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Linear accelerators: from electrostatic to RF
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Electrostatic: what is the limit ?
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Maxwell equations and energy conservation law!

Can not cheat the Maxwell equations

Can one gain the energy again and again by passing 
through a  DC  accelerating gap?
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Induction linacs: linear betatrons
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• Useful for high power and high current beams 
• Have limited accelerating field
• By nature are pulsed, with relatedly low rep-rate (kHz) 
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How RF accelerator works

dE
dt

= e
!
E ⋅ !v   → sign(

!
E ⋅ !v)=const

• It has oscillating (typically sinusoidal in time) 
longitudinal (along the particle’s trajectory) 
eclectic field

• It also has longitudinal structure (cells) which 
alternates the direction of the filed 

• When particle propagates through the RF 
accelerator, the field direction in each cell is 
synchronized with the particle arrival and the 
effect from all cells is added coherently

Wideröe’s linac: β=v/c is changing Electron linac

β=v/c ~1
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Wave-form in 5-cell cavity



How β=1 RF linac works? 
Example of 5-cell cavity

t=0

t=1/4To

t=1/2To

t=3/4To

t=To

t=5/4To

t=3/2To

t=7/4To

t=2To

t=9/4To

t=5/2To

Electrons are out



Simple things to remember

• Acceleration in DC electrostatic is limited to the 
difference in terminal potential (e.g. voltage 
between the ground and the cathode)

• RF linear accelerators (RF linacs or simply 
linacs) are not limited in beam energy

• In RF linacs, the coherent addition/subtraction of 
the energy gain from cell to cell happens by 
design: period of the electric field oscillation is 
matched to the travel time of electron between 
the cells.

• Accurate synchronization of RF linac is 
important task for any linear accelerator
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A bit of EM and conducting media

• Assuming oscillating field we can use Coulomb gauge for EM field 
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Boundary conditions
• We are considering oscillating EM fields in RF structures
• RF structures are built from highly conducting material, both 

to contain EM filed inside and to provide low losses 
• In first approximation we can consider an ideal boundary 

conditions and take finite conductivity as a perturbation later
• Q-factor: Qroom temp ~103-105, QSRF ~109-1010

11

!
E = !n !n

!
E( )+ !E//;

!
B = !n !n

!
B( )+ !B//;

+-
+-
+-
+-
+-
+-
+-
+-
+-
+-
+-
+-
+-
+-
+-
+-
+-

En≠0
E=0

Et=0

Ideal Conductor

Ht≠0 H=0

Ideal Conductor

!
A = Re

!
A !r( )exp iωt −αt( ){ };
α = 2πω

Q



Waveguides
Rectangular      Circular
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TE and TM waves
Rectangular      Circular
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• There is simplification

– The modes are divided into 
two types: TE (transverse 
electric) and TM (transverse 
magnetic)  

• Last two equations indicated that Ez 
and Bz fully determine transverse 
component of the EM field

• It means that we can always consider a 
linear combination of the fields with  
Ez = 0 everywhere (TE) and Bz = 0 
everywhere  (TM)

• Naturally, when we interested in 
accelerating particles, we will need 
TM mode with Ez ≠ 0.
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!
B⊥⎡⎣ ⎤⎦ =

!
∇⊥

!
Ez;

ikz
!
B⊥ − iko ẑ ×
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Cut-off frequency
Rectangular      Circular
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• EM field is a linear combination of 
modes with  Ez = 0 everywhere (TE) 
and Bz = 0 everywhere  (TM)

TM : Bz ≡ 0; Ez s
= 0;

TE : Ez ≡ 0; Bz s = 0; 
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ẑ ×
!
E⊥⎡⎣ ⎤⎦ for both TE and TM modes

TM:
!
E⊥ =

!
∇⊥ψ 1

!r⊥( ); TE: !B⊥ =
!
∇⊥ψ 2

!r⊥( );

Different boundary conditions  for TE and TM modes
In general case we need to find eigen function (modes)  
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Cut-off frequency
Rectangular      Circular
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Modes in rectangular waveguide



RF cavities
 are designed to confine the EM field inside: It means that they operate at 

frequency below cut-off of the beam-pipes attached to them    
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§ Fields in the cavity are solutions of the equation
§ Subject to the boundary conditions
§ Two extra surfaces (z=0 and z=d): but this is no problem for TM mode
§ An infinite number of solutions (eigen modes) belong to two families of modes with different field 

structure and eigen frequencies: TE modes have only transverse electric fields, TM modes have only 
transverse magnetic fields.

