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Chapter 1

Weak focusing synchrotron

1.1 Introduction

The application of the principle of phase stability to resonant acceleration

goes back to 1944-1945 [1.a,1.b] It led to “synchronous acceleration” and a

new concept of ring accelerator: the synchrotron. In the synchrotron the

rise in the magnetic field that maintains the particle on a constant-radius

orbit, and the modulation of the frequency of the oscillating voltage which

accelerates it (RF voltage, for short, in the foregoing), are in synchronism

with the evolution of the revolution time,

fRF(t) = hfrev(t), B(t) = p(t)/qρ, ρ = constant (1.1)

These are two major evolutions compared to the cyclotron, where, instead,

the magnetic field and the RF voltage frequency are fixed.

The varying field and constant orbit concept naturally led to demon-

strating phase stability using an existing betatron. This happened in 1946

with the first synchrotron, a 8 MeV proof-of-principle which used an X-ray

betatron (a former tool for the radiography of unexploded bombs in London

streets) at the Woolwich Arsenal Research Laboratory in UK [1.c].

• Exercise 1.1-1.

1.1-1.a - Build a zgoubi data file for the tracking of a single 3.6 MeV proton

(use OBJET, option KOBJ=2), across a 90 degree sector dipole (DIPOLE can

be used). The hypotheses are the following: a zero index magnet for the

time being, bending radius of the reference trajectory ρ0 = 8.42 m. Check

your data by tracking a particle on the reference orbit arc at ρ0 (local par-

ticle coordinates can be “seen” using FAISCEAU, or stored using FAISTORE.

Stepwise particle coordinates, field, etc., can be stored for plotting, using

IL=2 under DIPOLE).

1
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1.1-1.b - Based on that dipole magnet, build in zgoubi a circular accelerator

with the following geometry: four 90 degree dipoles, 4 meter distant from

one another (use DRIFT for field-free straight sections). Check your data by

tracking a particle: make sure you find its closed orbit.

1.1-1.c - Assume 3.6 MeV proton injection in that ring, and 2.94 MeV top

energy. Perform a scan of the value of the magnetic field B, from injection

field B̌ to top energy field B̂. Plot B and Trev from that scan, as a function

of kinetic energy, together with theory.

1.1-1.d - Plot the resulting frev as well as Bρ, as a function of kinetic en-

ergy, together with theory. We will need these outcomes for synchronous

acceleration in SATURNE 1. •

The synchronism between RF voltage frequency and revolution time

(Eq. 1.1) allows maintaining the bunch at an appropriate phase (the “syn-

chronous phase”) with respect to the oscillating voltage when passing the

accelerating gap. This allows as well maintaining the bunch longitudinally

confined (by the mechanism of “phase focusing”) about that equilibrium

phase (away from the voltage crest as will be seen, by contrast with the

isochronous cyclotron method).

Synchronous acceleration is simpler in the case of electrons, as frequency

modulation is no longer necessary as long as the initial energy is a few MeV

(v/c = 0.9987 at 10 MeV, fRF(t) = hfrev(t) ≈ constant) (this allowed a

straightforward proof-of-principle of phase stability, using an existing X-

ray betatron).

A difference with the cyclotron and synchro-cyclotron families is that

the accelerated bunch is constrained to follow a fixed orbit (the “closed

orbit”). This results from the momentum ramping in synchronism with

B(t), as it does in the betatron, so leading to the above p(t) = qB(t)ρ,

ρ=constant, at all t. This technique dramatically reduces the size of the

guiding magnets, leaving a circular accelerator with an annular, or “ring”,

structure (Figs. 1.1, 1.2).

A corollary is, synchrotrons of greater energy require a ring of greater

diameter, yet the width of the magnet string is essentially unchanged,

the volume of iron increases linearly with bunch rigidity. By contrast,

a [synchro-]cyclotron magnet is a pair of full, massive cylindrical poles;

greater energy requires greater radial extent of the magnet to allow the

necessary increase of the bend field integral (namely,
∮

B dl = 2πRmaxB̂ =

pmax/q whereas B̂ is pushed to an extreme ∼ 2 T) and accordingly of the

diameter of the bulky cylinder, thus the volume of iron increases more than
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quadratically with bunch rigidity.

Another corollary of the pulsed field in the synchrotron is that the ac-

celeration is cycled (as it is the case in a synchrocyclotron in general 1.

The field ramping law B(t) depends on the type of power supply. If the

ramping uses a constant electromotive force, then

B(t) ∝ (1− e−
t
τ ) = 1−

[
1−

(
t

τ

)
+

(
t

τ

)2

− ...

]
≈ t

τ

essentially linear. In that case Ḃ = dB/dt does not exceed a few

Tesla/second, thus the repetition rate of the acceleration cycle if of the

order of an Hertz. If the magnet winding is part of a resonant circuit the

field law has the form

B(t) = B0 +
B̂

2
(1− cosωt)

In the interval of half a period, namely t : 0→ π/ω, then B(t) : B0 → B0+B̂

increases from an injection threshold value to a maximum value at highest

rigidity, correspnding to highest achievable energy Ê = pc/β = qB̂ρc/β.

The repetition rate with resonant magnet cycling can reach a few tens of

Hertz. In both cases anyway B imposes its law and the other quantities

characteristic in the acceleration cycle (RF frequency for instance) will

follow B(t).

