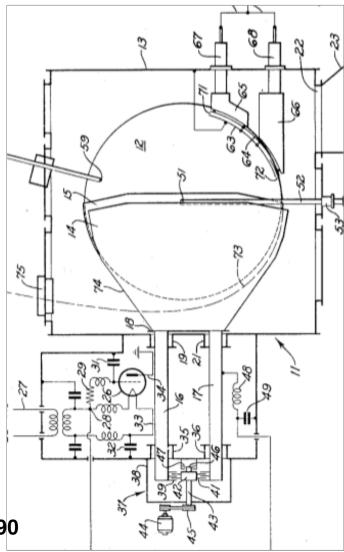
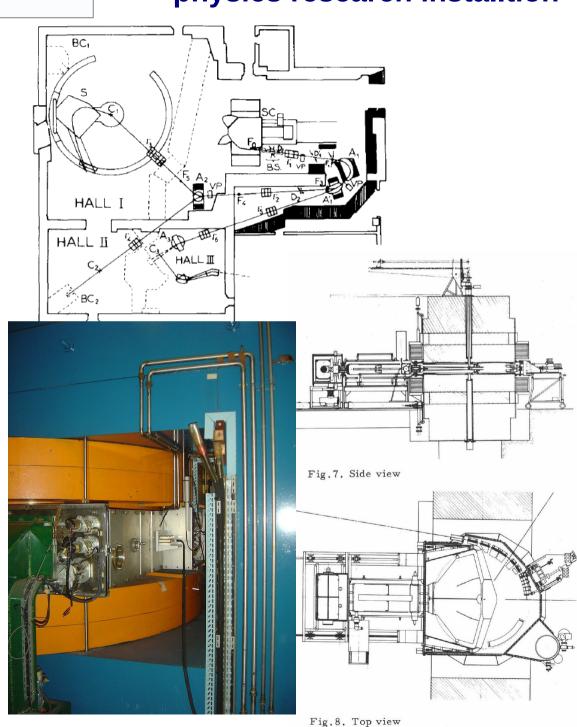
SYNCHRO-CYCLOTRON


A BRIEF INTRODUCTION

- ORIGINS, PRINCIPLE
- PAST SYNCHROCYCLOTRONS
- SYNCHROCYCLOTRON TODAY

McMillan's patent

A way to apply the brand new concept of "phase stability", using existing technology - the cyclotron (weak focusing, dB/dr<0)


- The oscillating electric voltage is applied to a (unique) dee
- Its frequency decreases with increasing energy
- Thus voltage can be much lower compared to cyclotron, ~kVs: easier technology than ~100skV
- → many more turns needed ~10⁵ vs. 100s- not a problem
- Yet, drawback:
- acceleration is to be cycled,
- only ions with correct, accelerating, phase (a few 10s degrees of a 360 degree period) are "captured" by the voltage wave
- → much lower average current
- The acceleration of the ions takes place twice per turn.
- At the outer edge, an electrostatic deflector extracts the ion beam.
- The first synchrocyclotron produced 195 MeV deuterons and 390 MeV α -particles.

