PHY 554

Fundamentals of Accelerator Physics Lectures 25-26 Scientific and Societal Applications of Accelerators

Vladimir N. Litvinenko, Yue Hao, Yichao Jing, Gang Wang

Center for Accelerator Science and Education
Department of Physics & Astronomy, Stony Brook University
Collider-Accelerator Department, Brookhaven National Laboratory

http://case.physics.stonybrook.edu/index.php/PHY554_fall_2016

Your presentations: presentation 20-25 mins, 5 mins Q&A

• December 7, Wednesday, 5:30 pm, P122

- Xiangdong Li, *Electron cooling*
- Irina Petrushina, SRF system for Coherent Electron Cooler
- Jun Ma, Coherent electron cooling
- Kentaro Mihara, Space charge effects
- Sukho Kongtawong, Low emittance design for a light source

• December 15, Thursday, 9:00 am, P122

- Kai Shih, Beam-beam effects
- Kelsey Buggelli, Polarize electron "Gatling" gun
- Mael Flament, Electron beam welding and machining
- Dhananjay Ravikumar, Cryogenics in accelerators

Societal Applications of Accelerators

- Semiconductors: The semi-conductor industry relies on accelerator technology to implant ions in silicon chips, making them more effective in consumer electronic products such as computers, smart phones and MP3 players.
- Clean air and water: Studies show that blasts of electrons from a particle accelerator are an effective way to clean up dirty water, sewage sludge and polluted gases from smokestacks.
- Cancer therapy: When it comes to treating certain kinds of cancer, the best tool may be a particle beam.

 Hospitals use particle accelerator technology to treat thousands of patients per year, with fewer side effects than traditional treatments.
- Medical diagnostics: Accelerators are needed to produce a range of radioisotopes for medical diagnostics and treatments that are routinely applied at hospitals worldwide in millions of procedures annually.
- Pharmaceutical research: Powerful X-ray beams from synchrotron light sources allow scientists to analyze protein structures quickly and accurately, leading to the development of new drugs to treat major diseases such as cancer, diabetes, malaria and AIDS.
- DNA research: Synchrotron light sources allowed scientists to analyze and define how the ribosome translates DNA information into life, earning them the 2009 Nobel Prize in Chemistry. Their research could lead to the development of new antibiotics.
- Nuclear energy: Particle accelerators have the potential to treat nuclear waste and enable the use of an alternative fuel, thorium, for the production of nuclear energy.

http://www.acceleratorsamerica.org/resources/applications/index.html

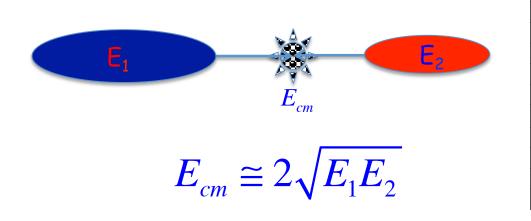
Scientific Applications

- High energy and Nuclear Physics colliders
- Neutron sciences neutron spallation sources
- Photon Sciences light sources
 - Pharmaceutical research: Powerful X-ray beams from synchrotron light sources allow scientists to analyze protein structures quickly and accurately, leading to the development of new drugs to treat major diseases such as cancer, diabetes, malaria and AIDS.
 - DNA research: Synchrotron light sources allowed scientists to analyze and define how the ribosome translates DNA information into life, earning them the 2009 Nobel Prize in Chemistry. Their research could lead to the development of new antibiotics

•

Why we need Colliders?

Looking deeper and deeper inside! X10,000 neutron proton X10 ATOM $1 \text{\AA} = 10^{-10} \text{m}$ X100 Nucleus 10⁻¹⁴m Proton 10⁻¹⁵m Quarks and Gluons USA 10⁻¹⁷m increase beam energy State of NY


Manhattan

High Energy and Nuclear Physics

- Colliders world's most powerful microscopes
- Hence, they allow to look into the matter on smaller and smaller scale, and, sometimes, discover new states of mater or new particles

$$\delta x \cdot \delta p \ge \hbar \qquad \delta p \le \frac{E_{cm}}{c}; \ \delta x \ge c \frac{\hbar}{E_{cm}}$$
 or for new particles
$$M_{part} \le \frac{E_{cm}}{c^2}$$

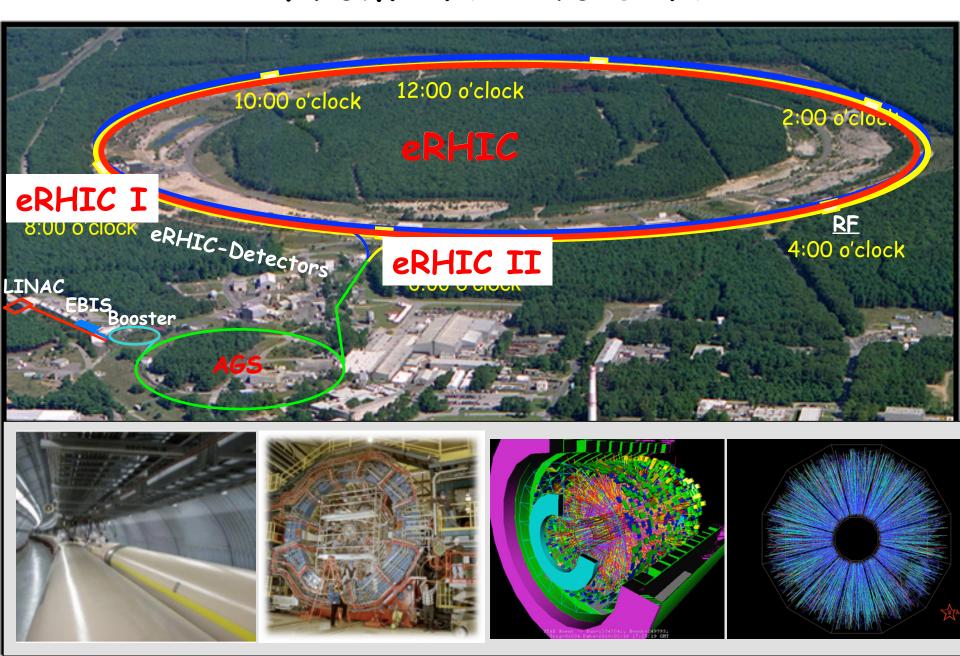
 For ultra-relativistic particles the c.m. energy is a simply twice the geometrical average of the colliding particles

C-III-I	E C-W	E C-V	E C-V
Collider	E_1 , GeV	E ₂ , GeV	E _{cm} , GeV
RHIC	250 p	250 p	500.0
eRHIC	250 p	21.2 e-	145.6
LHC	6500 p	6500 p	13,000.0
B-factory	3.5 e-	10.58 e+	12.2
Fixed target	E ₁ , GeV	E ₂ , GeV	E _{cm} , GeV
CEBAF	6 e-	0.938 p	4.7
	12 e-	0.938 p	6.7
	6 e-	0.00051 e-	0.1
	12 e-	0.00051 e-	0.2

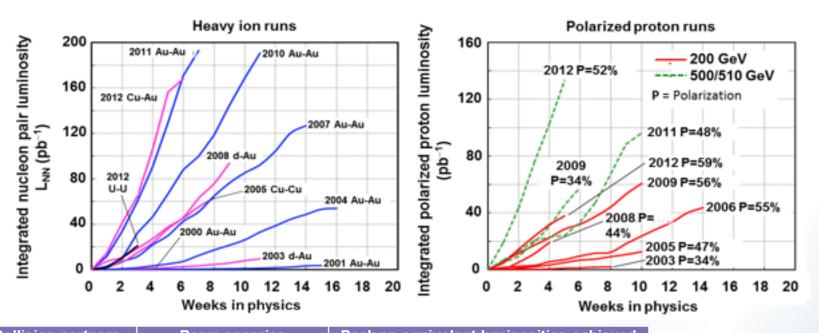
Productivity of colliders

It is called LUMINOSITY

$$L = f_c \frac{N_1 N_2}{A} \cong f_c \frac{N_1 N_2}{2\pi \sqrt{\beta_{x1} \varepsilon_{x1} + \beta_{x2} \varepsilon_{x2}} \sqrt{\beta_{y1} \varepsilon_{y1} + \beta_{y2} \varepsilon_{y2}}}$$


If an event A->B has a cross-section $\sigma_{A\to B}$ (for example generating HIGGS particle), then the speed of producing them is simply given by the Product of the cross-session and the luminosity

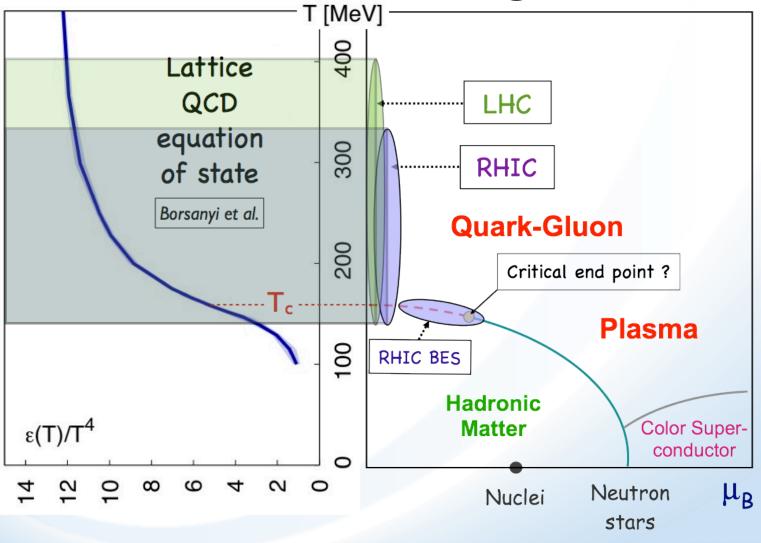
$$\dot{N}_{A\to B} = \sigma_{A\to B} \cdot L$$


Luminosity is measured in cm⁻²sec⁻¹

Collider	L
RHIC	10^{32}
eRHIC	$10^{33} - 10^{34}$
LHC	10^{34}
B-factory	10^{34}
Fixed target	L
CEBAF	10^{35}

From RHIC to eRHIC

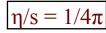
Dramatic Improvements in Performance & Versatility

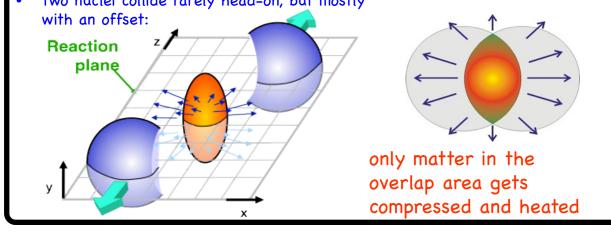


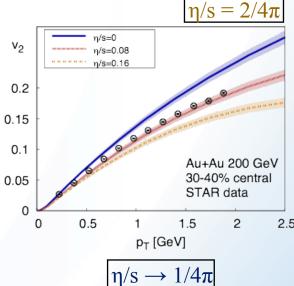
Collision partners	Beam energies (GeV/nucleon)	Peak pp-equivalent luminosities achieved to date, scaled to 100 GeV/nb)
Used to date		
Au+Au	3.85, 4.6, 5.75, 9.8, 13.5, 19.5, 31, 65, 100	195 × 10 ³⁰ cm ⁻² s ⁻¹
d+Au ^{a)}	100	100 × 10 ³⁰ cm ⁻² s ⁻¹
Cu+Cu	11, 31, 100	$80 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$
p↑+p↑ (polarized)	11, 31, 100, 205, 250, 255	165 × 10 ³⁰ cm ⁻² s ⁻¹ at 255 GeV
Cu+Au ^{a)}	100	$230 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$
U+U	96	$60 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$
Considered for future		
Au+Au	2.5, 7.5	
p+Au	100	
p↑+ ³He↑ ^{a)}	166	

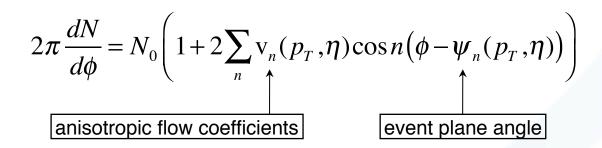
2 new colliding beam species / combinations in 2012