By contrast in a synchrocyclotron, the field is not ramped, acceleration

can be as fast as the voltage system allows; an order of magnitude: take

10 kVolts per turn, meaning about 10,000 turns to 100 MeV, at a velocity

v ≈ 0.5c to make it simple (actually 0.046 < v/c < 0.43 from 1 to 100 MeV),

an orbit circumference of C = 30 meter, thus the acceleration takes T =

104×C/0.5c ≈ 2 ms, potentially a repetition rate of 500 Hz, more than two

orders of magnitude greater than a pulsed synchrotron allows.

• Exercise 1.1-2. An hint of carbon-ion cancer-treatment synchrotron:

rapid-cycling C6+
12 acceleration. Assume maximum field B̂ = 1.2 T in the

90 degree magnet of Ex. 1.1-1 (1.2 T is low enough to consider that the field

varies linearly, B(t) ∝current in the coils, over the interval [0, B̂] - magnetic

saturation of iron commences in this region). Assume 7 MeV injection en-

ergy.

2.a - Calculate the injection field B0 and the maximum carbon ion energy
1Yet not always: the RF frequency is fixed if the accelerated particle is ultra-relativistic

as in the linear FFAG EMMA [2], or if the optics is designed quasi-isochronous as allowed
in a scaling FFAG lattice [3]
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Ê.

2.b - Is that B̂ value high enough, or too small, for Bragg peak penetration

depth of 30 cm in human body? What value should it be? Assuming that

latter value for B̂, at what instant in the magnet cycle would the extraction

of a carbon ion bunch have to happen for 1 cm Bragg peak penetration?

2.c - Simulate a complete 30 Hz acceleration cycle in that ring, up to

400 MeV/nucleon: accelerate a few tens of carbon ions from start to end

(assume constant acceleration acceleration at one RF gap) (use SCALING,

option NT=-1, to ramp the field in the dipoles and CAVITE, option IOPT=3

to accelerate). Plot the horizontal and vertical phase spaces of the carbon

bunch. Plot the magnetic field cycle B(t) (PRINT option under SCALING can

be used to store scaling data), indicate (label) the injection and extraction

fields and times on the graph. •

The invention of the synchrotron was a vast breakthrough. The next

decades saw its application in many domains of science, medicine, industry.

The weak focusing synchrotron allowed colliding particle beams of highest

energies on fixed targets in nucleus fission and particle production experi-

ments, leading to the discovery of several fundamental particles. It remains

an appropriate technology today for low energy beams, as in the proton-

therapy cancerology application, where its technological simplicity makes

it attractive (it essentially requires a single type of simple dipole magnet,

and an accelerating gap, that’s it!).

Transverse beam focusing in the large, high energy, ion synchrotron

rings has inherited from the proven cyclotron and betatron method, namely

a transverse field index 0 < n = −R
B
∂B
∂R < 1 (that was the case in the

first example worked on below, the 3 GeV SATURNE 1 synchrotron [4]

started in 1957 at Saclay), combined or not with Thomas focusing (”wedge

focusing”, which was the case in the second example below, the 12 GeV Zero

Gradient Synchrotron “ZGS” (n=0) operated at Argonne in 1964-79 [5]).

In this chapter we retain the two examples of SATURNE 1 at Saclay, for

exercises, and the ZGS at Argonne, as a “project”, for two main reasons:

- it allows playing with two very different weak focusing methods,

- they saw the first developments on spin polarized proton beams, and

their acceleration at the ZGS in 1973, this is an opportunity to start ex-

ploring spin motion in particle accelerators.
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Fig. 1.1 SATURNE 1 at Saclay,

France, a 3 GeV, 4-periodic, 68.9 m

closed orbit, weak focusing synchrotron
(n ≈ 0.6), started operation in 1957

- plans for polarized proton beams in

SATURNE 1 triggered the Froissart-
Stora theory of depolarization [6,7].

Each magnet weighs 1150 tons. The

four straight sections are 4 m long;
injection is in the north one, from a

3.6 MeV Van de Graaff (not visible); the

south section houses the extraction sys-
tem; the RF cavity is in the west one;

a beam detection system is located in
the east one. The peak power requested

from the acceleration RF system does

not exceed 2 kW (a “Ham Radio” style
of amplifier).

Fig. 1.2 The ZGS at Argonne, IL,

USA, during construction, a 12 GeV

synchrotron zero-gradient synchrotron,
which used wedge focusing (field index

zero). ZGS was operated over 1964-

1979. First polarized beam accelera-
tion happened at ZGS, in July 1973, to

8.5 GeV/c, up to 12 GeV/c in the fol-

lowing years [7,8]. Pulsed quadrupoles
were used to pass through several depo-

larizing resonances with no significant

depolarization, a method known as res-
onance crossing by fast “tune-jump”.

Injector: protons from a 20 keV po-
larized source are pre-accelerated by a

750 keV Cockcroft-Walton, followed by

a 50 MeV linac.