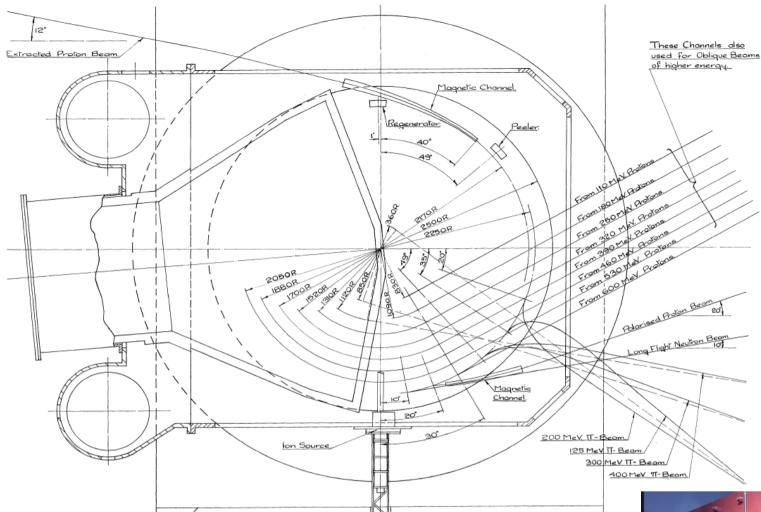
Orsay 1 kHz synchrocyclotron

Mid. 1950s: a typical nuclear physics research installtion

- 1958: first beam from the 157 MeV synchro-cyclotron
- 1975: shut-down for evolution to 200 MeV synchro-cylco
- 1993: installation converted to a hadrontherapy hospital, "IC-CPO": Institut Curie-Centre de Protontherapie d'Orsay, one of the two in France
- 2010: synchro-cyclo stopped, proton-therapy persued with an IBA C250 cyclotron

CERN Synchrocyclotron (SC)

- 1957: construction. CERN's first accelerator, provided beams for CERN's first experiments in particle and nuclear physics, up to 600 MeV.
- 1964: started to concentrate on nuclear physics, leaving particle physics to the newer, 30 GeV, Proton Synchrotron.
- 1967: start supplying beams for the radioactive-ion-beam facility ISOLDE (nuclear physics, astrophysics, Medical.)
- 1990: SC closed, after 33 years of service.


10. Parameters of the Synchro-cyclotron

Maximum energy of the protons 600 MeV Expected internal circulating beam (average in time) $1 \mu A$ Exit radius (n = 0.2) Flux density, at centre Flux density, at n = 0.2 (R = 2.27 m) Ampere-turns, normal Ampere-turns, maximum Coil power, normal Magnet weight Frequency range, theoretical Repetition Frequency 55 Hz Pressure in vacuum tank, ultimate Pressure in vacuum tank, nor-

2.27 m 1.88 Wb/m² 1.79 Wb/m² 1.2 10⁶ At 1.35 10⁶ At 750 kW 2500 T 28.7 - 16.6 MHz

3.10⁻⁶ mm Hg

10. Parameters of the Synchro-cyclotron

Maximum energy of the protons 600 MeV Expected internal circulating beam (average in time) $1 \mu A$ 2.27 m Exit radius (n = 0.2) Flux density, at centre 1.88 Wb/m² Flux density, at n = 0.2 (R = 2.27 m) 1.79 Wb/m² 1.2 10⁶ At Ampere-turns, normal 1.35 10⁶ At Ampere-turns, maximum Coil power, normal 750 kW 2500 T Magnet weight 28.7 - 16.6 MHz Frequency range, theoretical 55 Hz Repetition Frequency Pressure in vacuum tank, ulti-3.10⁻⁶ mm Hg mate Pressure in vacuum tank, nor-6.10⁻⁶ mm Hg mal

A. Arrangement of internal targets, beam extraction system and ion source.

Synchrocyclotron today

Synchro-cyclotrons have been in many areas of science from the 1950s, include medicine, nuclear physics where high energy hadron beams were needed.

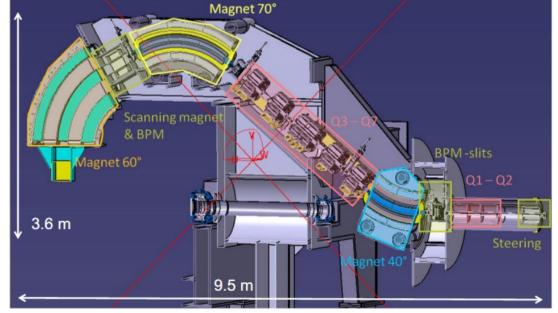
It is still present in hadrontherapy application today