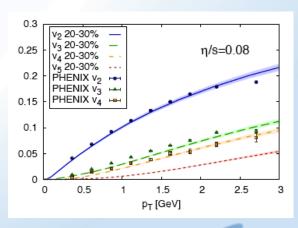
NATIONAL LABORATORY

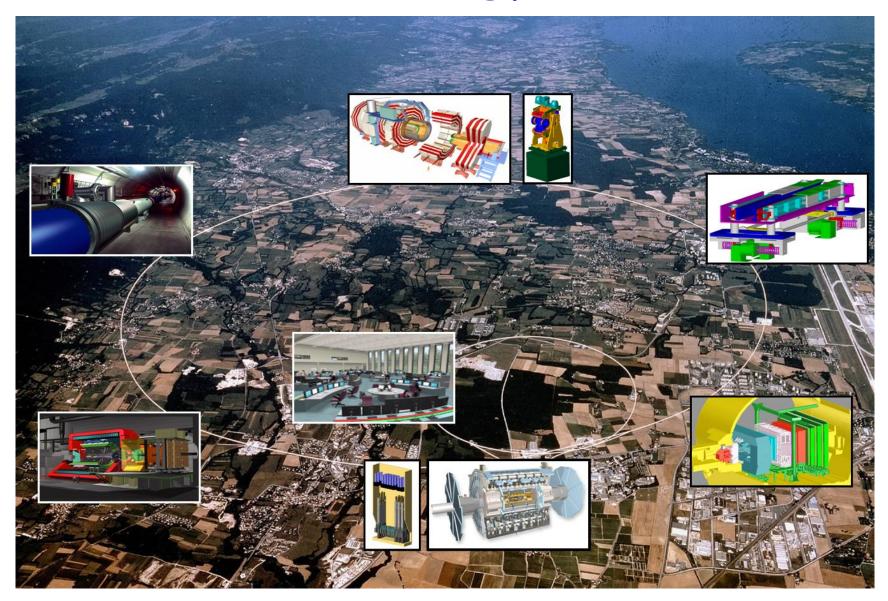

QCD Phase Diagram



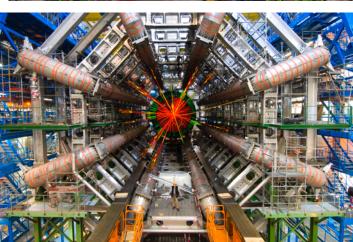

Anisotropic flow: The Perfect Liquid

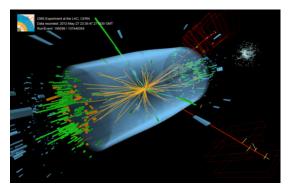


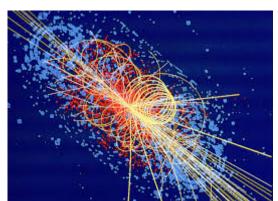


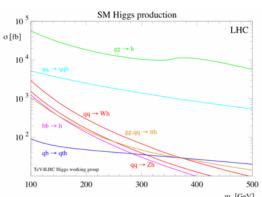




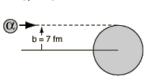



LHC - energy frontier

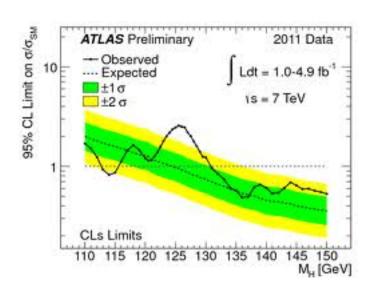


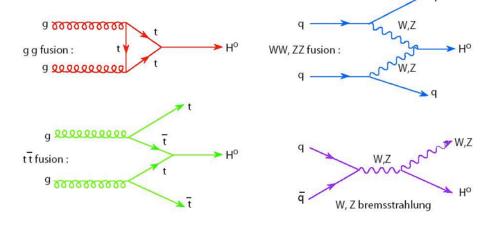

LHC - energy frontier



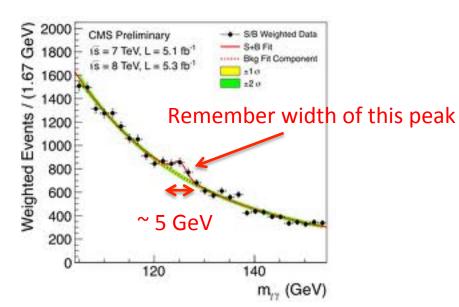


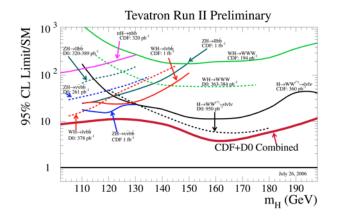
Z=79, A=197




 $r = 7 \text{ fermi} = 7 \times 10^{-15} \text{ m}$ $A = \pi r^2 = 154 \text{ fermi} = 1.54 \times 10^{-28} \text{m}^2$ A = 1.54 barns 1 barn = 10^{-28} m² = 100 fm²

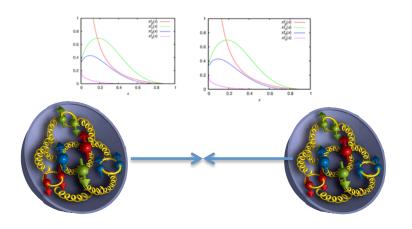
A 6 MeV alpha particle approaching a gold nucleus with an impact parameter equal to the gold nuclear radius of 7 fm would be scattered through an angle of almost 140°. We would say that the cross section for scattering at or greater than 140° is 1.54 barns.


1 Barn= $10^{\frac{m_s [GeV]}{-28}}$ cm², 1 fb= 10^{-43} cm²

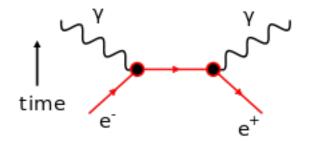

Higgs at LHC: blip in cross-section

Tevatron at FERMILAB has necessary energy reach but did not had enough luminosity to find Higgs - it only had "hints"

Why leptons and not hadrons?


Scattering of protons on protons is like colliding Swiss watches to find out how they are built.

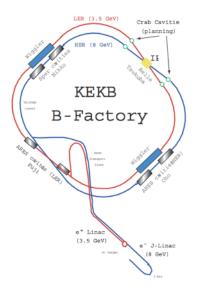
R. Feynman

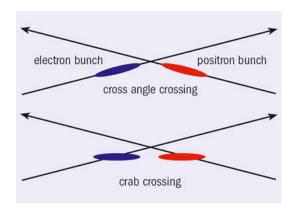


Why e⁺e⁻ or e⁻h colliders?

To the best of our knowledge electrons and positions (or muons) do not have internal structure

Colliding hadron is as colliding two caps of quark-gluon soup (+ sea quarks): energies and polarization are varying and initial state is unknown

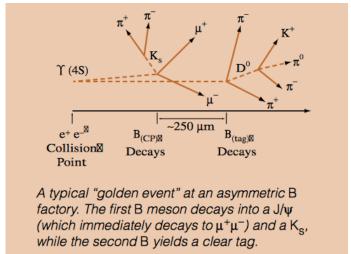
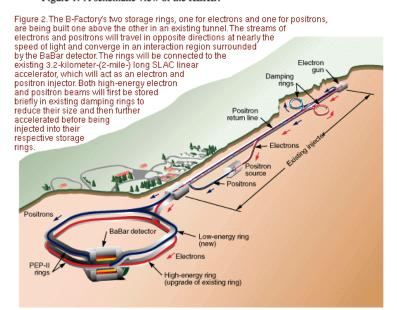
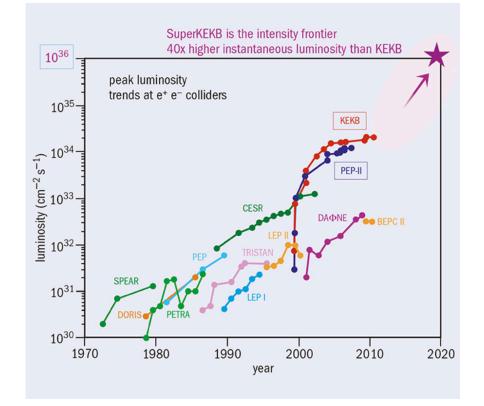


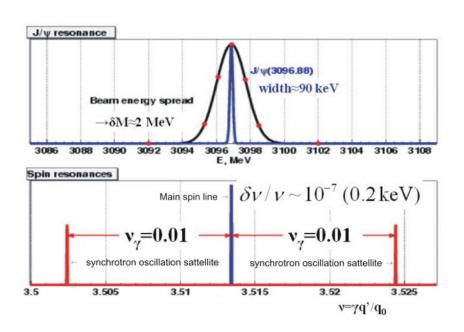

space ----

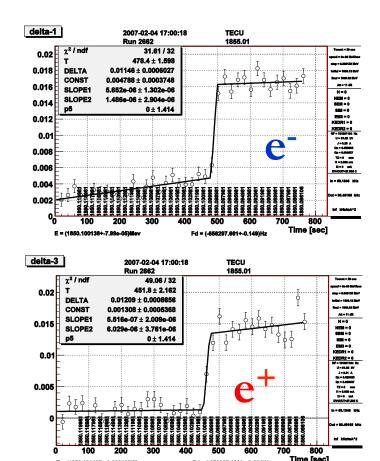
Pure initial state (energy of annihilated electron-positron pair)

Very precise knowledge of the energy and polarization

B-factories


Figure 1: A schematic view of the KEKB.


Resonance depolarization method

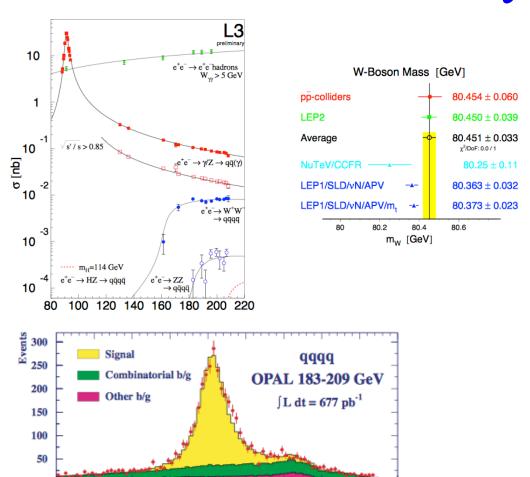
BEAM ENERGY SPREAD AND SPIN SPECTRA at VEPP-4M

In homogeneous magnetic field a width of the spin spectra is $\sim 10^{-9}$!

In real storage ring it is ~10⁻⁷ due to betatron oscillations and nonlinearity of magnetic field and noise in magnet system

 E_p - E_e =(1.32±0.14) keV: 0.4 p.p.m. energy accuracy Compare this with 1% scale resolution in p-p collisions

Largest e⁺e⁻ collider - LEP



The LEP machine at CERN is the largest particle collider in the world. In a ring 27 km in circumference, buried about 100 m underground, bunches of electrons and positrons race round in opposite directions...

Last sprint for LEP

The Director General, Prof. Luciano Maiani, began his report with the performance of the Laboratory's flagship accelerator, the Large Electron-Positron collider, LEP, during its final year. LEP is achieving its highest energy collisions ever with beams of over 104 GeV, well exceeding its design energy and giving experiments a final chance of discovering the still-elusive Higgs particles before the end of it's experimental programme in September. Thanks to precision data from LEP and elsewhere, scientists already know that Higgs particles, if they exist, must be within range of LEP's successor, the LHC.

LEP – W & Z factory

100

m/GeV

Figure 19. Reconstructed W mass distribution for all OPAL $W^+W^- \to q\bar{q}q\bar{q}$ data from $\sqrt{s}=183$ to 209 GeV. The histogram shows the SM expectation for $M_W=80.42$ GeV.