1.2 Transverse motion

We will introduce the matter using as an example the “SATURNE 1” syn-

chrotron (Fig. 1.1), built at Saclay (CEA, France) in 1956-58, operated in

1958-1973. The magnetic structure is 2π
N -symmetric (or “N-periodic”), fea-

turing N identical 2π
N degree sector dipoles, between which field-free spac-

ings (“drift space”, or “straight section”) are introduced. By so “dislo-

cating” a one-piece 360 degree dipole magnet into N identical pieces, the

optical structure is changed from one magnetic period per turn, to N pe-

riods per turn: the period repeats itself, identically, N times over the ring

circumference.

Introducing straight sections in the magnetic structure of the ring al-

lows room for inserting the various systems that garnish the synchrotron:

radio-frequency cavity and its voltage gap, injection, extraction, diagnos-
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tics systems, special optical elements. This was a similar advantage in

the “separated sector” cyclotron, compared to the single-dipole “classical”

cyclotron, an outcome of Thomas focusing technique, there.

Motion stability in an axially symmetric dipole field is simply a matter

of evaluating the resultant of the forces that apply on the particle, and

whether they pull it, both horizontally and vertically, toward the equilib-

rium position, this has been examined earlier (“Cyclotron” Chapter). It is

not as simple in the presence of drifts: this lead to introducing two radii

(Fig. 1.3):

(i) the magnet curvature radius ρ0 = 8.42 m

(ii) a “physical” radius R = 68.90/2π = 10.97 m, such that

2πR=circumference=2πρ0 + NL, with L the the length of a drift space.

It also leads to defining a virtual reference line: the theoretical trajectory

that a particle of momentum p = qBρ0 would follow, comprised of arcs of

radius ρ0 in the B-field magnets, and straight lines that connect these arcs.

L

ρ

p

y

ρ
ο

o

p −   p∆o

P
s

x

Fig. 1.3 2π/N revolution-symmetric

structure with drift spaces, and the
moving Serret-Frenet frame (s, x, y) at-

tached to the particle at P. The graph

shows the reference closed trajectory at
momentum p0 with radius ρ0 in the
bends, and a chromatic orbit for p =

p0−∆p < p0, distant ∆x(s) = ρ0
1−n

∆p
p0

.

Parameters of SATURNE 1 weak
focusing synchrotron.
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• Exercise 1.2-1 We will construct SATURNE 1 ring, to end up, in the fore-

going, simulating a complete acceleration cycle. First, fill up a spreadsheet

with SATURNE 1 parameters as available from the Table on page 6 . Be

prepared to complete that spreadsheet with additional parameters as we

progress with the simulations. •

• Exercise 1.2-2

Start from Exercise 1.1-1 to complete SATURNE 1, using its parameter

list: introduce the field index (assume n = 0.6 at r = r0, nominal index at

SATURNE 1); set the reference closed orbit (the zero of the reference par-

ticle transverse coordinates) on the nominal magnetic radius r0 = 8.42 m;

check the general parameters out of the simulation against the data table:

circumference, time of flight.

Scan the chromatic orbits over the range ∆p = ±10−3p0, step 10−4, plot

∆x/(∆p/p0) as a function of ∆p, deduce the corresponding value for the

field index. •

1.2.1 Equations of motion in a dipole magnet

The differential equations in the moving frame (the Serret-Frenet frame,

tangent to the reference orbit, Fig. 1.3) for small motion around the tra-

jectory at constant radius ρ0 are derived from the Lorentz equation,

dmṽ

dt
= qṽ × B̃→ m

d

dt


ds
dt~s
dx
dt ~x
dy
dt ~y

 = q


(dxdtBy −

dy
dtBx)~s

−dsdtBy~x
ds
dtBx~y

 (1.2)

A “hard-edge” model of a dipole is assumed here: Bs = 0, the field falls

abruptly to zero at magnet ends. Introduce the field index n = − ρ0
B0

∂By

∂x

evaluated at (ρ0 + x, y = 0) (so, in passing, B0 is a short notation for

By(ρ0, y = 0)) and assume radial and axial stability, 0 < n < 1. Taylor

expansion of the field in the coordinates write

By(ρ) = By(ρ0) + x
∂By

∂x |ρ0 +O(x2) ≈ By(ρ0)− n
By

ρ0
|ρ0x = B0(1− n x

ρ0
)

Bx(0 + y) = Bx(0)︸ ︷︷ ︸
=0

+y
∂Bx

∂y︸︷︷︸
=
∂By
∂x

(+higher order in y) ≈ −nB0

ρ0
y (1.3)

Introduce in addition ds ≈ vdt and the deviations with respect to the

reference (closed) orbit. In these hypotheses, the differential equations of

motion write
d2x

ds2
+

1− n

ρ20
x = 0,

d2y

ds2
+

n

ρ20
y = 0 (0<n=− ρ0

B0

∂By

∂x
<1) (1.4)
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1.2.2 Betatron motion, periodic stability

The focusing forces take different forms, depending on the type of optical

element traversed, namely with index n

{
= 0 in drift spaces
∈]0, 1[ in dipole sector . However,

the equation of motion, Hill’s equation, presents the general form

{
d2z
ds2 + Kz(s)z = 0

Kz(s + S) = Kz(s)
with


in a dipole :

{
Kx = 1−n

ρ20

Ky = n
ρ20

drift space (ρ→∞) : Kx = Ky = 0

ε-angle wedge : K
x
y

= ± tan ε
ρ0

(1.5)

Kz(s) is S-periodic - the length S of a cell is a quarter of the circumference,

in SATURNE 1.

