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Energy Stability in Circular Accelerators: Intuitive approach

_ . . . Revolution Time T = Circumference/velocity
V,=V,-sin2x- f,.-t); f,=h/T,

Synchronous particle: n is just a turn number mc2 2
C=CE);, v=c-,[1-

21 fp-t(n)=Nr —sin(27- f, - 1,(n))=0 E
t(n)=t (n)+1(n) T = &)
T(n+1)=T(n)+77cToA1;(:l); C'\/l_(m;]z
AE(n+1)= AE(n) £qV, -sin(f, -T(n+1)) AE

- T=T,- (1+nc—+....j;AEEE—EO

Stable phase E
(4]
> 0 n <0
. 1s a function of the accelerator lattice

= 0 is a special case and called a transition
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Synchrotron oscillations.

Continue considering momentum of particle to be a constant, we switch to a geometrical

variables using p, for normalization 7, = —;7, = —2. We finished last class with establishing
p() V p()

periodic transverse motion (orbits) for particles with constant energy 7, =— . In addition

0

particles will execute transverse betatron oscillation with respect to this orbit:

Z=Zy+m n(s)n(s+C)=n(s);n"=Dn+C;

3 . (12-01)
Zj=DZ;Zy=Re Y a ¥, ()" ;
k=1

where are periodic eigen vectors of the transverse oscillations:
T,.Y=€"Y,y.
In addition, we found that particles with energy deviation are slipping in time as follows:

T(s)=m (1, s+ 2. (9))+T5(8); 1, (s+C)= x.(5)

S X(9)= (p j s+ j 2.(&)n.()+g,(5)n, (&)W (12-02)

=—J g.M, +8M, s+(mcj :
P

o

with 7, is the contribution from the betatron motion. To be exact, we just separated two parts of

the linear motion using the fact that solution o linear differential equation are additive (linear
combination of solution is a solution) and that there no time dependence.

PHY 564 Fall 2017 Lecture 12



Now, let’s find the full set of eigen vectors for 3D motion using Ty One turn transport matrix.

Let’s start from obvious eigen vector:

_ o O O O

0

T Y, =Y ;A =1. (12-03)

nothing depends on the time shift! A particle following the reference particle with some time
delay follow the same trajectory but with the given time delay. Next eigen vector is not a simple

vector but a root vector:

Up
M
mn,

M,y

X
|

; T, Ys=Ys+nY,; A;=1. (12-04)

Note, this is clearly degenerated case when matrix Tgy can not be diagonalized and we have to

use root vectors, but the symplectic product

1s well behaving.

Y.'SY;=1 (12-05)



What it left is to define the structure of 6-component betatron eigen vectors. Again, since energy
1s constant, it does not depend on the transverse motion, e.g. the corresponding element is simply
ZEero:

kaeilk\'
(ka + lq—k]eil"‘
W — —_—
kx Y
\Y b
Y, = b° = y.. (12-06)

"

(wl( qk>J w0
W,
Ykr

L 0 —

which is generally not true for the time component. While it can be calculated directly and after
long manipulations brought to the form we derive easily using symplectic orthogonality of eigen
vector of symplectic matrix T:

YiT(TTST)Yk:YiTSYk%AilkOYiTSYk:),iTSYk; (12-07)
(A4, —1)YSY, =0. '

With root vectors is just a bit different, but still trivial. Note that betatron eigen vectors is a
regular are symplectic-orthogonal to Y. is a regular eigen vector with eigen value of 1 and,
naturally,

Y.”SY, =0; k=1,2. (12-08)



You can check directly that this is true using explicit expressions (12-06) and (12-03). Note, that
this is also requirement is equivalent to requirement that 6" component of betatron eigen vectors
Y, 1s equal zero. It takes one extra step to prove that for root eigen vector Y;:

Y, (T'ST)Y; =Y, SYy; TY; =Y;+n.Y,
Ao (Y SYs+mY,SY,)=Y,SY;; Y, SY, =0;. (12-09)
(A, -1)Y,SY;=0—>Y,"SY; =0.