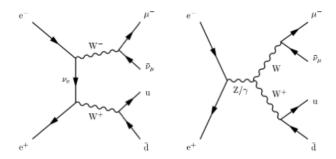
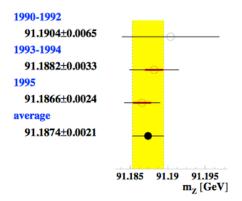
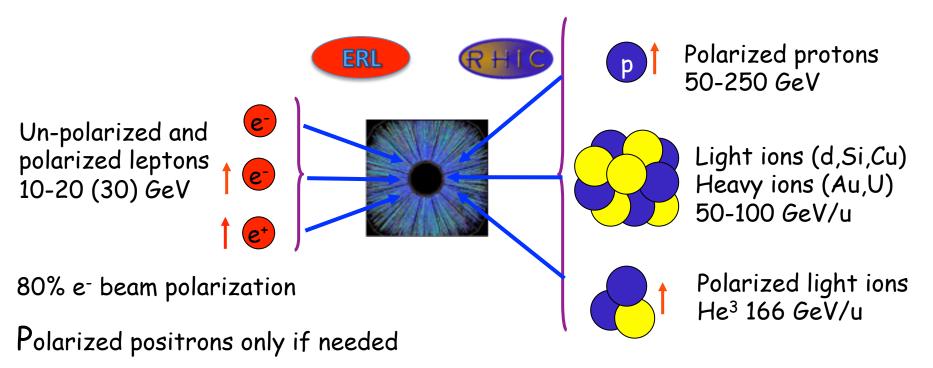
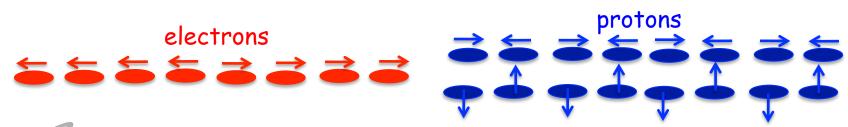


Figure 16. CC03 diagrams for W^+W^- production with subsequent decay into $u\bar{d}$ and $\mu\bar{\nu}_{\mu}$.

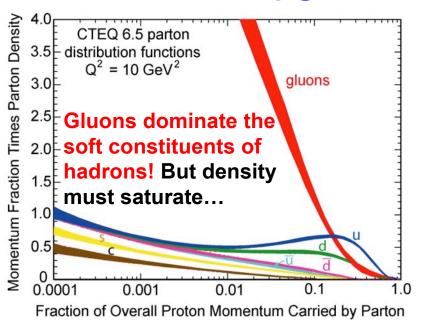

Figure 5. m_Z combined by EWWG for the different periods of data taking.

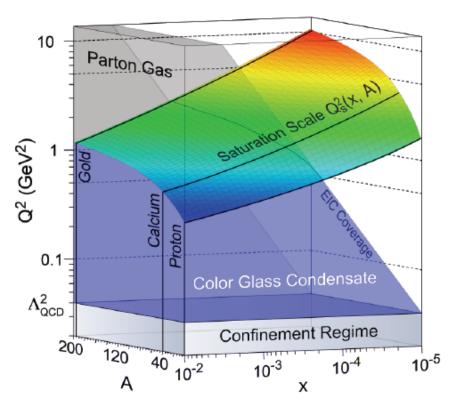
$$m_W = 80.450 \pm 0.026 (stat.) \pm 0.030 (syst.) GeV.$$

 $m_Z = 91.1874 \pm 0.0021 \ GeV.$

eRHIC: QCD Facility at BNL

Center mass energy range: \sqrt{s} =30-140 (175) GeV; Luminosity ~ 10^{33} - 10^{34} cm⁻² sec⁻¹




EIC Science: Gluon-Dominated Cold Matter in e+A

Search for supersymmetry @ LHC, ILC (?): seeking to unify matter and forces

Electron-Ion Collider: reveal that Nature blurs the distinction

Deep inelastic scattering @ HERA ?

EIC probes weak coupling regime of very high gluon density, where gauge boson occupancy >> 1. All ordinary matter has at its heart an intense, semi-classical force field -- can we demonstrate its universal behavior? Track the transition from dilute parton gas to CGC? "See" confinement reflected in soft-gluon spatial distributions inside nuclei?

Industrial Applications

- ✓ Ion Implantation
- ✓ Electron beam materials processing
- ✓ Electron beam irradiators
- ✓ Radioisotope production
- ✓ Ion Beam Analysis
- ✓ High Energy X-ray Inspection
- ✓ Neutron generators
- ✓ Synchrotron radiation
- ✓

Industrial Accelerators

DC Voltage

- Van de Graaff Use a charge carrying belt or "chain". Energies range from 1 to 15 MeV at currents from a few nA to a few mA.
- Dynamitron & Cockcroft Walton generator Basically voltage multiplier circuits at energies to up to 5 MeV and currents up to 100 mA.
- Inductive Core Transformer (ICT) A transformer charging circuit with energies to 3
 MeV at currents to 50 mA.

RF Linacs

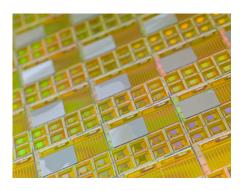
- Electron linacs standing wave cavities from 0.8 to 9 GHz. Energies from 1 to 16 MeV at beam power to 50 kW.
- Ion linacs all use RFQs at 100 to 600 MHz. Energies from 1 to 70 MeV at beam currents up to mA.

Circular

- Cyclotrons ion energies from 10 to 70 MeV at beam currents to several mA.
- Betatrons electron energies to 15 MeV at few kW beam power.
- Rhodotron electron energies from 5 to 10 MeV at beam power up to 700 kW.
- Synchrotron electron energies up to 3 GeV and ion energies up to 300 MeV/amu.

Materials modification

Electron beams make shrink wrap tougher and better for storing food and protecting other products, such as board games, CDs and DVDs


The auto industry uses particle accelerators to treat the material for radial tires, eliminating the use of solvents that pollute the environment.

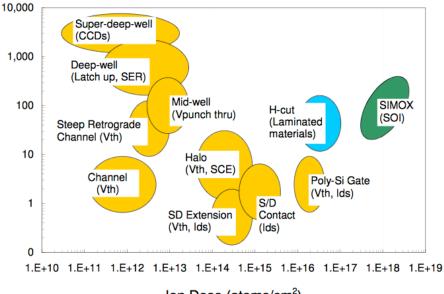
There is a hope to improve the safety of artificial heart valves by forming them from material bombarded by ions

Ion implantation

The semiconductor industry relies on accelerator technology to implant ions in silicon chips.

Semiconductors

- CMOS fabrication
- □ SIMOX
- Cleaving silicon
- MEMS


Metals

- Harden cutting tools
- Artificial human joints

Ceramics & glasses

- Harden surfaces
- Modify optics

Ion Implantation Dose & Energy

Ion Dose (atoms/cm²)

All digital electronics now dependent on ion implantation.

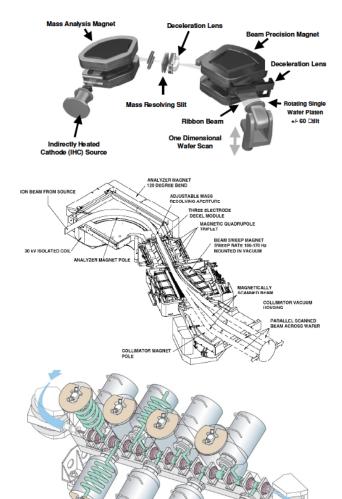
Ion implantation

Ion Implantation Accelerators

Accelerator classifications

·Low energy/ high current

- · "High current implanters"
- Ion energies from few hundred eV to tens of keV.
- Variable energy, single gap with currents to 50 mA.


Medium energy/ medium current

- Original ion implanter
- Variable energies of 50 to 300 keV range
- Currents in the 0.01 to 2 mA range.
- Usually multi-gap direct voltage units using voltagemultiplier HV power supply.

•High energy/ low current

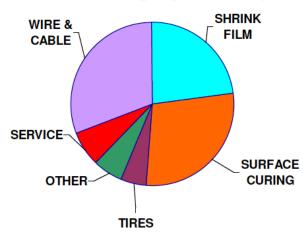
- Variable energy from 1 to 10 MeV
- Beam currents to hundreds of microamperes.
- Can be linacs or tandem charge-exchange columns
- Both use high-charge-states for upper energy range.

These systems have become highly specialized and reliable.

Material Processing/Modifications

- Electron beam processing involves irradiation (treatment) of products using a high-energy electron beam
- Electron beam processing is used in industry primarily for three product modifications:
 - Crosslinking of polymer-based products to improve mechanical, thermal, chemical and other properties
 - Material degradation often used in the recycling of materials
 - Sterilization of medical and pharmaceutical goods, foods and other products

Material Processing/Modifications

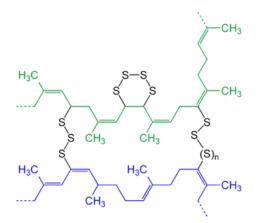

Electron Beam Irradiators

- Cross linking of materials (largest application)
- Sterilization of single-use disposable medical products surgical gowns, surgical gloves, syringes, and sutures (growing applications)
- Food and waste irradiation (largest potential applications)

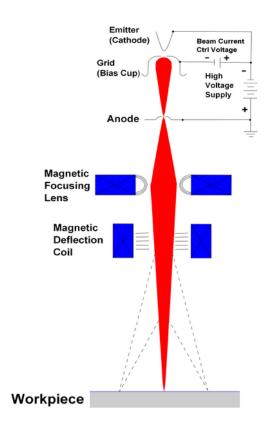
Cross linking applications

Product	Applications
Cross-linked polyethylene(PE) and PVC	Heat and chemical-resistant wire insulation; pipes for heating systems
Cross-linked foam polyethylene	Insulation, packing and flotation material
Cross-linked rubber sheet Cross-linked polyurethane	High quality automobile tires Cable insulation
Cross-linked nylon Heat resistant SiC fibers	Heat and chemical resistant auto parts Metal and ceramic composites
Vulcanized rubber latex Cross-linked hydrogel	Surgical gloves and finger cots Wound dressings
Acrylic acid grafted PE film Grafted polyethylene fiber	Battery separators Deodorants
Curing of paints and inks	Surface coating and printing

Cross linking by industry


Total of \$50 billion per year

Material Processing/Modifications Electron Beam Irradiation Accelerators


- 100 to 300 keV Single gap, self-shielded sheet beam systems without beam scanning.
 Beam currents from 10 to 2000 mA; treat 1 to 3 m wide material. Used for curing thin film coatings and cross-linking laminates and single strand wire.
- 450 to 1000 keV Larger dc systems with scanned beams and self-shielding. Beam currents from 25 to 250 mA; treat 0.5 to 2 meter wide material. Mainly used for cross-linking, curing and polymerization processes in the tire, rubber and plastics industry.
- 1 to 5 MeV Scanned beam dc systems capable of 25 to 200 kW beam power; scanned beam width up to ~2 meters. Used for cross-linking and polymerization of thicker materials, and for sterilization of medical products.
- 5 to 10 MeV High energy scanned beam systems capable of 25 to 700 kW beam power. Used for medical product sterilization and cross-linking and polymerization of even thicker materials. They are also used as x-ray generators for food irradiation, waste water remediation, and gemstone color enhancement for topaz and diamonds.

Crosslinking

- A cross-link is a bond that links one polymer chain to another.
- Cross-linking is used in both synthetic polymer chemistry and in the biological sciences.
- Although the term is used to refer to the "linking of polymer chains" for both sciences, the extent of crosslinking and specificities of the crosslinking agents vary. Of course, with all science, there are overlaps, and the following delineations are a starting point to understanding the subtleties.
- When cross links are added to long rubber molecules, the flexibility decreases, the hardness increases and the melting point increases as well.

Vulcanization is an example of cross-linking. Schematic presentation of two "polymer chains" (blue and green) cross-linked after the vulcanization of natural rubber with sulfur (n = 0, 1, 2, 3 ...).

Micro-biological sterilization

- ✓ Electron beam processing has the ability to break the chains of DNA in living organisms, such as bacteria, resulting in microbial death and rendering the space they inhabit sterile.
- ✓ E-beam processing has been used for the sterilization of medical products and aseptic packaging materials for foods as well as disinfestation, the elimination of live insects from grain, tobacco, and other unprocessed bulk crops.
- ✓ Sterilization with electrons has significant advantages over other methods of sterilization currently in use. The process is quick, reliable, and compatible with most materials, and does not require any quarantine following the processing.