Floquet’s theorem states that Hill’s equation has two solutions of the

form {
z1(s) = eiµ

s
S p1(s)

z2(s) = eiµ
s
S p2(s)

(1.6)

with p1(s) and p1(s) two S-periodic functions: p1,2(s + S) = p1,2(s) and µ

satistfying

cosµ =
1

2
Trace [T(s + S← s)]

with T(s + S← s) the transfer matrix relative to the period. The solutions

in Eq. 1.6 are bounded iff µ is real, i.e., if −1 < 1
2Trace(T) < 1. If

1
2Trace(T) = 1, d2y

ds2 has one solution S-periodic (stable) and one solution

linear in s; if 1
2Trace(T) = 1, d2y

ds2 has one solution 2S-periodic (stable) and

one solution linear in s; in both cases the resultant is unstable.

µ is the phase advance of the betatron motion over a period, a quantity

independent of the origin of the period. The number of betatron oscillations

over a period (the cell wave number, or “tune”) is

ν = µ/2π (1.7)

The phase advance over an N-period ring is Nµ (N = 4 for SATURNE 1),

the wave number per turn (the “ring tune”) is Nµ/2π.

Obviously, periodic stability requires

− 1 <
1

2
Trace(T) < 1 (1.8)
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Stability of the periodic motion

• Exercise 1.2.2-1.

1.a - Compute the transport matrix

TA = T(SA + S← SA) =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

 (1.9)

of SATURNE period (take n = 0.6). Verify that its determinant value is 1.

1.b - Verify that the traces of the 2 × 2 matrices are independent of the

origin of the cell: take the origin at either center of drift, entrance of dipole

or center of dipole, compute the different matrices.

1.c - Show, for two of the different origins in (ii), say, sA and sB, that the

matrices satisfy TB = U × TA × U−1, with U the transfer matrix from sA
to sB, compute U for 3 different origins: center of drift, entrance or center

of dipole). •

• Exercise 1.2.2-2. Motion stability (1/3):

The stability (or instability) of particle motion around the ring can be

observed by recording the amplitudes x(n), x′(n) and y(n), y′(n) at a fixed

azimuth s in the ring, at successive turns for a large number of turns, n.

Accelerator physicists have a predilection for phase space, let’s go there: for

a particle with small initial horizontal and vertical coordinates, observed

at the center of a drift over tens of turns, plot both horizontal and vertical

particle motions in their respective phase spaces, (x, x′) and (y, y′). Do it

at center of drift and entrance of dipole. What do you observe? •

In the stable case the Twiss matrix notation can be introduced,

T(s + S← s) =

[
cosµ+ α(s) sinµ β(s) sinµ

−γ(s) sinµ cosµ− α(s) sinµ

]
= I cosµ+ J(s) sinµ

(1.10)

with I =identity matrix and J2 = −I. This introduces the following quan-

tities:

- the betatron function β(s), which relates to the amplitude of the be-

tatron oscillations,

- and its derivative α(s) = − 1
2
dβ(s)
ds .

α(s) and β(s) are S-periodic, a periodicity imposed by T(s + kS + S ←
s + kS) = T(s + S← s), k an arbitrary integer.

• Exercise 1.2.2-3. Theoretical properties of the Twiss matrix:

3.a - write explicitly the matrix J(s), calculate J2,
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3.b - what is the value of the matrix T determinant? Deduce the relation-

ship between α(s), β(s) and γ(s),

3.c - show that the transfer matrix TN over an N-period sequence is ob-

tained by just updating the phase advance: µ→ Nµ. •

• Exercise 1.2.2-4. Motion stability (2/3):

4.a - it is a feature of any accelerator optics code to provide the optical

functions α(s), β(s) and the phase advance µ. Get these from the compu-

tation of SATURNE 1 optical properties.

4.b - back to the observed horizontal and vertical motions of Exercise 1.2.2-

2: check that the horizontal motion coordinates recorded after n turns in

the N = 4 cell SATURNE 1 ring satisfy

(
x

x′

)
= T(nNµ) ×

(
x0

x′0

)
with

x0, x′0 the starting coordinates, T(nNµ) the Twiss matrix (Eq. 1.10) taken

for µ→ nNµ

4.c - repeat for y, y′, vertical motion,

4.d - plot a few tens of turns in the normalized phase space ( x√
β
, αx+βx

′
√
β

).

What is the shape of the trajectory in that phase space? What is the prop-

erty of the quantity x2

β ,
(αx+βx′)2

β )?

Check that the progression of the betatron phase from one turn to the next

is Nµ. •

• Exercise 1.2.2-5. Motion stability (3/3):

5.a - track a particle of initial coordinates (xo, x
′
0)) for a few hundred turns

around the ring. Record it coordinates a some azimuth, for instance the

middle of a drift. Plot these in the transverse horizontal phase space (x, x′).

5.b - match this trajectory with an ellipse of equation

γxx2 + 2αxxx′ + βxx′2 = ε/π (1.11)

Compare the values for αx, βx, γx so obtained with those obtained from

the Twiss notation method. What is the relationship between these three

quantities?