This gives us automatically explicit expression for 5t component of the betatron eigen vectors:

— -7 ~ - -
Ykﬁ Sy 00 n
Y, SY;=0—] vy,, 0O 0 1 X, |= YkﬁTST[ +y,,=0;
0 0 -1 0 1
Yie =Yg SN=1"'SY,; = : (12-10)

[ e id-q,) s
[nx(ka +\3—k)—77pxwkx]€x“ +(77),[Vk) +W—k)—1’]pywk},)ex .
kx ky

This equation makes explicit the dependence of the arrival time on amplitudes and phases of
betatron oscillation. In locations where dispersion is zero (called achromatic), this dependence
vanishes

n=0cy,, =0. (12-11)



Separating betatron oscillations. Note that in accelerator jargon we call fast transverse motions
(e.g. not related to energy of particles) “betatron” oscillations. Naming is historical and related to
oscillations studied in one of the accelerator types — betatron. Let’s formally separate energy
dependent motion from transverse “betatron” oscillations using a Canonical transformation:

ﬁ(xﬂ):H(X+X5)—aa—F:H(X+X5)+

s (12-12)

N7, (n +1,.7T T) n,.txX+n7, (n +1,7 T) n,m.y

while we can prove that matrix of such transformation is symplectic, it is also very easy to do
using a generation function noticing that 7_ = 7_ 1s not changing during the transformation

F(q.P)=(x-n#)(% +n,% )+(y-n4) (7 +n,%)

~ 2

2

+17t, — (N1, +1,1,,)

=T-N7, +N,X-N7,+1,7Y; (12-13)
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We should note that transformation (12-13) is linear:

_ . _
X=L-X=I.X-n| 0 |+
0
| 0
-, (ﬂx — N7t ) T (x -7, ) =1, (”y — N, ) T, (y B 71),71',)
0

(12-14)

with matrix L naturally being symplectic — you can directly check that it is correct. We can
follow a direct way of finding form of Hamiltonian in the new variables (e.g. transforming
coefficients in Hamiltonian (11-21) and adding s-derivative of the transfer function), but since

the transformation is simply linear we can use a short-cut rewriting (2-14) as

V4 TN O Z
X=| 7T |=X-| 0 |-| 0'SZ |;X=| © [ Z=Z-nn;
TT. 0 0 T,
T.n )
X=X+ 0 |+| n'sz |;
0 0

where we used that 1" S1 =0.

(12-15)



Now it is relatively straight-forward to write equations of motion is new variables:

d_X:DX;d_:~X;D:[ D4X4 0 ¢ };d—z=D4x4Z+C7FT;77'=D4x477+C;

ds s ds
dX dX " d 0
—="-r| 0 |-| ——(n"sZ) |= (12-16)
ds ds 0 ds
i 0
B Zl _ nTnI T D . Z _ 7[1.17 p— _ -
e (d ) D4x4Z
—(r-n"sz) |= R 3 = 7
s ds 0
0 0 ] |

It means that the transverse part of the Hamiltonian remain the same since D, , =S, ,-H, ,

dZ S =
E:D4x4Z; D, =D,y; (12-17)
but the C components, as expected, vanish. It means that in new Hamiltonian mixed
components between longitudinal {f,ft,} and Z” ={xﬁ,7txﬁ,yﬁ,7tyﬁ} disappear. A non-zero
component of type (af+b7~r,)2,. in the new Hamiltonian will generate non-zero additional
component in (12-17):
dz, oH

=9
ds “ oz

=S, (af+bﬁ:r)
which contradict the findings.
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Hence, both the Hamiltonian and new D matrix have a block diagonal form:

|H, o0, |. _ b, o, ] .
a=| ™ "™ [ p=s@=| ™ * |\A,,=H,, (12-18)
O4x4 Hl2x2 04x4 D12x2