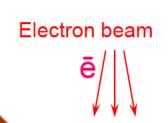
Granary weevil

Granary weevil (*Sitophilus granarius*): An adult lays up to 450 eggs singly in holes chewed in cereal grains. Each egg hatches into a white, legless larva, which eats the grain from the inside. The larva pupates within the grain and the adult then chews its way out. The exit holes are characteristic signs of weevil damage. The life cycle takes about one month under summer conditions and adults may survive for a further eight months. The granary weevil is a small dark brown-black beetle about 4mm long with a characteristic rostrum (snout) protruding from its head. It has biting mouth parts at the front of the rostrum and two club-like antennae.

Sterilization of products

Pest & Pathogen Control:

Example: Half of grain produced on the Earth is infested by bugs: they have to be stopped, or grain is gone...


Electron Beam processing as a disinfestation method replaces antiquated environmentally unfriendly methods such as fumigation and chemical dipping.

A significant area for this technology is the herb and spice industry. These commodities are valued for their distinctive flavors, aromas and colors. They can be processed by this technology to reduce bacterial contamination without compromise to their sensory properties.

Fruits, vegetables, grains and other food items can be processed by Electron Beam to control fruit flies and other insects that use these commodities as a host for propagation.

Suitable as a quarantine measure, several countries rely on this technology to treat food commodities prior to exporting

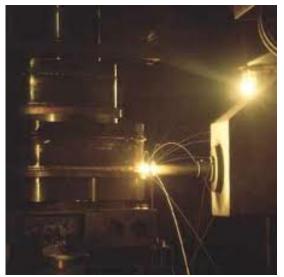
Sterilization of *other*, *less testy*, products

technology of the livestock enterprises waste decontamination with the help of electron beam

Contaminated waste

Decontaminated waste

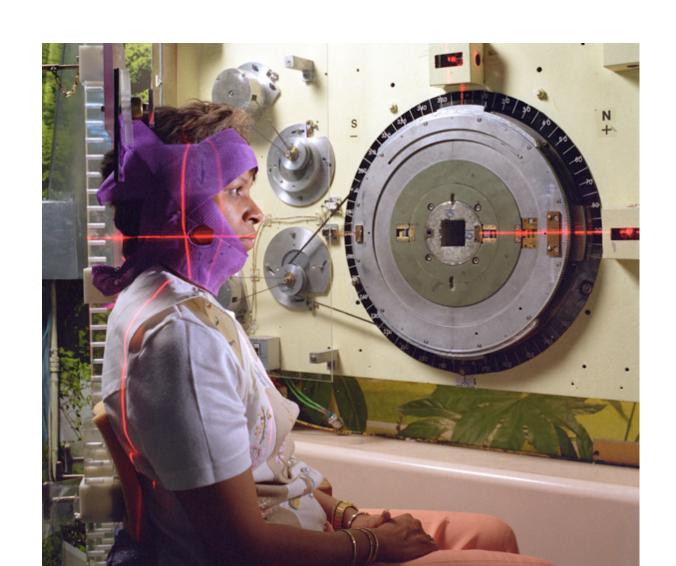
Biological waste cleaning


Clean water

What else?

Dec. 15 Presentation

Mael Flament, Electron beam welding and machining

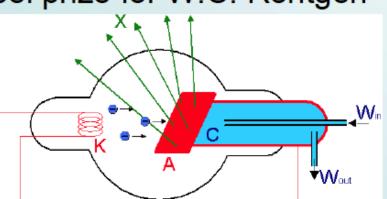

Key advantages

- Using electron beam with energies below 10 MeV (e.g. below giant nuclear resonance!) does not leave residual radioactivity
- To a large degree, it is just a use of electrical power to eliminated the intruders
- Hence, such treatment does not changes chemical structure of the irradiated products while effectively killing leaving bugs or bacteria
- Replacing dangerous (killer!) chemicals with is environmentally neutral treatment

Medical Applications

- ✓ In contrast with other applications, medical applications of any technology is most humane and broadly accepted by society.
- ✓ Some of accelerator applications in medicine like radiation therapy - are well known.
- ✓ Many are know only to experts.
- ✓ Here is a short (and incomplete) list of accelerator applications in medicine:
 - ✓ Hadron radiation therapy
 - ✓ Gamma-ray (Photon) radiation therapy
 - √ X-ray tubes
 - ✓ Sterilization of material & equipment
 - √ Isotopes
 - ✓ Angiography
 - ✓ Neutron capture therapy
 - ✓ Genome project
 - ✓ Reconstruction of protein structures
 - ✓ Developing new drugs and new materials

γ-Ray Radiation Therapy



X-ray tubes are well known

History of medical applications of accelerators

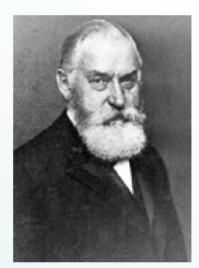
- 1895 Wilhelm Conrad Röntgen (1845 1923) discovers the X-rays on 8th November at the University in Würzburg
- 1896 On 23rd January Röntgen announced his discovery and demonstrated the new kind of radiation by a photograph of the hand of his colleague *Albert von Kolliker*
- 1897 First treatments of tissue with X-rays by Leopold Freund at University in Vienna
- 1901 Physics Nobel prize for W.C. Röntgen

Schematics of an X-ray tube – an "electrostatic accelerator"

X-ray tubes and beyond

History of medical applications of accelerators

1899 First X-ray treatment of carcinoma in Sweden by Stenbeck and Sjögren

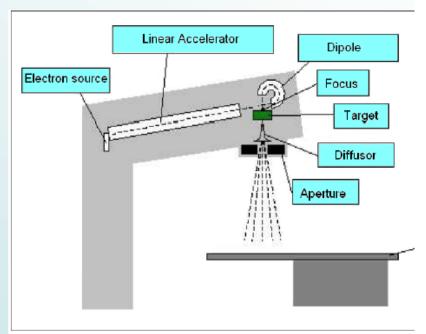

1906 Vinzenz Czerny founded the "Institute for Experimental Cancer research" in Heidelberg – the first of its kind

1913/4 Invention of part- and full-rotation radiation instrumentation

1920´s Industrially manufactured X-ray apparatus; example from Reiniger-Gebbert & Schall AG (later: Siemens), Erlangen; 1922) with a high-voltage of 150 kV – without shielding!

1930 First linear accelerator principle invented by Rolf Wideroe

1949 Newberry developed first linear accelerator for therapy in England


X-ray tubes and beyond

History of medical applications of accelerators

1950´s Development of compact linear accelerators by and Varian, Siemens, GE, Philipps and others

later with energies up to around 25 MeV (and above)

radiotherapy (Stanford linac)

modern linac for therapy

Linac-based y-Ray Radiation Therapy

Started in 1956 and since then treated about 50 million patients
In developed countries there is 5-10 medical linacs per 1 million inhabitants
It simply means that there are thousands of such accelerator!

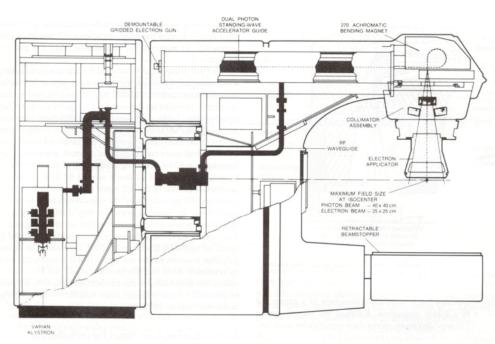
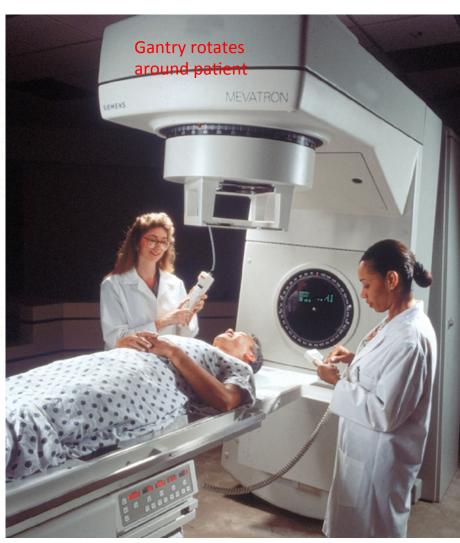
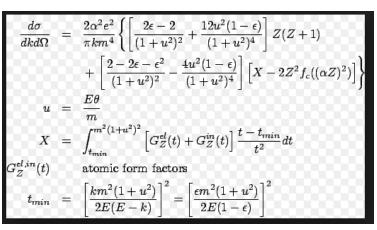


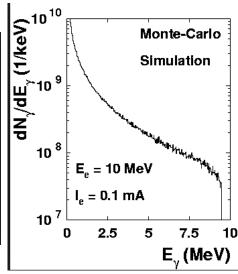
Table 1
Number of Radiotherapy units in France, on 1 January 1995 [1]

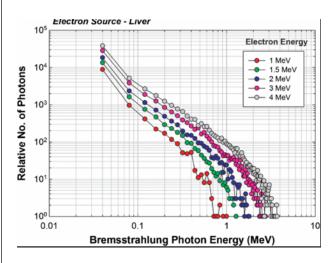

	GE-CGR	MeV	Other Companies		Total *	
4-6 MV	Orion 5	19	Siemens (Mevatron))	3	36
			Philips (SL 75/5)		9	(+5)
			Clinac 600 C			
10 MV	Neptune 10	26				29
	Saturne 1M	3				(-1)
15 MV	Saturne 15	5	Siemens (Mevatron MD)		8	51
	Saturme 1	9	Philips (SL 18) 6		6	(+17)
	Saturne 41	23				
20 MV	Saturne 20	8	Philips (SL 75/20)		3	31
	Saturne 11	9	Clinac 2100C		6	(-17)
	Saturne 42	5				
25-40 MV	Sagittaire 32 MV	7				15
	Sagittaire 40 MV	3				(-2)
	Saturne 25 MV	5				
20-25 MV	Saturne 111	4				4
25 MV	Saturne 43	37	Philips (SL 75/25)		9	56
			Siemens (Mevetron	KD2)	10	(+12)
Total Linear Accelerators		163			59	222
						(+14)
	В. 0	OTHER T	YPES OF RADIATI	ON THERAPY U	NITS	
Cobalt Units					133 (-11)	
Betatron					1	
Hadron The	erapy					
Cyclotron: neutron therapy (Orléans)					1	
Cyclotron: neutron + protontherapy (Nice)				1		
Synchrotro	n: protontherapy	(Saclay)			1	

4 inear accelerators are manufactured by several vendors

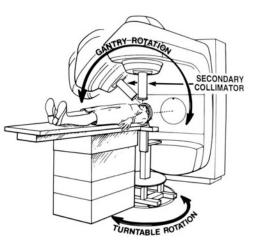
γ-Ray Radiation Therapy The systems can be rather compact

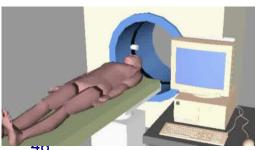

Varian Clinac 1800 Medical linear accelerator




y-Rays Production

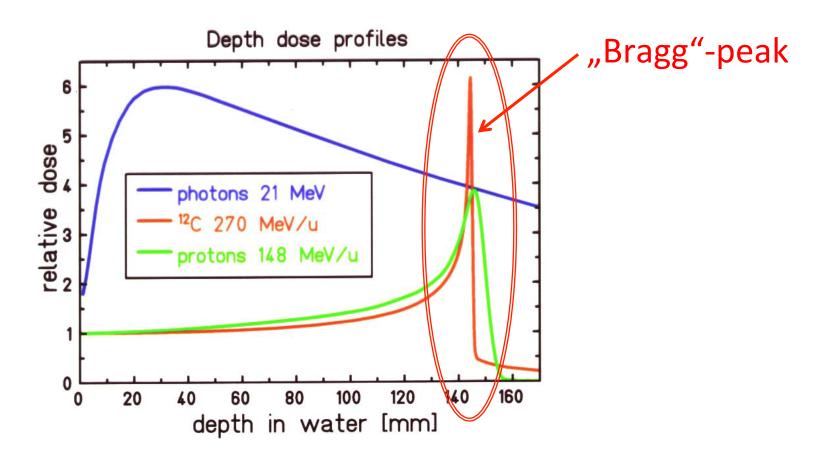
Medical linacs use monoenergetic electron beams between 4 and 25 MeV. Electron beam collides with a a high-density (such as tungsten) target generating via process called Bremsstrahlung (from *bremsen* "to brake" and *Strahlung* "radiation", http://en.wikipedia.org/wiki/Bremsstrahlung) hard-X-rays and γ-Rays with energy spectrum up to the electron beam energy





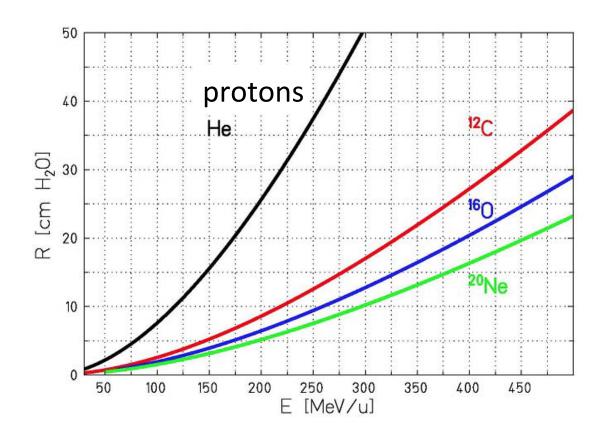
y-Ray Radiation Therapy

- The gamma-rays beam is further filtered to remove soft photons, collimated, shaped to fit specific task
- The beam is then delivered at multiple angles to minimize the radiation exposure of the surrounding tissue and to deliver the necessary dose of the radiation to a tumor
- It is all computer controlled from the patient model
- This is a BIG business...