5.c - repeat this coordinate recording and ellipse matching at the center of

the dipole, and at both ends of the drift. Conclusion?

5.d - represent the phase space ellipse of Eq. 1.11 in an (x,x’) frame: in

terms of αx, βx and γx, indicate the coordinates of the remarkable points

of the ellipse: maximum excursion xmax, maximum angle x′max, intersection

with the axes: angle at zero excursion x′(x = 0), excursion at zero angle

x(x′ = 0). What does εx represent? •
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Stability diagram

The “working point” of the synchrotron is the couple (νx, νy) at which the

accelerator is operated, it fully characterizes the focusing (Fig. 1.4). In

a structure with revolution symmetry such as the classical cyclotron, we

found

νx =
ωx

ωrev
=
√

1− n, νy =
ωx

ωrev
=
√

n thus ν2x + ν2y = 1 (1.12)

with ωx,y the radial and axial frequencies of the betatron motion around the

ring. Thus when the index is changed the working point stays on a circle

of radius 1 in the stability diagram (or “tune diagram”, Fig. 1.4). In a

structure with revolution symmetry and drift spaces, such as SATURNE 1,

in a first approximation

νx =

√
(1− n)

R

ρ0
, νy =

√
n

R

ρ0
, thus ν2x + ν2y = R/ρ0 (1.13)

thus the working point is located on the circle of radius
√

R/ρ0 > 1, for

all n In the SATURNE 1 synchrotrom n was changing during acceleration,

R/ρ0 = 1.3 and a nominal n = 0.6 would yield νx = 0.72, νx0.88 nominal

tune values.

Horizontal and vertical focusing are not independent: if νx increases

then νy decreases and reciprocally; none can excede the limits

0 < ν <
√
R/ρ0

This is a lack of flexibility which strong focusing will overcome by pro-

viding two knobs so allowing adjustment of both tunes separately instead

(Chapter Synchrotron, Strong Focusing).

• Exercise 1.2.2-6. Here we vary the betatron frequency of paraxial particle

motion, by taking different values for n.

6.a - On a common graph superimpose the betatron wave number νx(n),

same for νy(n), obtained in three different ways:

- Fourier analysis of the recorded motion in Exercise 1.2.2-2

- using cosµ = 1
2Trace(T), with T computed from 1-turn mapping

(Eq. 1.8 ).

- the relationships νx(n), νy(n) of Eq. 1.13.

6.b - Plot these data in a tune diagram. •
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Fig. 1.4 The working point in the tune diagram is located (A): case of revolution
symmetry, on a circle of radius 1; (B): case of revolution symmetry + drift spaces, on a

circle of radius (
√
R/ρ0); (C): case of strong focusing, (|n| � 1), in large νx, νy regions.

1.2.3 Off-momentum motion

The transverse motion of a particle with momentum p = p0 + ∆p satisfies

d2x

ds2
+ Kxx =

1

ρ0

∆p

p0
,

d2y

ds2
+ Kyy = 0 (1.14)

with Kx, Ky depending on the nature of the optical element:

� dipole :

{
Kx = 1−n

ρ20
(n = − ρ0

B0

∂By

∂x )

Ky = n
ρ20

� dipole wedge angle :


K

x
y

= ± tan ε
ρ0

δ(s− s0) (ε<>0 for a focusing
defocusing wedge)

1
ρ0

= 0

� drift space : Kx = Ky = 0 and 1
ρ0

= 0

(1.15)

Just as there exists a closed orbit for the on-momentum particle (∆p = 0),

it results from these considerations that there exists a closed orbit for an

off-momentum particle, a “chromatic closed orbit”, which closes on itself

over a turn and has the periodicity of the ring.

The solution of Eq. 1.14 for any optical element (dipole, wedge, drift)

writes under the general form
x2

x′2
y2

y′2
δ

 =


Cx Sx 0 0 Dx

C′x S′x 0 0 D′x
0 0 Cy Sy 0

0 0 C′y S′y 0

0 0 0 0 1




x1

x′1
y1

y′1
δ

 (1.16)
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wherein (∗)′ = d(∗)/ds, δ = (p − p0)/p0, the index 1 (resp. 2) designates

the particle coordinates at entrance (resp. exit) of the optical section. In

virtue of Eq. 1.15 only the dipole has non-zero chromatic coefficients Dx

and D′x: the other elements (drift, wedge) have the right hand side term of

Eq. 1.14 zero, thus their Dx and D′x coefficients are zero.

• Exercise 1.2.3-1. Compute the 5× 5 matrices of the cell drift and of the

cell dipole (n=0.6) in SATURNE 1, from ray-tracing. Verify that

(i) they have the expected form given in Eq. 1.16 ;

(ii) their coefficient values satisfy, respectively,

drift :

{
Cx = 1; Sx = s− s0; Dx = 0

Cy = 1; Sy = s− s0
dipole :{

Cx = cos
√

Kx(s− s0); Sx = 1√
Kx

sin
√

KxL; Dx = 1
ρ0Kx

(1− cos
√

Kx(s− s0))

Cy = cos
√

Ky(s− s0); Sy = 1√
Ky

sin
√

Ky(s− s0)
•

• Exercise 1.2.3-2. An illustration that not only the individual optical

element matrices (drift, dipole, etc., previous exercise), but as well the

global matrix of a sequence of optical elements has the very form given in

Eq. 1.16 :

