Following Landau’s Classical Theory of fields: Covariant differentiation
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the space we are using. Let’s consider an arbitrary non-degenerated (e.g. inversible) non-linear
transformation of coordinates. Contravariant vector transforms as differentials of the contravariant
components of the coordinated (it is a definition)
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The contravariant components transform as a partial differentials of a scalar function, ¢
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Such definition preserves scalar product of two vectors
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Length element is defined by symmetric tensor gix :
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since any antisymmetric tensor convolved with symmetric tensor dxidx; results in trivial zero. It is
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important to remember that metric tensor can be a function of coordinates g, =g (x)!

It is true that metric tensor is the tensor
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If we considering transformation from a Cartesian coordinates where metric tensor is diagonal
matrix, then
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which is obviously is the symmetric tensor.
Lowering and raising indices is accomplished by the metric tensors:
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Which again coming from testing transform from Cartesian coordinates where 4’ = A"
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Similar conclusions can be derived for tensors.
The totally asymmetric tensor ¢’ is defined in the Cartesian system as
o2 = l;euik.. — _phi (8)

Curvilinear coordinate system does changes it and to distinguish it from that I nthe Cartesian
system we will call it g7 Again, let’s consider transformation from a Cartesian system with

gik... ax ax ejl... —J J de t|: ax :| (9)

ox"’ ax’l ox"’/

where we used relation derived in intro to the Linear algebra. Eq. (9) is actually one of standard
definitions of matrix’ determinant. The determinant of the metric tensor is connected with J. It is
transformed and
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and since we define transformation of totally asymmetric tensor from the Cartesian system where
metric tensor is the unit matrix with unit determinant, egs. (9) and (10) produce a simple!

!'It is worth to note that in special relativity determinant of the flat space and time metric is equal

-1. In this case J=4/—g".
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Because coordinate transformation is a function of location, the Covariant differentiations varies
significantly from what we used in flat Cartesian space. First and foremost, as simple deferential
of the vector is no longer is a vector:
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has and extra term which violates the transformation rule for vectors (2).
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Let’s find a tensor which plays role of tensor a—]; in Cartesian coordiantes. We need to transform
X

this tensor to curvelinear corrdinates — to have such trasformation we need to foigure out how to
translate vector from one point to another which is separated bu infitezimally small distance. Such

transformation should not affect dA4. in the Cartesian system.

Moving from point x’ to x'+ dx' result in changes vector 4’ to A’ +dA’. Let make a parallel

translation of vector A4’ to point x’ + dx' and define change resulting from this translation as § 4’
. The remaining deferens is

DA =dA -84, (12)
This translational change should change sum of vectors in the sum and both vectors, e.g. it has to
be linear:
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where T are so-called Christroffel symbols functions of coordinates which depend on the

system. By definition they are zero in Cartesian system — which meant that they are tensors: zero
tenosr or vecotrs remaine zero in all coordinate systems. We can also define low-index called
Christroffel symbols as
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Scalars are by definition do not change under parallel translation, e.g. the convolution of the scalar
vector product should not change:
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which defined change of the covariant vector under parallel translation. Thus, we found expression
for covariant differentials:
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which now transform as vectors — e.g. the expression is the brackets are tensors which we will
write as and call “covariant derivatives”
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Similarly, we can define covariant derivatives of a tensor
5(4'B*)=84'B + A58  =—AT" B'dx"— B'T", A'dx”
5(4")=—(4"T*, +4™T", )dx’

DA* =dA" +T" A™ +T" A" (17)
ik
Aik_l aA + Ft Amk + rk Atm
’ x
aA m m i aAl m i i m
A, = ax -4, T4, 4, ~or -4+ A7

For scalars ¢ =0— Do = dg; Since covariant derivative is a linear operator, it is easy to show

that covariant derivative of a product behaves the same way as regular derivative:
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Since the newly created object behave as tensors, we can define contravariant derivatives using
metric tensor:
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Christroffel symbols T ,,are symmetric with respect to low indices, e.g. r y = I , - The easiest
way to prove it is to use a vector which is gradient of a scalar function

aA A A
4=92. 4 % g4 =% gy
i a i i ax ki® 7 ks t,k ax 7
04, 04 4 ,
Ak;i - Ai;k = a_); - a_xli—i_(rjik - ijj)Aj (20)

d4, 04, ¢ ) A ) 09
- — = — - -=0;B, =4 -4 =(I"" -T7 |—/.
axl axk axl axk axk axl ik ki isk ( ik kl)



B, is the difference of two tensors and therefore is a tensor. But this tensor es equal zero in
Cartesian coordinate system — hence it is zero everywhere! Hence,
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and for 3D space there are 18 independent indices (40 in 4D space).

A simple by tedious calculations using fact that in eq. (16) both sides have to transform as vectors
will result in transformation rule for the Christroffel symbols:
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In addition to defining transformation of the Christroffel symbols it also iniquely defines it for a
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transformation from Cartesian system where F;j’” =0 as
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which clearly shows that the symbols are symmetric with respect to the low indices.

Now we have all necessary instruments to connect the Christroffel symbols with the metric tensor.
First let’s show that kovariant derivative of gix is equal zero: we will use the method of lovering
indices of vecotrs:
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Last equation gives us necessary connection:
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where we used symmetry of the symbols to find the ratio: red and blue terms cancel each other in
the sum.

Now we are close to find a way to define differential operators in curvilinear coordinates.

Lets start from defining the differential of the metric tensor determinant
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Similarly
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Eq. (25) allows us to calculate divergence of vector in curvilinear coordinates as:
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Gradient is the most trivial differential operator since it does not change
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Now we can also define the Laplacian as
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The only remaining operator is curl, which is a pseudovector. In Cartesian system it is
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With all component in the right being either vectors or tensors, we can transfer them into the

curvilinear system as
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This gives us all necessary differential operators we will use in this portion of the course.



Adtitional notes: Co- and contravariant systems, transformations and the gradient

Start from metric tensor in an arbitrary curvilinear system of coordinates:
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We can start from Cartesian system with unit diagonal metric and orthonormal basis
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The gradient transformation is the easy one:
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