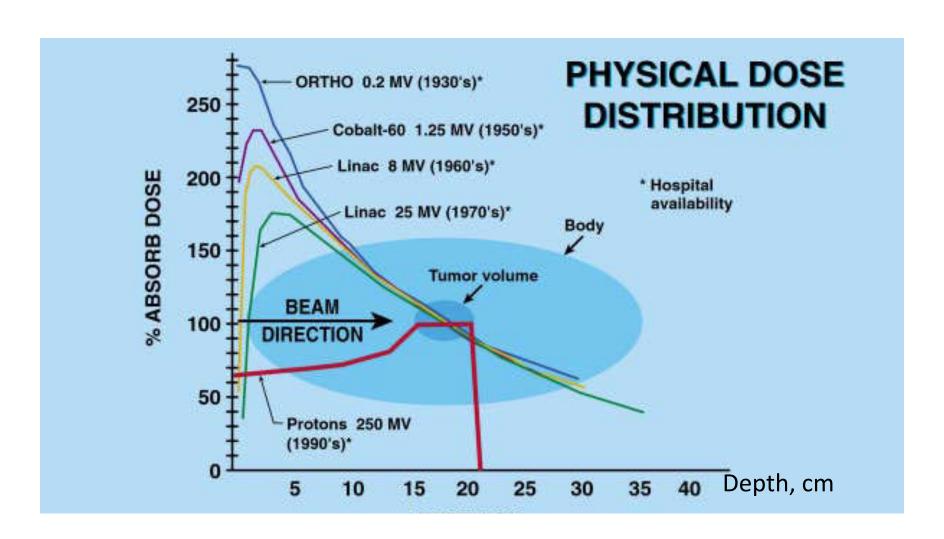


Hadron radiation therapy

- Comparing with γ-ray radiation therapy it is more effective, but also much more expensive
- Instead of room it occupies a building with the hadron beam source located in wellshielded accelerator hall
- There are fewer hadron (proton or ion) therapy centers


Why Hadron radiation therapy?

- Hadron Beams Slow Down And Stop depositing the energy at the very end of the pass
- While γ-rays deposit the energy evenly through the tissue
- Thus with hadron it is possible to concentrate the exposure where it is needed and reduce damage to the surrounding healthy tissue by 4-6 fold
- In medicine it can be difference between life and death



Hadron radiation therapy It's simply the physics!

Depth range of the beam penetration in water should be \sim 30 cm. It defines the energy of the accelerator: p \sim 220 MeV, C ions \sim 430 MeV/u

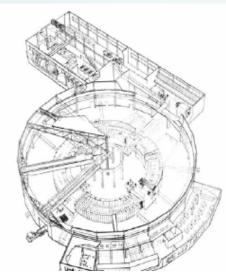
Hadron radiation therapy It's simply the physics!

History of Hadron radiation therapy

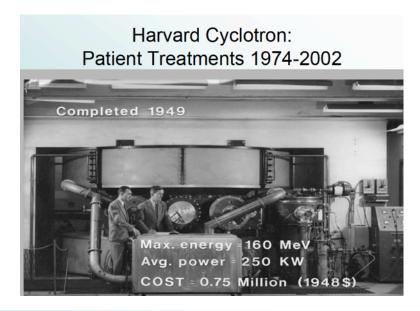
History of medical applications of accelerators

1929 Invention of cyclotron by *Ernest Lawrence*

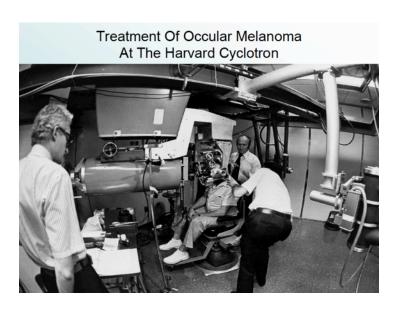
1930's Experimental neutron therapy

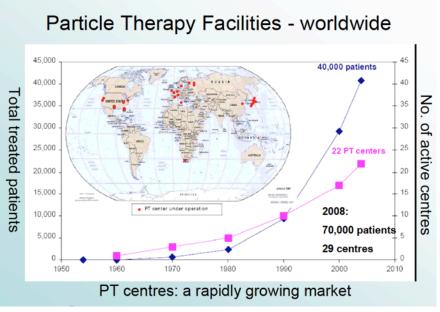

1946 R. R. Wilson proposed proton & ion therapy

1950's Proton therapy, LBL Berkeley (184" cyclotron)

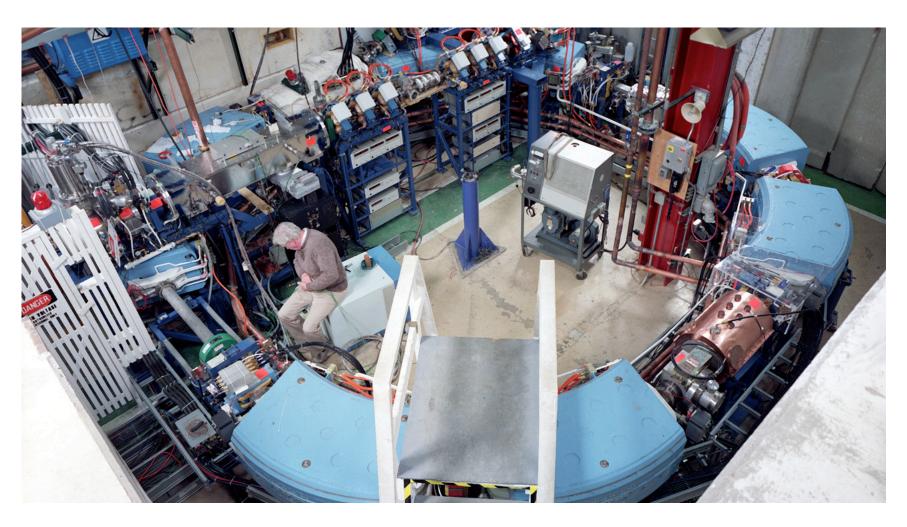

1945 Edwin Mattison McMillan at University of California and Vladimir Iosifovich Veksler (Soviet Union) invented the synchrotron principle

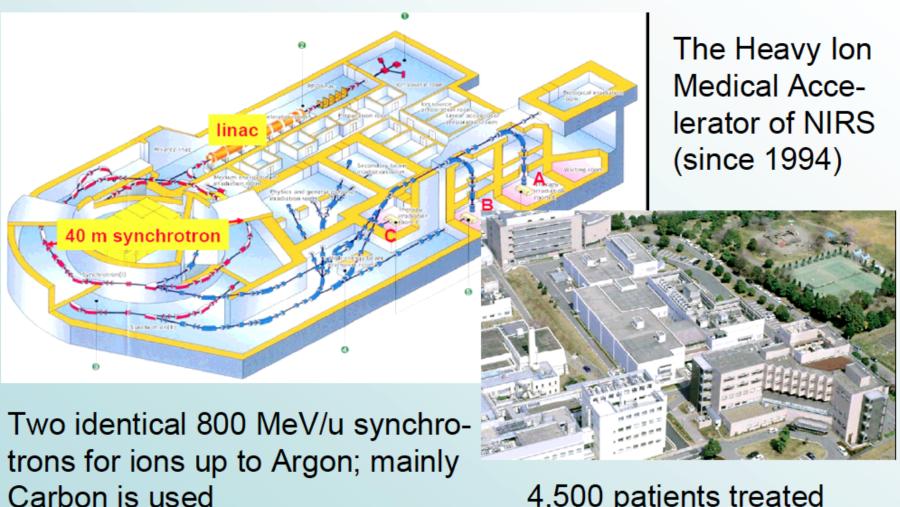
1975 Begin of carbon therapy in Bevalac synchrotron (Berkeley)





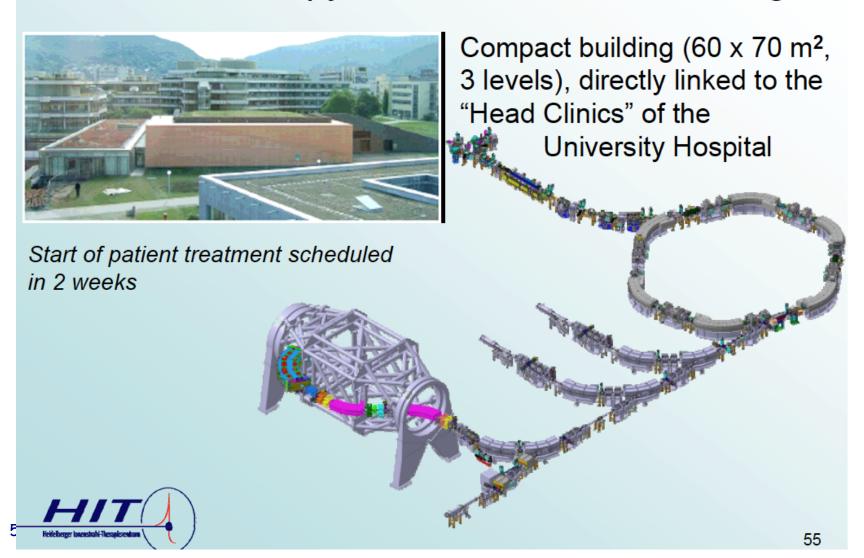
History of Hadron radiation therapy





Proton Therapy Synchrotron at Fermilab

Hadron therapy centers


Particle Therapy Facilities – HIMAC/Japan

4,500 patients treated

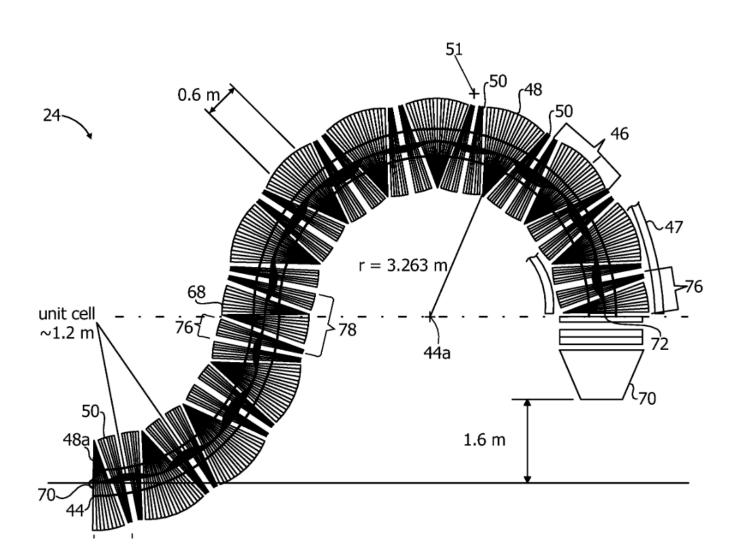
Hadron therapy centers

Particle Therapy Facilities – HIT/Heidelberg

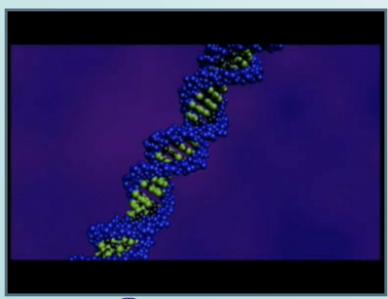
Accelerator Parts Therapy Facility HIT/Heidelberg