Calculate the analytical expression of the product Tdipole × Tdrift of the

drift-dipole cell. Verify that

(i) it has the expected form given in Eq. 1.16 ;

(ii) it yields numerical values which are in accord with the numerical

values obtained from the ray-tracing. •

Periodic dispersion, chromatic closed orbit

The chromatic closed orbit satisfiesxch

x′ch
δ

 =

 C S D

C′ S′ D′

0 0 1

xch

x′ch
δ


• Exercise 1.2.3-3. Solve the equation above for xch, x′ch. Calculate the

numerical values of xch/δ and xch/δ they yield in the case of SATURNE

period (use the results of exercise 1.2.3-2).

• Exercise 1.2.3-4. Ray-trace in SATURNE cell: verify numerically the

value of xch/δ and xch/δ by searching a chromatic closed orbit, say for

δ = 10−3. Repeat for the ring (4 cell sequence) - conclusion?
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1.3 Acceleration

In a synchrotron, the field B is varied (a function performed by the power

supply) as well as the bunch momentum p (a function performed by the

accelerating cavity) in such a way that at any time B(t)ρ = p(t)/q (ρ is

the curvature radius of the “central” or “reference” trajectory, or “machine

axis”, in the bending magnets). Given the energies involved and as a con-

sequences the ensuing inertia, the magnet supply imposes its law and the

cavity follows B(t) law the best in can. A schematic B(t) law is represented

in Fig. 1.5.

• Exercise 1.3-1.

Carrying on with SATURNE ring, page 6, fill up your spreadsheet with the

additional following data:

Ḃ T/s

max. B T

ρ m

max. Bρ T/s

1.3.1 Energy gain, Ḃ, frequency law

The energy increase by the cavity follows the field variation in the guiding

magnets, Ḃ = dB/dt. The variation of the particle energy over a turn,

under the effect of the force on the charge at the cavity, writes

∆W = F× 2πR = 2πqρRḂ

Over most of the accelerating cycle in a synchrotron, Ḃ is usually constant,

thus ∆W is also a constant. In general, kVolts are applied in smaller size

synchrotrons, and 100s of kVolts to MVolts are applied, possibly using

several RF stations, in large rings.

• Exercise 1.3.2-1.

In SATURNE ring,

1.a - ramp the field in the dipoles to synchronize to a constant increase in

energy of the particle, see parameter table in page 6. Use a (artificially)

extremely law frequency cavity so to ensure same longitudinal boost at all

passes (no synchrotron motion for the moment).

1.b - plot Bρ [T.m] as a function of kinetic energy [MeV], from tracking

and from theory.
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Fig. 1.5 Cycling B(t) in a pulsed synchrotron. Ignoring saturation, B(t) is proportional

to power supply I(t). Bunch injection occurs at low field, in the region of A, extraction

occurs at top energy, on the high field plateau. (AB): field ramp up; (BC): flat top; (CD):
ramp down; (DA’): thermal relaxation. (AA’): repetition period; (1/AA’): repetition

rate; slope: ramp velocity Ḃ = dB/dt (Tesla/s).

1.3.2 Adiabatic damping

As a result of the longitudinal acceleration at the cavity, the

amplitude of betatron oscillations decreases. The mechanism is

sketched in Fig. 1.6. Coordinate transport through the cavity writes

trajectory
w/o cavity

with cavity
trajectory

p +  ps ∆

p +  pp

p ss

∆

p +  pp s
s

x
p

cavity

x

cavity

x

A

B

R dx A : cavity entrance
B : cavity exit

is reduced

amplitude

phase
advance

ν ds

Fig. 1.6 Adiabatic damping of betatron oscillations ( ∆p
p
> 0), here from x′in = px/ps

before the cavity, to x′out = px/(ps +∆ps) after the cavity. In the horizontal phase space,

to the right, ↓ ∆
(
dx
ds

)
if dx

ds
> 0, ↑ ∆

(
dx
ds

)
if dx

ds
< 0.

{
xout = xin

x′out ≈
px

ps
(1− dp

p ) = x′in(1− dp
p )

, hence the transfer matrix of the cav-

ity,

[C] =

[
1 0

0 1− dp
p

]
(1.17)
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its determinant is 1− dp/p, the system is non-conservative (the surface in

phase space is not conserved). Assume one cavity in the ring and [T].[C]

the one-turn matrix with origin at entrance of the cavity. Its determinant

is det[T] × det[C] = det[C] = 1 − dp
p . For N turns the matrix is ([T][C])

N
,

its determinant is (1− dp
p )N ≈ 1−Ndp

p . The surface of the beam ellipse is

ε× det[T]turn = ε0 − εdpp thus dε
ε = −dp

p , the solution of which is

ε× p = constant, or βγε = constant (1.18)

• Exercise 1.3.2-2 In SATURNE ring, launch a few tens of particles evenly

distributed on an initial invariant βγε = 10−6πm. Track them for a few

hundred of turns as they are accelerated (use the same, artificial quasi-

zero frequency cavity for identical longitudinal boost to all particles at

each traversal). Plot the evolution of the surface of that ellipse with turn

number, check against Eq. 1.18. Do it for both planes, horizontal and

vertical. •

1.4 Synchrotron motion

By “synchrotron motion”, or “phase oscillations”, it is meant a mechanism

that stabilizes the longitudinal motion of a particle around a synchronous

phase, in virtue of

(i) the presence of a cavity with its frequency indexed on the revolution

time (Sec. 1.4.1),

(ii) with the bunch centroid positioned either on the rising slope of the

oscillating voltage (low energy regime), or on the falling slope (high energy

regime) (Sec. 1.4.2).