It 1s also possible to prove it explicitly by considering in detail the only remaining equation in
(12-16) for 77. This also allows us to find explicitly expression for the longitudinal Hamiltonian

dt d r d T s
—=—\T-NS8Z)=—|\7-1n SZ
ds ds( L ) ds( L )
2 2
j_:::[gxx+g\,y+(@] ]nT:nr(%l +CTS(Z+7~ZT77T); (12-19)

_ 3
(n"SZ) =(n"D",,,+C")SZ+n"SD", ,Z=C"SZ; %Z—T:ﬁf[[@j +CTS77T]
S p()

with C’ :[ 0 -g, 0 —g, :| and we used obvious

~

nTDT4x4SZ + nTSD4x4Z = nTH4x4Z_ nTH4x4Z = 0 :
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We can re-write (21019) for 77 explicitly as

2
dT - mc
=7 [(—) +77xgx+77ygy]; (12-20)
ds ;
and the new Hamiltonian as
H=H,+H,
T, +n, F X N y
H L P+ P+ Py L(x.7 7. );
B > pc 2 pe BYp p.c ( p7tey — VB ﬁx)
me ) r} o’ (12-21)
9'(5 = o +g\'n\' +g\'n\' — = CT -
) C S 2 2
dx oH d| T ‘
2=§ =DyXy — =| “ |\ >F=mx, c.(&)dé&
ds axﬂ ds| T, 0 g

where I dropped tilde for compactness. It is important to remember that in this new variables

oF .
=——=T-NTz+N X;—NT +1N, Vs
aﬁ-r M7 p T MpXp =170, 10,5 (11-22)

T= c(to(s)— t).

S]]
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It means that arrival time dependence on transverse oscillations is well hidden in

T T NT,—MN Xg+NT —1
t:to(s)__:to(s)___n B nl B n) ) TlP)yﬁ
C C C

(11-25)

Since, without time dependent components in the Hamiltonian, the betatron and longitudinal
motions are fully decoupled. It also means that in new variables our eigen vectors become:

Ykﬁ O O
Yo=| 0 |1 ;=] 1 pY,=| 0 | (12-26)
0 0 1

The reason for disappearance of the transverse component in Y; : it 1s caused by measuring the

transverse orbit from the closed orbit for deviated energy. Similarly, disappearance time
component in betatron eigen vectors is caused by its explicit inclusion into the new time variable.

\9)
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Adding RF fields. Finally we are ready to move to synchrotron oscillations. Let’s consider that
we adding alternating (AC) longitudinal electric field on the beam axis

ek (5) (12-27)
ds ‘

For a moment we do not need to pick any specific form of this field, as far it does supports our
assumption that the reference particle’s trajectory in time, space and momentum exist.
Specifically it means that we request that

dE()

ds

=—¢E (s.,(s5))=0 (12-28)

¢.g. that alternating electric field crosses zero at the time of the passing of the reference particle.
For a storage ring (a periodic system) the accelerating field has to be is periodic. The AC field
(called RF field in the accelerators) has to satisfy the same condition.

E (s+C,t)=E/(s+C.t); E,(s+nC.t,(s+nC))=0;

12-29
\"

o

t,(s+nC)=t,(s)+nT,;

0’

where T, is called revolution period in the storage ring.
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In practice, the alternating EM fields are generated in resonant cavities and have a sine-wave

time dependence:
Z ReE (s)e" = 2

n

E,(s)sin(-o,t+¢,(s)); (12-30)

where we simply numerated various RF frequencies @, , which frequently can be just a single

frequency. In combination with (12-29) it yields requirement that all RF frequencies have to be
harmonic of the revolution frequency:

T w =2rh;h —inger; ®, =ho,

0o"7n n?’