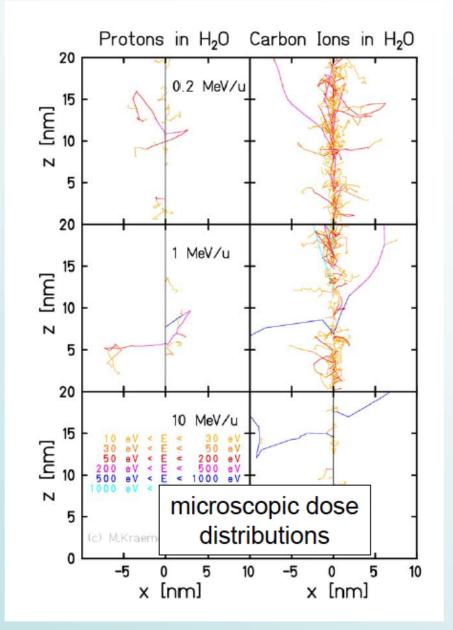
World's first isocentric ion gantry -including a scanning system: \emptyset = 13m, 25m long, 600 tons, 0.5 mm max. deformation

Gantries: goal is to propagate an focus hadron beam with variable energies

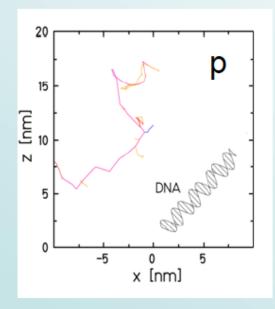


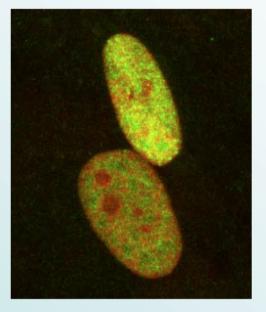
Gantries: monsters in modern accelerators

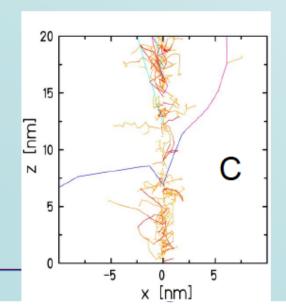


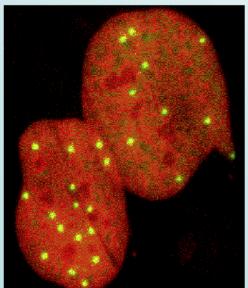

New ideas: compact FFAG gantry (© D. Trbojevic, BNL)

Physics and Biology of radiation therapy


Basic effect of radiation on cells: energy loss in matter leads to defects in the DNA – double strand breaks of the DNA kills the cell. Tumor cells have less repair capabilities than normal cells.




Physics and Biology of radiation therapy



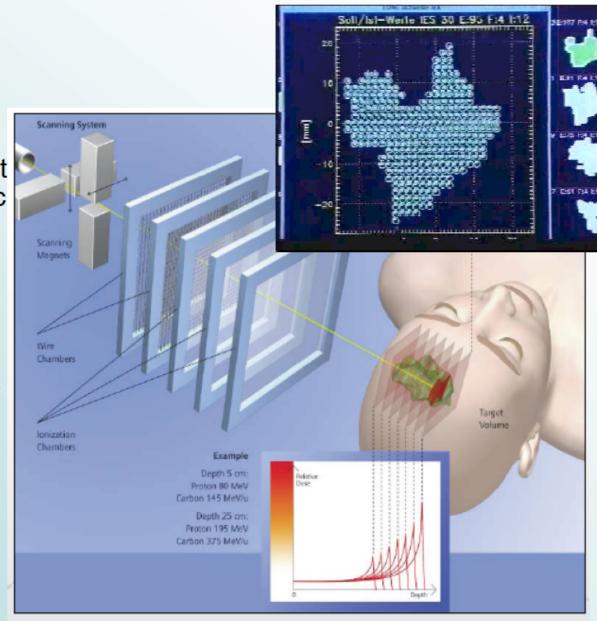
Low LET

Homogeneous deposition of dose

High LET

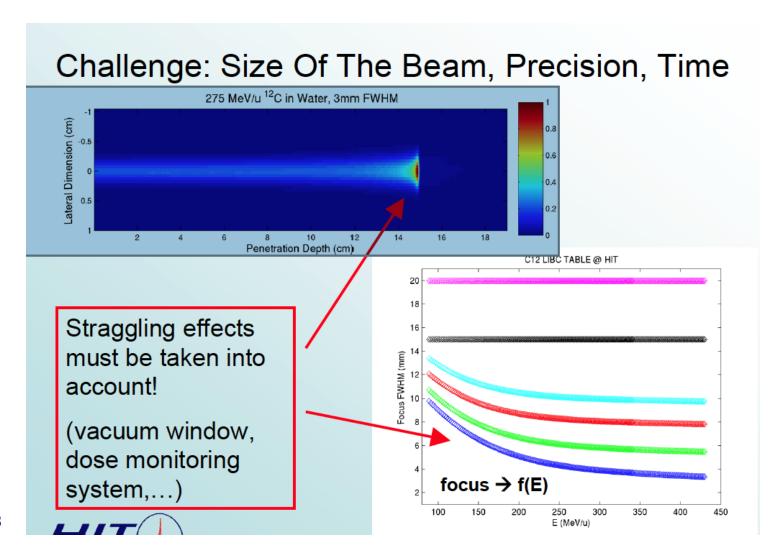
Local deposition of high doses

LET: Linear energy transfer

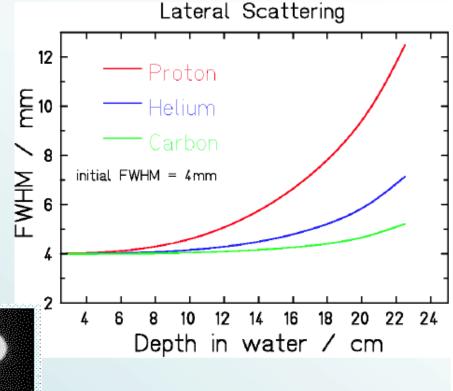

Optimized Treatment By Beam Scanning

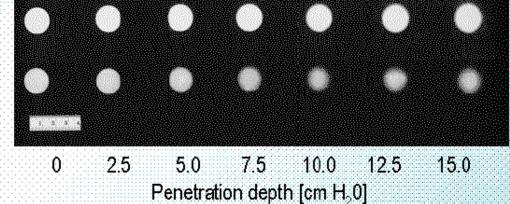
Development in the 90ies: Scanning techniques

a) Protons (Pedroni PSI): spot scanning gantry (1D magnetic pencil beam scanning) plus passive range stacking (digital range shifter)


b) lons (Haberer et al.): raster scanning (2D magnetic pencil beam scanning) plus active range stacking (spot size, intensity) in the accelerator

Optimization of the treatment


- ✓ Modern trend is to have exposures from multiple directions with multiple energies.
- ✓ Hence, accelerator should provide a well controlled intensity shots of the beam with programed energy – not a trivial fit for a hadron accelerator



Optimization of the treatment

Beam Size

Higher local precision with carbon for deepseated tumour treatment

What is a good medical isotope?

- For applications in medicine, nature and "man-made" physics approaches provide many different radionuclides to choose from.
- The choice of radionuclide is critical for achieving successful diagnostic imaging and cancer treatment outcomes.
- Objectives:
 - 1) Diagnostic nuclear medicine: high quality images of activity in the patient, with low patient radiation dose
 - 2) Therapeutic nuclear medicine: high amount of energy imparted to the target tissue (to destroy cancer cells) relative to critical normal organs and tissues (to prevent radiation damage and side-effects)

Medical isotope shortages

Officials Scramble for Solutions to Global Isotope Shortages

As global demand continues to grow for the medical isotope necessary for imaging procedures, most of the reactors used to produce technetium-99m (Tc-99m) will be permanently decommissioned within six years. A task force set up last year in the EU to consider solutions to isotope shortages released its first report this month to the European Commission. The report suggests convening stakeholders to discuss alternative diagnostic and therapeutic procedures.

Reactor shutdown causes another isotope shortage Updated Fri. Dec. 12 2008 7:08 PM ET

CTV.ca News Staff

A temporary shutdown at the Chalk River, Ont. nuclear reactor is causing a shortage of medical isotopes, forcing Canadian doctors to scramble to cancel and rearrange appointments with their patients.

The isotope shortage is expected to last until the middle of next week, CTV News has learned.

The shortage is expected to affect Ontario, Quebec, parts of the Maritimes, the northern United States and perhaps even Mexico.

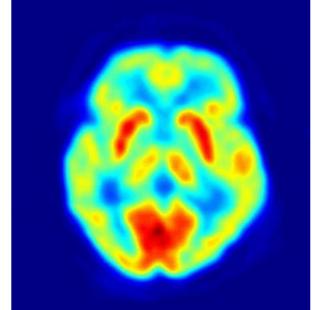
Atomic Energy of Canada Ltd., responsible for the Chalk River nuclear facility, told CTV News that the shutdown was "normal" on Thursday night, but on Friday said the shutdown was "longer than expected."

Radiopharmaceuticals

- Positron Emitters
- Beta/gamma Emitters
- Alpha Emitters

Medical Devices

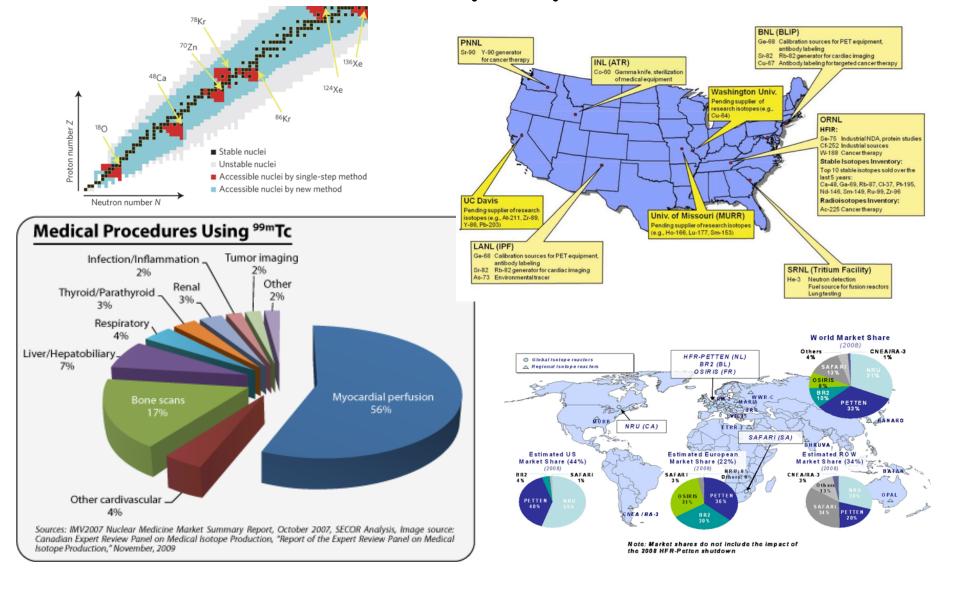
- Sealed Sources
- Microsphere Applications
- Nanosphere Applications


Positron emitters

- Cancer Metabolism and Functional Imaging
 - F-18-fluorodeoxyglucose (FDG) glucose analog, measures hexokinase activity (glucose metabolism), phosphorylated by hexokinase to F-18-FDG-6-PO4, elevated in tumor cells, chemically trapped in cells
 - F-18-amino acids (phenylalanine, tyrosine) image metastatic lesions