1.4.1 The synchronous particle

The synchronous (or “ideal”) particle follows the equilibrium trajectory

around the ring (the reference closed orbit, about which all other particles

will undergo a betatron oscillation) and its velocity satisfies

Bρ = p
q = mv

p → v = qBρ
m

- the revolution time is Trev = 2πR
v = 2πR

βc = 2πR
qBρ/m

- the angular revolution frequency follows the increase of B:

ωrev = 2π
Trev

= qBρ
mR

- during the acceleration B(t) increases at a rate dB
dt = Ḃ, normally of the

order of a Tesla/second.
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- in order for the ideal particle to stay on that very closed or-

bit during the acceleration, its changing momentum must at all time

satisfy B(t)ρ = p(t)/q. This defines p(t) as a function of B(t).

The following B dependence of mass and angular frequency results:

m(t) = γ(t)m0 = qρ
c

√(
m0

qcρ

)2
+ B(t)2, ωrev(t) = c

R
B(t)√

( m0
qcρ )

2
+B(t)2

- the RF voltage frequency ωRF(t) = hωrev(t) follows B(t), this maintains

the synchronous phase at a fixed value

- over a turn the gain in energy is ∆W = 2πqρRḂ, the reference particle

experiences a voltage V = ∆W/q = 2πρRḂ.

1.4.2 Phase stability

The voltage at the cavity at time t is

V = V̂ sin(

∫
ωRF(t) dt) = V̂ sinφ(t) (1.19)

ω and possibly V̂ are slowly varying with time. On an harmonic h of the

revolution frequency, φ explores the interval 2πh over a turn (Fig. 1.7).

The synchronous (aka “ideal”) particle presents itself at the cavity at the

synchronous phase φs, the same at every turn, and experiences an energy

gain

∆W = qV̂ sinφs thus sinφs =
∆W

qV̂
=

2πρRḂ

V̂
(1.20)

It results that there is a minimum voltage to apply to the cavity, for the

synchronous particle to exist (| sinφs| < 1),

V̂ ≥ 2πρRḂ

The stability mechanism is illustrated in Fig. 1.7:

At high energy (think very high, v ≈ c) an excess ∆p > 0 only causes

small change in velocity, whereas the average orbit radius does increase

(following ∆R/R0 = α∆p/p0), thus a more energetic particle takes longer

than the synchronous particle to complete a turn, it arrives later at the

cavity (at φ > φs), thus it has to see a smaller voltage in order slow down

and catch up with the synchronous particle: the appropriate working point

is at B. At low energy (think very low), the relative excess in velocity for a

particle having an excess ∆p, is greater than the relative increase in orbit

radius, the off-momentum particle takes less time to perform a turn, it

arrives at the cavity ahead of time (at φ < φs), thus it has to see a lower

voltage in order to catch up (increase its revolution time), thus the working

point has to be at A.
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energy gain
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t

Fig. 1.7 Mechanism of phase stability, “longitudinal focussing”. Below transition,
γ < γtr, η > 0, acceleration occurs for a stable synchronous phase ∈]0, π], at A, A’,

A” in this illustration: a particle with higher energy goes around the ring quicker than
synchronous particle, it arrives earlier (at φ < φs,A), it will experience a lower voltage

than the synchronous particle and will progress towards the latter, in energy and in

phase. A particle with lower energy takes more time, it arrives later, at φ > φs,A,
it will experience a greater voltage than the synchronous particle. Beyond transition,

γ > γtr, η < 0, the stable phase ∈ [π, 2π[, at B, B’, B” here, with a similar stabilizing

mechanism: a particle which is less energetic than the synchronous particle arrives earlier,
φ < φs,B, and it sees a higher voltage, and inversely for a particle which is more energetic.

Quantifying that, by differentiation of ω = 2π/T (with T = L/v ⇒
−dT

T = dv
v −

dL
L and dL

L = αdp
p ):

dω

ω
= −dT

T
= (

1

γ2
− α)

dp

p
= (

1

γ2
− 1

γ2tr
)
dp

p
or

dω

ω
= η

dp

p

The change in phase focusing regime occurs at the “transition γ”

phase− slip factor η = 0, γtr = 1/
√
α

If the lattice transverse focusing optics has γtr somewhere in the ac-

celeration range, then the RF phase is quickly shifted at the time of the

transition during the acceleration, from A to B (Fig. 1.7), this is achieved

without beam loss. This is the case at BNL’s AGS, RHIC injector; at

CERN’s PS, LHC injector chain.

For weak focusing machines (see the Cyclotron Chapter), one has

α ≈ 1/ν2x , thus γtr ≈ νx. Some synchrotrons present the property of an

“imaginary γtr”, the transition does not exist, this is the case when the

lattice optics achieves α < 0.