12-31
S = (1230

,

|
f;ev’ f;ev - TL' - ]—vo

Vo
=
with the field on axis of:
ZReE e’ —e2|E |81n(hna)0(t—t0(s))—¢n(s));
2 E,(s) sm((bn(s))

For a single harmonic RF (12-32) becomes ¢, (s)=+7 and

E (s.t)=¢E, (s)sin(h,fa)o (r—1, (s)))

0.
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Note that the sign of E,, depends on what node of the sin-wave we choose. We can add the term

corresponding to this longitudinal field using our full accelerator Hamiltonian (which doable but
not necessary), or by noticing that

dr. 1 d(EE,) e .
L= b E h - 12-32
b a2l B )sin(hot-9,(s)) (12-32)
corresponds to a term in Hamiltonian of
SH = ¢ 2 E cos(hnko(f+1'add)+¢n); k = o, _ 2_%&;
p()c n hnk() C C C
Toaa = Mg = My X 1,70, =1, V55 (12-33)

E|sin(hk,(F+7,.,)+0,)

b

dﬂ:r __8(6H)_ e 2
ds 9t pc“ hk,

Thus, we can write a generic Hamiltonian without expansion in time domain:

H =H ;+H ;+6H
2 2 2 2
mec T+, F Xg N G Vg )
Hy=— > } +_7+_xﬁyﬁ+_7+L(xﬁ”ﬁy‘yﬁ”ﬂx)’
p() p() mC p()
me ) T’ T’ (12-34)
g-(5 = T + g.\'n.v +g_\'r’)' 0 - CT 2

PTG Z|En|cos(hnk0(f+1add)+q)n)
p.c h,k,



Linearized part of the additional Hamiltonian term is

e(T+7,,,)2

SH_ =- (F+7) Y hk|E
p,c n

While looking simpler than original Hamiltonian, adding RF fields made the Hamiltonian fully

3D coupled through 7_,, . Hence, next step — let’s consider case without betatron oscillations

~

T=T.

(9,). (12-35)

ﬂsz[(@]:gm +g.1 )2 Z‘E ‘COZ:““D) (12-37)
or in linear case
me ) T 1 e
H =[(p—] +gxnx+gyny) > "7 e & kel Eals)eos(9,) (12-38)

Coefficients in both Hamiltonians are s-dependent and the Hamiltonians are not constants of

motion. Naturally the (12-38) linear system, when stable, can be solved using 1D
parameterization

T= asws(s)cos(l//s(s)+(ps); Y’ = 1

N

T, = {asw; (s)eos(v (s)+.) = B sin(y, (s)+fps)}-
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This said, in majority of the storage rings, synchrotron oscillations are very slow and it takes
from hundreds to tens of thousands turns to complete a single synchrotron oscillations. In this
case small variations during one pass around a ring can be averaged. The easiest way is just to
average the Hamiltonians (12-37) and (12-38): Beware, this is an approximation which brakes if
synchrotron tune is relatively larger (let’s say ~ 0.1). Still, i1t 1s easy way to get something useful
—lets’ do it:

2

()= n. 5+ LD o, (0=

2 p.C
N V. . -
URF(T):E.mCZ cos(hk,T+9,); [p j n,+gm, ); (12-40)
_\ cos@ | smB
V,cos(6+9,) " jEn(s)’cos¢,1( )— T E,(s)sing, (s).

n o o n o o
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The averaged Hamiltonian does not depend on s and is invariant of motion. Thus we can say that

(H,)=n, nzf +eURF(f)=?fo; (12-41)

mc

are equivalent to trajectories in the phase space of 7,7 . Let’s consider a single frequency RF — a
traditional single frequency RF — well know pendulum equation:

<‘7'(s> .2 1 eV, cos(koh,fr) o

=T Kh
Poc Rty (12-42)
1
d_T =N,7,; dﬂ:T = —eVRF sin(koh,f’t');
ds ds C pc

Plot of the equipotential for Hamiltonian (12-42) — stable motion occurs around the zero or 180
degrees, depending on the relative sign of eU,n, .
Stationary points are

dt dr

=nnrx,=0;,->n,=0,—-=0,—>¢, =k h, T=Nr, 12-43
dS n‘r T dS ¢ f ( )