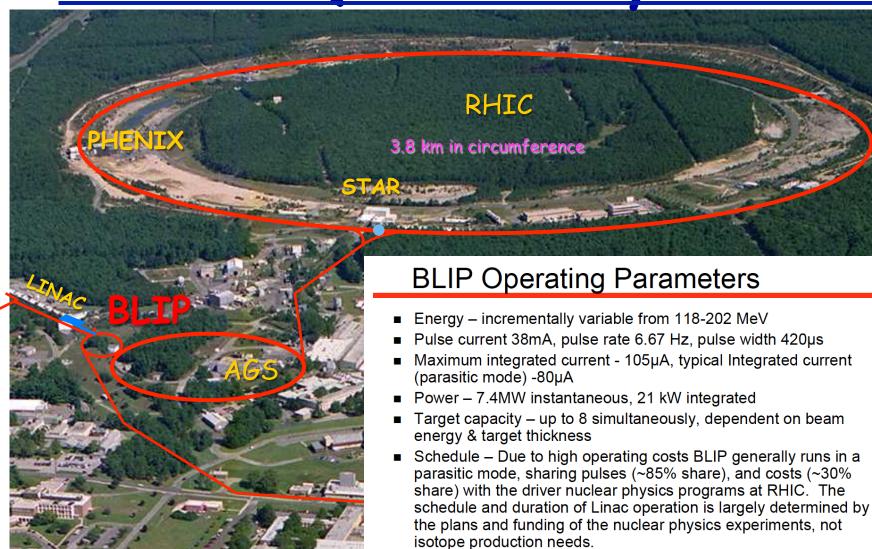
F-18-fluorothymidine measures thymidine kinase activity (DNA synthesis)

- F-18-flouromisonidazol (FMISO) images tumor hypoxia
- F-18-estradiol breast tumor detection


Radioisotope Production

- **Applications** (>50 routine radioisotopes)
 - □ Industrial Gauging & calibration
 - Medical Diagnostics & treatment
 - SPECT
 - PET
 - Brachytherapy
- Cyclotrons & Linacs both protons & deuterons
 - PET self shielded systems from 7 to 18 MeV with current < 200 μA)
 - SPECT energies from 22 to 70 MeV with currents up to 2 mA
- Vendors
 - □ GE Healthcare (Sweden)
 - Siemens Medical Systems (USA)
 - □ Ion Beam Applications SA (Belgium)
 - Advanced Cyclotron Systems (Canada)
 - Sumitomo Heavy Industries (Japan)
 - Samyoung Unitech Co. (Korea)
 - □ Thales GERAC (France)
 - AccSys Technology, Inc. (USA)

Large growth in compact accelerators for PET.


Radio isotope production

eRHIC: QCD Facility at BNL

 Production coordination with other sites in Los Alamos, S. Africa, Russia has helped year round availability of longer lived, high value isotopes,

such as Sr-82 and Ge-68.

Summary

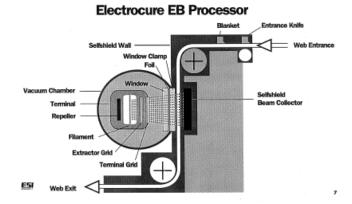
- We only touched upon a variety of practical/ societal applications of accelerators
- Accelerators play and will continue playing an important role in technological progress of the humanity - both through direct economical impact and spin-off from the knowledge obtained using accelerators or technology developed for them
- Advances in accelerator technology, especially tend towards a compact accelerators, are closely watched by industrialist
- BTW, this is why finding industrial position for accelerator physicists and engineers is a relatively easy fit...

End of lectures

Instead of conclusions

- You learned quite a bit about the accelerators, accelerator science and accelerator applications
- We hope that you would use this knowledge in your future studies and research

Back-ups


Electron Beam Irradiation Accelerator Vendors

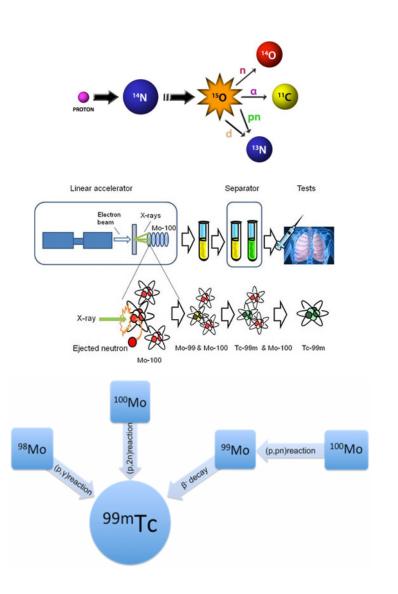
Low energy sheet beams

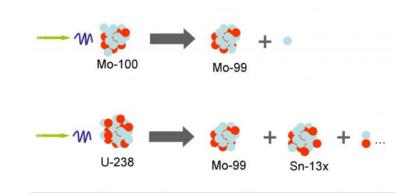
- □ Energy Sciences, Inc. (USA)
- □ IBA (Belgium)
- Electron Crosslinking AB (Sweden)
- Advanced Electron Beams (USA)
- □ Wasik Associates (USA)
- Nissin High Voltage Corp. (Japan)
- □ PCT Prod. & Mfg., LLC, formerly RPC Industries (USA)

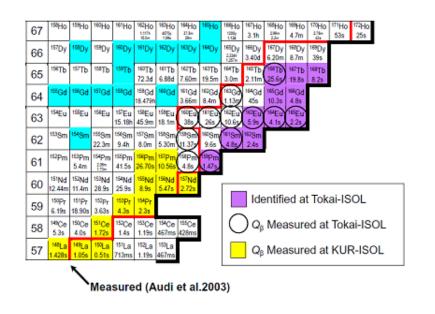
High energy systems

- □ IBA (Belgium), which owns RDI in the USA
- Nissin High Voltage Corporation (Japan)
- □ Denki Kogyo Co, Ltd. (Japan)
- ☐ IHI Corporation (Japan)
- □ Vivirad (France)
- ☐ Mevex (Canada)
- L-3 Communications Pulsed Sciences Division (USA)
- □ Budker Institute of Nuclear Physics (BINP) Russia
 - EB TECH Co., Ltd. (Korea) BINP collaboration
 - Center for Advanced Technology (India) BINP collaboration

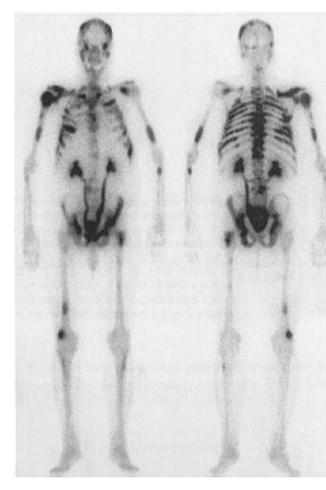
Crosslinking: rubber


- Crosslinking is the core chemical process of linking the plastic rubber molecules into a three-dimensional network structure with elastic properties, namely the finished rubber. The choice of crosslinking agent, the desired crosslinking density and the reactivity of the crosslinking system used have a decisive influence on the material properties. As a result, there may be substantial changes in their stress values, tensile strength, hardness, elasticity, gas permeability, high-temperature or swelling resistance during the crosslinking reaction.
- The most well-known crosslinking agent is elemental sulfur, which is used in conjunction with zinc oxide, stearic acid and compounds known as vulcanization accelerators. In addition, sulphur-free systems are used as well, such as p-quinone dioxime together with oxidizing agents, peroxides with crosslinking coagents, diamino compounds, resins or metal oxides.
- The choice of crosslinking systems is determined on the one hand by the chemical characteristics of the polymer. For instance, rubbers containing diene groups, such as NR, IR, SBR, BR or EPDM, can be crosslinked with numerous versions of the classical sulphur system. However, similar attempts with EVA, AEM or FKM would be doomed to failure.





Radioisotope production



Bone pain agents

P-32-orthophosphate

Sr-89 chloride (Metastron)

Sm-153-EDTMP phosphonate (Quadramet)

Ho-166-EDTMP phosphonate

Sn-117m(stannic 4+)-DTPA

Lu-177 DOTMP/EDTMP

Re-188-hydroxyethylidene diphosphonate

(HEDP)

Re-186, -188-HEDP hydroxyethylidene

diphosphonate

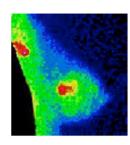
Re-188 dimercaptosuccinic acid

I-131-α-amino(4-hydroxybenzylidene)disphosphonate

Y-90-chloride

Ra-223-chloride (AlphaRadin)

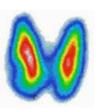
FDA product categories


Radiopharmaceuticals

in nuclear medicine

<u>Drugs</u> <u>Biologics</u> <u>Biologics</u> <u>Biologics</u> <u>Devices</u> 89Sr-chloride 90Y-peptide 90Y-microspheres 131I-sodium iodide 131I-antibody 125I-seeds 137Cs-intracavitary brachytherapy

Standard photon-emitter clinical imaging agents


- Tc-99m (about 35 common diagnostic radiopharmaceuticals)
- I-131 sodium iodide
- ► In-111, I-123, TI-201, Ga-67, Xe-133

Tc-99m-sestamibi scan shows breast tumor

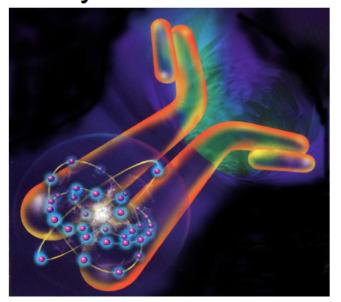
Therapy agents

- ► Thyroid disease (benign and malignant)
 - lodine-131 sodium iodide, oral
 - Targets thyroid (hormone-secreting) tissues, salivary glands, cancer metastases

I-131 scan of normal thyroid

Therapy agents

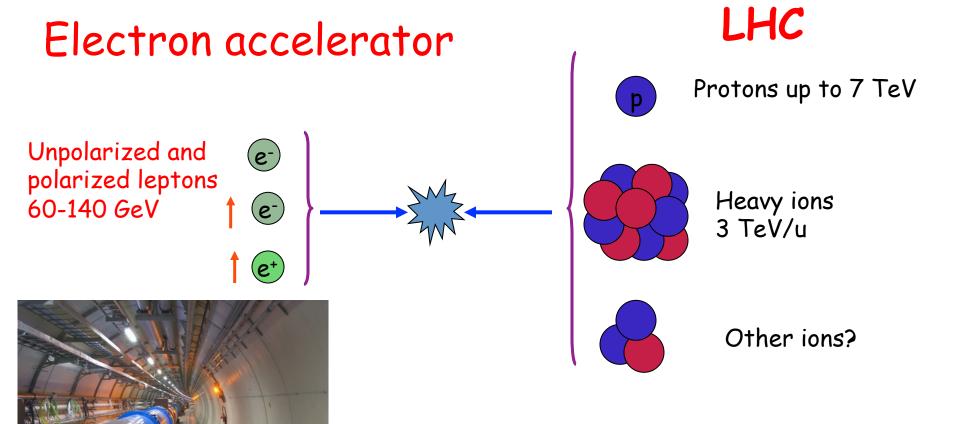
- Myeloproliferative diseases (bone marrow)
 - P-32 sodium phosphate (targets trabecular bone surfaces)
 - P-32 orthophosphate for polycythemia vera
 - Ho-166-DOTMP plus melphalan for multiple myeloma
- Malignant ascites (intraperitoneal cavity)
 - P-32 chromic phosphate colloid
 - Y-90 silicate, colloidal suspensions
 - Y-90-labeled anti-ovarian-cell antibodies
 - Targets cell-surface antigens
 - Problem achieving sufficiently high, uniform radiation doses


Radiolabeled antibodies, antibody constructs, engineered antibodies, diabodies, hormones, peptides

Hodgkin's disease Acute leukemia Colorectal cancer Brain glioma, astrocytoma At-211-anti-tenascin Ab Melanoma

Y-90-antiferritin, Y-90 mAb I-131-mAb, Bi-213 mAb Y-90-mAb, I-131-mAb Pb-212/Bi-212 peptide

Many others



(Cu-67, Lu-177, Bi-213, Ac-225, At-211, Bi-212)

