=1

n

∑⎛⎝⎜
⎞
⎠⎟
;  (18-29) 

Hence, the perturbation can slightly change the eigen modes (as we discussed above in 
ala quantum perturbation) and phase of oscillations – the right side is not necessarily a 
real number. 
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But the main effect of-interest is in change of the amplitude of the oscillations, which 
comes from a simple averaging of (18-29). Since 

Δψ k =ψ k s +C( )−ψ k s( ) = µk

Δ ψ k ±ψ m( ) = µk ± µm

; 

the only non-oscillating term in (18-29) is Y *T
k Sd( )Yk  and averaging yields 

dak
ds

= ε
2i
Y *T

k (s) Sd(s)( )Ym (s) ak ;

ak s( ) = ak o
exp − ε

2i
Y *T

k (ξ ) ⋅S ⋅d(ξ ) ⋅Ym (ξ )dξ
0

s

∫
⎡

⎣
⎢

⎤

⎦
⎥;

  (18-30) 

At no surprise, we arrived to an equation nearly identical to (18-23) with only exception 
that we did not assumed that motion is Hamiltonian. Indeed, if  

εd(s) = SδH1

ak s( ) = ak o
exp 1

2i
Y *T

k (ξ )δH1Ym (ξ )dξ
0

s

∫
⎡

⎣
⎢

⎤

⎦
⎥;

Δϕ = 1
2

Y *T
k (ξ )δH1Ym (ξ )dξ

0

s

∫
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It should not be surprising – we are solving more or less the same problem using more or 
less the same method of varying constants.  

The most useful form of (18-30) is calculation of dumping (or anti-damping) coefficients 

ak ≅ ak0 e
−ξks
C

ξk = − ε
2
Im Y *T

k (s) Sd(s)( )Ym (s)( )ds
0

C

∫ ;
   (18-31) 

Naturally, the sum of the decrements is determined by the trace of the matrix. What is 
non-trivial is that we can re-distribute some (if not all) decrements between various 
modes of oscillations using coupling between them.  

As indicated above, we combine the real and imaginary parts: 

ake
iϕ ≅ ak0 ⋅e

s
C
iΔµ−ξk( )

iΔµ −ξk =
ε
2

Y *T
k (s) Sd(s)( )Ym (s)( )ds

0

C

∫ ;
   (18-32) 

We will use this expression now and again. 
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Again 1D case 
It gives us know fact that damping of the amplitude of the oscillation is ½ of the 
dissipative term in ′′x −ξo ′x + K1(s)x = 0  : 

εd =
0 0
0 −ξo

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ξx = − 1
2
Im w ′w − i

w
⎡

⎣
⎢

⎤

⎦
⎥

0 1
−1 0

⎡

⎣
⎢

⎤

⎦
⎥

0 0
0 −ξo

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

w

′w + i
w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= ξo
2
Im − ′w + i

w
w

⎡

⎣
⎢

⎤

⎦
⎥

0

′w + i
w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= ξo
2
.

 

By the way, the real part of the expression gives  

′ϕ x =
1
2

′wxwx
ξo
2

      

while being interesting academically, it does not play too much role in the accelerators.  

 
We will return to damping when considering synchrotron radiation effects in accelerators.
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RF cavity 

How radiation cools beam in a storage ring: vertical motion 
Particle radiate in the direction of the motion and RF 
cavity restores only longitudinal part of the momentum 
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Sample VI: Going beyond Hamiltonian system – random kicks 

Particle in accelerators frequently experience a sudden events, which change their 
momenta essentially in instance. Naturally, there are no sudden changes of position – it 
would require not infinite force, but also a finite time to change position.  

Examples of such processes include: radiation of a photon (so called quantum fluctuation 
of radiation), scattering on residual gas or on other particles inside the beam. The later is 
called intra-beam scattering and is one of limiting factors in attaining small beam 
emittances. 