§ One needs longitudinal electric field for acceleration, hence the lowest frequency TM010 mode is used.
§ For the pillbox cavity w/o beam tubes
§ Note that frequency does not depend of the cavity length! But only its radius.
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Pillbox Cavity
• Similarly, to a previous exercise, we need to pick TM 

mode to have non-zero Ez component
• We also select TEM01 waveguide mode and kz=0 a 

d z 
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EM Cavity

 

!
E =
!
Eo
!r( )cos ωt +ϕ !r( )( )

!
B =
!
Bo
!r( )sin ωt +ψ !r( )( )

!
Eoo

2 dV∫ =
!
Bo

2 dV∫ (⋅c2 for SI )

• Each mode has full analogy with a resonant LC circuit or a mechanical oscillator: energy 
stored in electric field can be compared to potential energy, and energy stored in magnetic 
filed – to kinetic energy

• Typical energy stored in 5 cell, 700  MHz SRF cavity operating at 20 MV/m is ~ 500 J
• What much more impressive is the intra-cavity power of about 2,000 GW! 
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Quality factor - definition
• Let’s consider a stand-alone cavity without any external couplers

• Energy stored in the cavity

• Losses in the power 

• Quality factor  - Q - it is the number of RF oscillation times 2π required for 
energy inside the cavity to reduce e-fold.
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Fundamental and high order modes (HOMs) 22
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§ Assuming charged particles moving along the cavity axis, one 
can calculate accelerating voltage as

 For the pillbox cavity one can integrate this analytically:

 where T is the transit time factor. 
§ To get maximum acceleration:

 Thus for the pillbox cavity T = 2/π .
§ The accelerating field Eacc is defined as Eacc = Vc/d . 

Unfortunately the cavity length is not easy to specify for shapes 
other than pillbox so usually it is assumed to be  d = βλ/2 . This 
works OK for multi-cell cavities, but poorly for single-cell ones.
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Multicell cavities

§ Several cells can be connected together to form a multicell cavity.

§ Coupling of TM010 modes of the individual cells via the iris (primarily electric field) causes them to 
split:
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Multicell cavities: coupled oscillators 
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How β=1 RF accelerator works?
In pictures
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How β=1 RF accelerator works?
In pictures
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How β=1 RF accelerator works?
In pictures
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How β=1 RF accelerator works?
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In pictures
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In pictures
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How β=1 RF accelerator works?
In pictures
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How β=1 RF accelerator works?
In pictures
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How β=1 RF accelerator works?
In pictures
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How β=1 RF accelerator works?
In pictures
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How β=1 RF accelerator works?
In pictures
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How β=1 RF accelerator works?
In pictures
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How β=1 RF accelerator works?
In pictures
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How β=1 RF accelerator works?
In pictures



Multi-cell cavities
§ We learned so far that single cell RF cavity has limited accelerating voltage

§ To gain more energy we can either use more individual cells or use multi-cell cavities
§ The first path, while feasible, is expensive (each cavity would need individual transmitter, 

waveguide, controls, etc.) and less effective – the average accelerating gradient (energy gain per 
meter of real estate) would be low

§ Thus, where the acceleration gradient is important, the accelerator community uses multi-cell 
cavities   

Max VRF( ) = EoλRF
π

9-cell Tesla design

7-cell

5-cell



What we learned
• Resonant modes in a cavity resonator belong to two families: TE and TM.
• There is an infinite number of resonant modes.
• The lowest frequency TM mode is usually used for acceleration.
• All other modes (HOMs) are considered parasitic as they can harm the beam.
• Several figures of merits are used to characterize accelerating cavities: main are 

accelerating voltage, transit time and Q-factor.
• In a multi-cell cavity every mode splits into a pass-band. 
• The number of modes in each pass-band is equal to the number of cavity cells.
• The width of the pass-band is determined by the cell-to-cell coupling.
• Accelerating cavities operate at frequency below the cut-off frequency of vacuum 

pipes connected to them. The RF field decay exponentially along the pipes and 
reduces to a negligible level at length ~ few beam-pipe radii  (assuming R << λRF)

• Coaxial lines and rectangular waveguides are commonly used in RF systems for 
power delivery to cavities

• Homework is posted on the website this evening: due in one week
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