LHeC Scope

Center mass energy range: 0.5-2 TeV

Ion Beam Analysis

Techniques

- Rutherford Back Scattering (RBS)
- Elastic Recoil Detection Analysis (ERDA)
- Nuclear Reaction Analysis (NRA)
- □ Particle Induced X-ray Emission (PIXE)
- □ Particle Induced Gamma ray Emission (PIGE)
- Nuclear Resonance Reaction Analysis (NRRA)
- Resonant Scattering Analysis (RSA)
- Charged Particle Activation Analysis (CPAA)
- Accelerator Mass Spectrometry (AMS)

Vendors

- National Electrostatic Corp. (USA)
- High Voltage Engineering Europa (Netherlands)

Applications

- Semiconductor quality
- Environmental monitoring
- Geological studies
- Oceanography studies
- Biomedical science

High Energy X-Ray Inspection

Accelerators

- Medical system "spin-offs"
- □ Electron linacs & betatrons 1 to 16 MeV

Applications

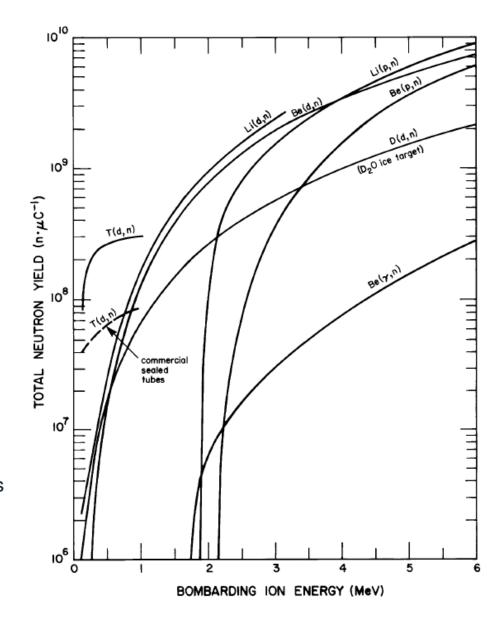
- Radiography of large castings
- Examination of rocket motors and munitions
- Port examination of containers & semi-trailers

Major vendors

- □ Varian Medical Security & Inspection Products (USA)
- Nuctech (China)

Smaller vendors

- □ L & W Research (USA)
- ☐ HESCO (USA)
- □ EuroMeV (France)
- □ MEVEX (Canada)
- □ JME Ltd. (UK)


Neutron Generators

Applications

- · Cancer therapy, including BNCT
- NDE, including security checking
- Material analysis

Vendors

- Principal vendors for sealed tubes:
 - Thermo Scientific (USA)
 - Adelphi Technology, Inc (USA)
 - EADS Sodern (France) and
 - All-Russia Research Institute of Automatics-VNIIA (Russia)
- Large US producers for oil well logging:
 - Halliburton Co.,
 - Schlumberger Well Services
 - Baker Atlas
- Accelerator-based generator vendors:
 - AccSys Technology, Inc. p and d linacs
 - IBA Dynamitron
 - Sumitomo Heavy Industries cyclotrons
 - NEC and HVEE electrostatic accelerators

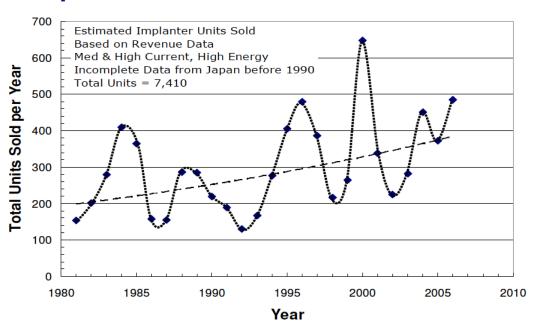
Synchrotron Radiation

Application fields:

- Semiconductor industry includes lithography, studies of material interfaces and other production issues.
- Chemical industry studies of properties such as stress or texture of various materials produced and the chemical reactions themselves.
- Biomedical field includes protein crystallography, imaging molecular structures and molecular dynamics studies in tissue cells.

Vendors:

- Oxford Instruments Accelerator Technology Group (UK) several superconducting systems for semiconductor lithography
- Danfysik (Denmark) normal conducting systems in Canada and Australia
- Sumitomo Heavy Industries (Japan) compact normal conducting systems


It is a BIG business

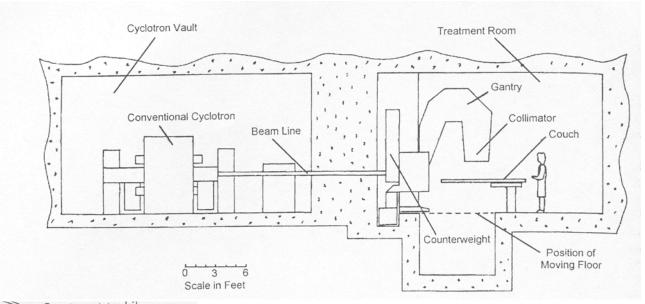
Industrial Accelerator Business

Application	Total (2007)	Systems sold/yr	Sales/yr (\$M)	System price (\$M)
Ion Implantation	~9500	500	1,400	1.5 - 5.0
Electron beam modifications	~4500	100	150	0.5 - 2.5
Electron beam & X-ray irradiators	~2000	75	130	0.2 - 8.0
Ion beam analysis (including AMS)	~200	25	30	0.4 - 1.5
Radioisotope production (including PET)	~550	50	70	1.0 - 30
High energy x-ray inspection	~650	100	70	0.3 - 2.0
Neutron generators (including sealed tubes)	~1000	50	30	0.1 - 3.0
Total	18,400	900	1780	

It is a BIG business

Ion Implantation Accelerator Sales

Major Vendors


- Varian Semiconductor Equipment (USA)
- Axcelis Technology (USA) & SEN Corp.,
 a joint venture in Japan with Sumitomo
- Nissin Ion Equipment Company (Japan)
- Applied Materials left the business in 2007


Misc. vendors

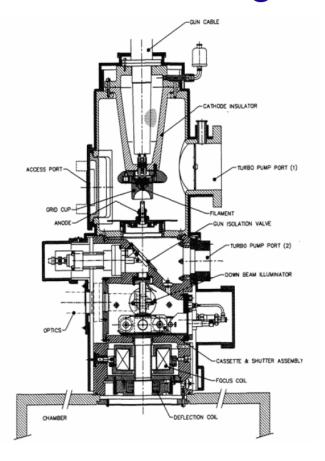
- Ulvac Technologies & IHI Corp (Japan)
- China Electronics Technology Group (China)
- Ibis Technology (USA)
- Advanced Ion Beam Technology (USA)
- HVEE B.V. (Netherlands)
- National Electrostatic Corporation (USA)
- Danfysik (Denmark)

Accelerator Parts

Cyclotrons in Hospitals in Detroit and Seattle

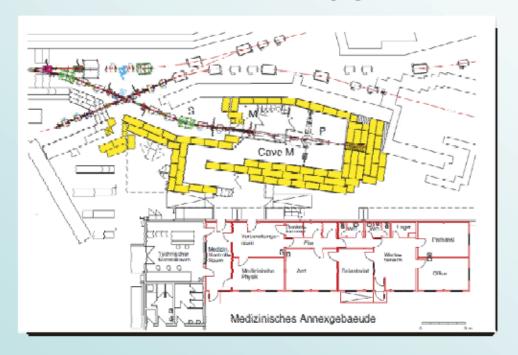
Material Processing/Modifications

Electron Beam Materials Processing


- Application of electron guns dating to 1905
 - Critical to automotive production
 - Refractory metals
 - Dissimilar metals
 - Precision cutting and drilling
- Beam energy from 60 to 200 keV
- Beam power from 6 to 200 kW

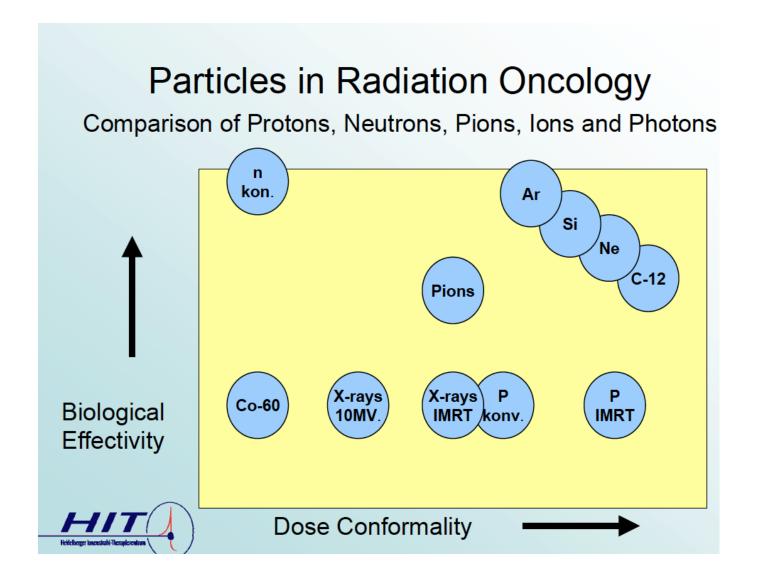
Major Vendors

- □ Sciaky, Inc. (USA)
- All Welding Group AG (PTR Group and Steigerwald Strahltechnik) (Germany)
- □ Cambridge Vacuum Engineering (UK)
- Bodycote Techmeta (France)


Smaller vendors

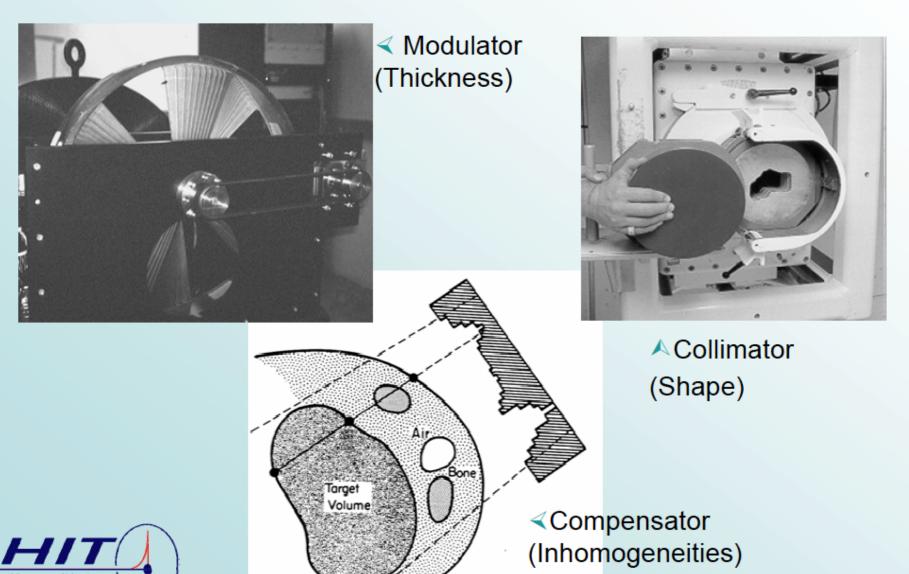
- □ Pro-beam (Germany)
- Orion (Russia)
- ☐ Mirero (Korea)
- □ Omegatron (Japan)
- □ NEC Corporation (Japan)
- Mitsubishi Electric Corporation (Japan)

A mature business with large growth now in developing countries


Particle Therapy Facilities – HIT/Heidelberg

HIT concept and layout is based on experience from GSI; 448 patients were treated with carbon beams from 1997 – 2008 using raster scanning technique

Radiation therapy



We do it at BNL....

- Isotope Production and Distribution at BLIP
 - Distribution for sale; process & target development to improve quality & yield.
 - Sr-82/Rb-82 for human heart scans with PET
 - Ge-68 for calibration of PET devices
 - Zn-65 tracer for metabolic or environmental studies
- Radioisotope R&D
 - Sn-117m, Cu-67, for cancer therapy applications
 - Y-86 for cancer imaging
- Radiation damage studies
 - target and magnet materials for future high power accelerators, collaboration with BNL Physics & ES&T Departments
 - high temperature superconductors for FRIB, collaboration with BNL Magnet Division and ES&T Department
- Training
 - Support (space, equipment, faculty) for DOE funded Nuclear Chemistry Summer School, a 6 week undergraduate course in nuclear and radiochemistry

Optimization of the treatment

Conforming the Beam to the Target: Scattering Method

Accelerator Parts

Gantries: monsters in modern accelerators
The HIT facility. Source: Photo Gallery of the HIT.