Again, let’s just add an additional term in our equation of motion (18-1): 
dX
ds

= D(s) ⋅X + DP s( );DP s( ) = δPa
a
∑ ⋅δ s − sa( )  (18-33) 

which has similar appearance as (18-2) but has very different nature – it represents a 
random process, not a regular continuous force. Nevertheless, we can find directly the 
change of the oscillation amplitude and phase at each random kick:  

eiψ k (sa )Yk (sa )δ ake
iϕ( )sak=1

n

∑ = δPa →δ ake
iϕ( )sa = e

− iψ k (sa ) 1
2i
Y T*

k (sa )SδPa;

ak s( )eiϕ = aok + e− iψ k (sa ) 1
2i
Y T*

k (sa )SδPa
sa<s
∑ ;

 (18-34) 
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Naturally, the exact result depends of a realization of the random process. But statistically 
we can write the average change if the actions: 

Jk =
ak
2

2
→ δ Jk =

ak +δak( )2 − ak2
2

= 2akδak + δak( )2   (18-35) 

Now we need to look on the average picture again: 

 

!ak = ake
iϕ ;δ !ak = e

− iψ k (sa ) 1
2i
Y T*

k (sa )SδPa

δ !ak
2 → !ak +δ !ak( ) !a*k +δ !a*k( )− !ak !a*k = δ !ak

2 + 2Re !a*kδ !ak

!a*kδ !ak = ake
− iϕe− iψ k (sa ) 1

2i
Y T*

k (sa )SδPa

  (18-34) 
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Hence,  

!a*kδ !ak = ake
−iϕe−iψ k (sa ) 1

2i
Y T*

k (sa )SδPa = 0   (18-35) 

and  

 
δ Jk = δak

2

2
= 1
2

δ !ak
2 = 1

8
Y T*

k (sa )SδPa
2   (18-36) 

Now we need to introduce probability of the random kick δP at azimuth s to write an 
statistical average growth of the oscillation amplitude: 

 
dJk
ds

= 1
8
Y T*

k (s)SδP
2
⋅φ s,δP( ) = Dk (s)    (18-37) 

This growth is called diffusion (or random walk). It has interesting characteristic that 
amplitude of oscillations growth proportionally to the square root of time – e.g. the action 
grows linearly. 
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Again, we will discuss values for specific processes later. What is interesting now is to 
combine damping and diffusion. To do this we need to tone that without diffusion  

dJk
ds

= 1
2
da2k
ds

= ak
dak
ds

= −2ξkJk    (18-38) 

and adding diffusion we get to 
d Jk
ds

= −2ξk (s) Jk + Dk (s);

Jk (s) = Joke
−2 ξk (z )dz

o

s

∫
+ e

−2 ξk (u )du
z

s

∫
Dk (z)

0

s

∫ dz;

   (18-39) 

In storage rings it is frequently that the processes are very slow and you can average the 
damping and the diffusion over the circumference 

Dk = Dk (s) C
; ξk = ξk (s) C

Jk (s) = e−2 ξk s Jok + Dk e2 ξk z

0

s

∫ dz
⎛
⎝⎜

⎞
⎠⎟
= Joke

−2 ξk s +
Dk

2 ξk
1− e−2 ξk s( );

 (18-40) 

and stationary action at large s (many turns) being 

Jk (s) →
Dk

2 ξk
    (18-41) 
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This formula is very useful for both calculating and estimating the beam emittances in 
presence of diffusion and dimpling.  

Note, that an anti-damping ξk < 0 will cause exponential growth of the oscillating 
amplitude and is almost is bad and instability of periodic Hamiltonian motion. Hence, 
this is important for accelerators where damping plays significant role in the beam 
dynamics, e.g. damping (anti-damping)  time is much smaller or compatible with the 
beam life-time in the accelerator. 

Remarkably, I know about one storage ring (VEPP-4 in Novosibirsk), which was initially 
built for proton-antiproton collisions but then will turned into electron-position collider. 
Since protons do not radiate any significant part of radiation, synchrotron radiation 
decrements were not important and neglected during design. When the switch to 
electrons and positrons, which have damping times of millisecond, did occurred, it turned 
out that synchrotron radiation will damp one degree of freedom and anti-damp the 
other… It was required to add an additional radiation device into the lattice (a strong 
wiggler) to solve this important problem. 
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X(s) = 1
2
!U(s) ⋅A(s) = Re Yk (s)e

i(ψ k (s)+ϕk )ak (s)
k=1

n

∑ ;

d
ds
!U(s) = D(s) ⋅ !U(s); !U = ...Yke

iψ k ,Y *
ke

−iψ k ,...⎡⎣ ⎤⎦;k =1,..,n

!UTS !U = 2iS.

It is not all… But already, not too shabby 
for a single parameterization  

  