18



Expanding around the stationary point we D

B nrz 1 eVRF _2
<7—[s>—nf C b koh,f2 cos(tp)

h &eVRF.
T }fC poC ’

k h
Qg — n‘r o' “rf eVRF| — l 27z'hrf
‘ cC pc| C

Q = \An‘r k()hrf en‘?;F

0 =M _ \Am"hrf Vi

Q’=n

N

—8 (12-44)

U, =Q C= \AZnn h,

27

Stable points are
—1,eVeecos(9,)>0;= ¢ =2N; n.eVer <0;
¢ =2N+Drm;, n.eVy. >0,

As we discussed during last class 1. determines the sign on the longitudinal mass. When it is
negative, not minima but maxima of the potential correspond to stable points.
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Decoupling synchrotron oscillations. There is one clear case when synchrotron oscillations can
be decoupled, while using exact treatment for linearized transverse motion. It is the case when all
component of transverse dispersion are equal zero in the location of RF system, or in other term
arrival time of particles is no longer depend on betatron oscillations and only on energy

T T T ,—N X, +N.7T . —1N
1= t()(s) - = to(s) - [n\ P TI])-\ B n) : np) yﬁ j — O'
C

c

(12-45)
c

It is important to note that we shall assume that RF system is installed in a straight section if
accelerator to satisfy achromatic condition (12-45). Otherwise, curvature will generate on-zero
dispersion function 7 :

0
- \2 ) 2
dn _ D+ 8x . g = mec | eE mc K g = mc | ek, (12-46)
ds 0 Py ) P PN, 7\ P ) DS
_gy

It 1s indeed a practical solution, since combining bending field with RF cavity is at least
cumbersome, if at all possible. Hence, we stick with a simple straight trajectory through our RF
system. Let’s consider a single harmonic cavity (or a linac) with electric field on axis being:

E, (s,t)=E,(s)cos(w,t+,) (12-47)

which gives the energy change to a particle with charge e:

‘efE cos (¢ (S)+§00)ds=eJLEO(s)cos(wo(t()(s)—%)+q00)ds (12-48)
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Even we assume that reference particle in the storage ring traveling with 7, (s) does not change
its energy, or

—ejE cos(@yt,(s)+@,)ds =0 (12-49)
analytical solution for an arbitrary S-dependent E-field:
n> E hk,T +
‘]_[.v — mc n‘[ + e O(S)COS( [ ¢()) (12_377)
‘ p() 2 p()C hk()

or in linear case

\/

2 2 2
G{m:[ﬂg]i;—hkz—dz( cos(hk,t+¢,) (12-38°)

P,

does not exist. Hence, we will use a typical assumption, valid for ultra-relativistic particles
(when as well as in the case when the relative energy/momentum change in the RF system is
negligibly small, e.g. assumption that particle moves with constant velocity. In this
approximation, the RF system is described by a single parameter — the energy/momentum

change:
AE
Al =—= (001; eV, cos(w,1+¢,) = V> +V.?;tan(¢ %

p()c p()c \}

V.= IE cos( Oéjds;vssz sm( )
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Linear expansion of (12-50) about the reference particle gives:

AE
ATm :—:—szgnw o? eV ;

p()c p()c ’f,
corresponding to a short-lens transport matrix:

sign = sign [sin(a)ot +Q, )] COS((UJO + 900) =

T

T —Uu 1

p.c’

which in combination with the round trip matrix for X! = [T’”T] of

Tr|T, un
cosy, =——=1——=
ILLS 2 2
with obvious stability criteria
O<un, <2
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[ T } :|: 0 :|:€ 0 -sign [sm(a)otoﬂoo)];

(12-51)

(12-51)

(12-52)

(12-53)

[\®)
\S)



With eigen mode parameters at the exit of the RF system:

