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Energy Stability in Circular Accelerators: Intuitive approach 
 

C = C(Ε);  v = c ⋅ 1− mc2
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Revolution Time T = Circumference/velocity 
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; ΔE ≡ E−Eo
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Vrf =Vo ⋅ sin 2π ⋅ frf ⋅ t( );  f rf = h /To

� 

2π ⋅ f rf ⋅ ts(n) = Nπ  → sin 2π ⋅ f rf ⋅ ts(n)( ) = 0

Synchronous particle: n is just a turn number 

RF cavity 

t(n) = ts (n)+τ (n)

τ (n +1) = τ (n)+ηcTo
ΔE(n)

 Eo

;

ΔE(n +1) = ΔE(n)± qVo ⋅sin frf ⋅τ (n +1)( )
ΔE 

t 

ηc > 0 

Stable  phase 

ηc < 0 

ηc= 0 is a special case and called a transition 

ηc is a function of the accelerator lattice 
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Linearized part of the additional Hamiltonian term is 

  
δ H τ = −

e !τ +τ add( )2
poc

hnko En cos φn( )
n
∑ .   (12-35) 

While looking simpler than original Hamiltonian, adding RF fields made the Hamiltonian fully 
3D coupled through τ add . Hence, next step – let’s consider case without betatron oscillations 
 !τ = τ : 
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or in linear case 
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Coefficients in both Hamiltonians are s-dependent and the Hamiltonians are not constants of 
motion. Naturally the (12-38) linear system, when stable, can be solved using 1D 
parameterization  

τ = asws s( )cos ψ s s( ) +ϕs( ); ′ψ s =
1
ws

2 ;

πτ = as ′ws s( )cos ψ s s( ) +ϕs( )− 1
ws s( ) sin ψ s s( ) +ϕs( )⎧

⎨
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⎫
⎬
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What we learned today 
•  In general case, full rigorous analytical description of synchrotron (energy-time) oscillations, which 

involve time-dependent electric field, possible only in parametric form. 
•  Time-and-s-dependent electric field is changing particle’s energy and makes coefficients in 

Hamiltonian s-dependent. While problem is solvable with help of computers, analytical treatment of 
propagation through an RF system is possible in approximation of constant particle velocity 

•  In this case RF system is described by energy change. Linearized matrix is equivalent to that of a short 
lens approximation for a quadrupole 

•  We can rigorously separate transverse (betatron oscillations) motion from longitudinal motion when 
energy of particles is constant using dispersion function. All coupling between transverse and 
longitudinal motion is reduced to arrival time dependence on betatron oscillations.  

•  This contribution disappears in location where  dispersion (all 4 components) are zero. We can than – 
using thin lens RF system matrix - can calculate one turn matrix for longitudinal oscillations, stability 
condition and corresponding optics function 

•  In case of slow synchrotron oscillations, linear oscillation are reduced to harmonic oscillator and one-
turn-averaging of exact Hamiltonian provides description identical to pendulum equations 

•  In this approximation, we can define stable and unstable stationary points as well as separatrix (RF 
bucker), which divides confined motion from unconfined. We also can define energy of acceptance of  
“RF bucket “ 
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