- cryogeny makes it compact
- an easy and cheaper technology to get ion beams

FFAG technology is also part of the game

MEDICYC's S2C2

250 MeV protontherapy synchrocyclotron


at Nice, France

First beam 2015

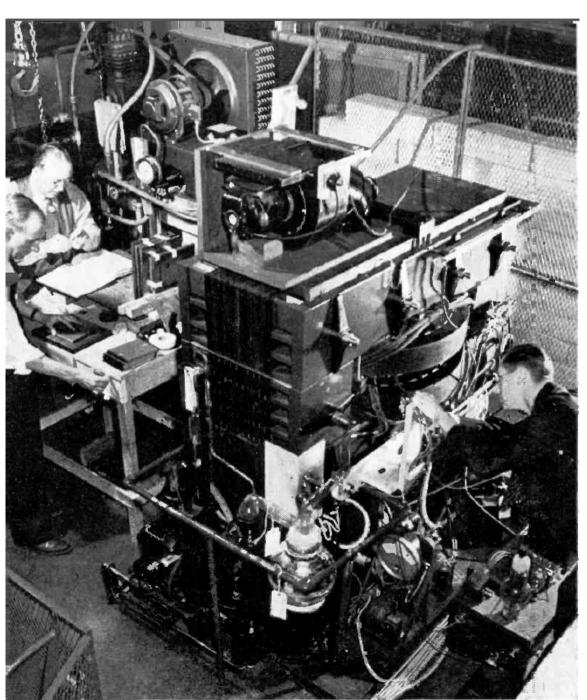
 IBA developed it with, and first implemented at, the anti-cancer protontherapy center MEDICYC, Nice.

 Compact gantry, attached to the S2C2

FFAG synchrocyclotron

See detailed introduction to the FFAG session

BETATRON


A BRIEF INTRODUCTION

- ORIGINS, PRINCIPLE
- PAST BETATRONS
- BETATRON TODAY

What it looked like in the 1940s:

Early betatron at University of Illinois, a 4-ton dipole magnet device.

Kerst working on it.

- 1920s: The betatron method was devised to accelerate beta-rays (today's electron beams!) to produce bursts of X-rays
- constant-radius orbit, the B_{induc} =2 B_{guide} "Wideroe rule", was advanced in that period,
- 1940: that's when a complete theory of transverse stability would be formalized (Kerst & Serber).

It allowed bringing the concept to realisation:

- 1940: production of X-rays from a 2.3~MeV e-beam (100 millicurie radium source equivalent): a breakthrough in medecine, material radioscopy.
- Kerst-Serber's betatron implements 3 technologies of that time:
- the ring method as used in cyclotrons, and pole shaping (dB/dr<0) focusing in a similar way
- induction acceleration, already known for many years
- vacuum

- •The betatron is not a resonant accelerator, however, it is in important aspects the precursor of synchrotrons:
- the first constant-orbit ring, field and momentum rising together, magnetic field pulsed for that reason, acceleration cycled as a corollary,
- no problem to digest relativistic effects
- its understanding yielded the theory of "betatron motion" and its jargon as betatron frequency, betatron amplitude, betatron resonance...
- interestingly, the first proof-of-principle synchrotron used an existing betatron magnetic structure
- •The 1940-1950 period saw increase to ultimate energy: Kerst's 300 MeV machine, for particle physics. Limitations were magnet size, *synchrotron radiation*
- •The betatron would rapidly, in an interval of a few years, be outperformed
- by linac in the medical application,
- synchrotrons for higher electron energies ever needed by nucleus and particle physics

The betatron concept does not present an interest for ions:

- at low energy, v<<c, an ion would only get little energy increase over the short duration of a betatron pulse.

On the other hand large proton or deuteron rigidity, BR = p/q,

- means large magnet size (proton BR is for instance 2.4 Tm at 250 MeV, 5.7 Tm at 1 GeV, R respectively 1.6 m, 3.8 m for Bmax = 1.5 T),
- whereas magnet core volume increase as R³ in corellation with return flux.

A 6 MeV betatron (Germany, 1942)

Conclusion 1/2

Betatrons are produced nowadays
essentially as light (portable)
compact X-ray sources for
material analysis, a few MeV energy range.

[5] ADVANCED INSPECTION SYSTEMS. JME Portable 6 MeV. X-RAY BETATRON. Microprocessor model: PXB-6 M. Jun 15, 2010.

- Betatron acceleration also found extention to acceleration in electron-FFAG (Japan R&D), for high power electron beams
- → food sterilization, radiography
- Note: strictly speaking, ramping field in synchrotron magnets causes inductive accelerating E-field. It is in principle a small effect...

Conclusion 2/2 A parenthesis: induction acceleration

- The betatron method is one way to use it
- There are others, not to mention the induction linac... for instance in the recent past:
 - induction acceleration in a synchrotron (KEK)
- → was proposed for long-bunch at LHC, early 2000s...