2
singt, = /1-cos’ 4, = \/WL- —@;ﬁf = “bs[i} A LI

sin L, Sin i,

W, =\/abs( .776 j; wT' =—1_C.L‘u“.
Shy’y w,_ sin U,

This solution naturally reduces to “oscillatory” solution when RF “focusing” is weak we have the
answers 1dentical to “smooth” oscillatory solution (12-44):

(12-54)

O<un <<1; p =um; Q. = % (12-55)

with

. . /‘n \/Ium
S1n lus :LLs |unc << > :u“s T[Qs ’ ﬂ‘l.’ U ’ ar 2 << ’
4/|i; w, =— “|un" << 1 ;
2w, w,

=5

N
w

T

which are closely describe slow synchrotron oscillations.
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It also means that for a storage ring with RF system located in dispersion free straight section
and Q,<<1 we can use approximate description of the synchrotron oscillation, including the non-
linear part of the motion, using s-independent Hamiltonian:

(3 )=, 74 Ly Ve cO5(khsT).
‘ 2 Cope khy (12-56)

ﬂ_ . dn-r _ievi 1 ;

ds = ds C pyc sm(knhrff),

Since the Hamiltonian is constant, the energy level of Hamiltonian represent trajectories in 7,7,
phase space. For a single harmonic RF, sign of 17, determines stationary phase of RF (for the
reference particle!)

n.>0 n.<0

Hamiltonian H( 7,7, )

,,,,,,

N

What is important to notice that for “negative” mass case 7, <0, stable phase points correspond
to the maximum of the potential.

Untrapped motion

X-point

FIG. 4. Phase space (¢,p) of the pendulum.
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The phase space is separated to zone of confined motion around stable points and unstable
motion, when particles slip continuously in their arrival time. The trajectory which separates
stable (confined) and unstable (unconfined) motion of particles i1s called separatrix. It
corresponds to the trajectory originating in unstable stationary point (saddle point in the
Hamiltonian profile). We can easily find the value of Hamiltonian corresponding to this point

<q-[ >:n ”12 1 eV, cos(k h,fr) T —szgn(n ) 1 eVyp
2 C p,c  kh, “IC p,c
(12-57)
n.’ B 2 eV r = | 2 eVRF|
2 x| CNK Iy poC - Cn.k,h, poc

which indicated energy acceptance of RF separatrix (jargon word frequently used: RF bucket).

cond
N
(=]
Q

-
(]
(=]

0 dot, in degrees per s

| 1 | |
-150 -100 -50 0 50 100 150
9, in degrees

25



Adding harmonics of the RF frequency makes “RF buckets” more interesting: as an example
bellow is the phase space when we add to the main RF harmonic its second harmonic RF with

twice the amplitude and the same phase. The phase space develops separatrices inside main
separatrix.
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What we learned today -
oscillations, whic

In general case, full rigorous analytical description of synchrotron (energy-time
involve time-dependent electric field, possible only in parametric form.

Time-and-s-dependent electric field is changing particle’s energy and makes coefficients in
Hamiltonian s-dependent. While problem is solvable with help of computers, analytical treatment of
propagation through an RF system is possible in approximation of constant particle velocity

In this case RF system is described by energy change. Linearized matrix is equivalent to that of a short
lens approximation for a quadrupole

We can rigorously separate transverse (betatron oscillations) motion from longitudinal motion when
energy of particles is constant using dispersion function. All coupling between transverse and
longitudinal motion is reduced to arrival time dependence on betatron oscillations.

This contribution disappears in location where dispersion (all 4 components) are zero. We can than —
using thin lens RF system matrix - can calculate one turn matrix for longitudinal oscillations, stability
condition and corresponding optics function

In case of slow synchrotron oscillations, linear oscillation are reduced to harmonic oscillator and one-
turn-averaging of exact Hamiltonian provides description identical to pendulum equations

In this approximation, we can define stable and unstable stationary points as well as separatrix (RF

bucker), which divides confined motion from unconfined. We also can define energy of acceptance of
“RF bucket “
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