• Exercise 1.4-1 What is the value of the transition γ in SATURNE 1?

Verify by tracking: check the longitudinal stability when accelerating a

proton, either on the rise slope (A), or the falling slope (B) of the RF. •
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Fig. 1.8 Accelerating bunch, above transition. Momentum acceptance [A.Hofmann,

SR, p.269].

1.4.3 Synchrotron oscillations

There are h equilibrium positions φs over a revolution period. In the illus-

tration of Fig. 1.7 for instance, case h=3, acceleration occurs at

- at A, A’, A” if γ < γtr,

- at B, B’, B” if γ > γtr.

All particles located in the vicinity of these points will undergo a stable

oscillatory motion, a “phase oscillation”, centered on the respective φs.

Thus h bunches can circle around the ring, with an angular frequency which

is that of the synchronous particle, they are 2π/h distant in phase (and in

azimuth around the ring).

Particles with small amplitude motion, ∆φ� π/2 undergo an harmonic
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motion with frequency

Ωs =
c

R

√
hη cosφsqV̂RF

2πEs

{
Es = mγs = synchronous energy

R = circumference/2π
(1.21)

solution of

d2φ

dt2
+ Ω2

s∆φ = 0 (∆φ = φ− φs) (1.22)

The number of synchrotron oscillations per turn, the “synchrotron tune” is

Qs =
Ωs

ωs
(1.23)

with ωs the revolution frequency of the synchronous particle (in a similar

manner to the transverse tunes, νx = ωx/ωs, Eq. 1.12).

Large amplitude motion satisfies the more general equation

d2φ

dt2
+

Ω2
s

cosφs
(sinφ− sinφs) = 0 (1.24)

The natural coordinate system for the longitudinal phase space comes out to

be (φ, φ̇), however the particle coordinate actually tracked is its momentum

p, thus the longitudinal phase space usually is (φ,∆p). Both are related by

∆p = − ps

hηωs
φ̇ (1.25)

• Exercise 1.4.3-1. “Stationary bucket”.

In SATURNE ring, now install the RF system model (use a cavity model

with self-computed RF frequency, fRF in Eq. 1.20), complete your spread-

sheet with the RF motion parameters accordingly (phase-slip factor, RF

frequency, voltage, Ωs, etc.).

1.a - Take φs = 0, track a particle with small amplitude motion, both trans-

verse and longitudinal (take for instance zero vertical invariant), over a few

thousand turns.

1.b - Plot its motion in the longitudinal phase space (∆p, φ), superimpose

the theoretical solution of Eq. 1.22.

1.c - Determine the motion frequency Ωs, in two different ways:

(i) from the number of turns around the ring, over one phase oscillation

(ii) from Fourier analysis. •

• Exercise 1.4.3-2. “Accelerated bucket”.

Take SATURNE ring and RF system as of of Exercise 1.4.3-1.

2.a - Take instead φs = 30 degrees, track a particle with small amplitude

motion, both transverse and longitudinal, over a few thousand turns. Start



April 9, 2018 7:25
SBU SUNY PHYS 684

Learning Particle Accelerators−A Computer Game page 21

Weak focusing synchrotron 21

for instance from SATURNE injection energy.

2.b - Plot its motion in the longitudinal phase space (∆p, φ), superimpose

the theoretical solution of Eq. 1.22.

2.c - Determine the motion frequency in longitudinal phase space, Ωs, in

two different ways:

(i) from the number of turns around the ring, over one phase oscillation

(ii) from Fourier analysis. •

• Exercise 1.4.3-3.

Take SATURNE ring as of Exercise 1.4.3-2.

3.a - Calculate the theoretical RF frequency law from injection to top en-

ergy, superimpose with the very quantity out of the self-computation out-

comes of the previous RF computer model.

3.b - Replace the previous RF system (Ex. 1.4.3-1) with a computer model

that allows following that external law. Re-compute the quantities of

Ex. 1.4.3-1, have the results from the two methods (self-computed fRF and

the present readout technique) coincide. •

• Exercise 1.4.3-4. “Separatrix”.

Take SATURNE ring as of Exercise 1.4.3-2, synchronous RF phase set to

φs = 30 degrees, ready for single-particle tracking.

4.a - Slowly push (by small iterations on initial ∆p values for instance) the

longitudinal motion amplitude to its maximum stable value: below, the

motion is oscillatory, beyond it is unbounded.

4.b - Once there, generate the separatrix of the RF motion: the limit be-

tween harmonic motion, and unbounded motion. Plot particle trajectories

in the longitudinal phase space for a few different values of ∆p in the region

of the stability limit. •

1.4.4 RF bucket

• Exercise 1.4.4-1.

1.a - By tracking, show that the bucket height, “momentum acceptance”,

satisfies

± ∆p

p
= ± 1

β

√
qV̂

πhηEs
[−(π − 2φs) sinφs + 2 cosφs] (1.26)

1.b - Show that the maximum extent in phase for small amplitude oscilla-

tions, from the tracking, satisfies

±∆φmax =
hηEs

psRsΩs
×Max.

(
∆E

Es

)
(1.27)
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1.c - Show that tracking and theory agree on the bucket length and height,

taking some φs values in [0, 2π]. •
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