
High Gain Regime: Concept
1. Energy kick from radiation field +  
dispersion/drift -> electron density 
bunching; 

2. Electron density bunching makes more 
electrons radiates coherently -> higher 
radiation field; 

3. Higher radiation fields leads to more density 
bunching through 1 and hence closes the 
positive feedback loop -> FEL instability.

The positive feedback loop
between radiation field and
electron density bunching is
the underlying mechanism
of high gain FEL regime.

*The plots are for illustration only. The right plot 
actually shows somewhere close to saturation.



1-D Model for cold beam without 
detuning
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Wave Equation
1-D theory and hence                     and  0/ =∂∂ x 0/ =∂∂ y
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We seek the solution for vector potential of the form:
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Inserting eq. (2) and (3) into eq. (1) yields
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1. Ignoring fast oscillating term  zikwe2~
2. Ignoring second derivative by assuming that   the  variation of            
is negligible over the optical wave length.
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Multiplying both sides by eikwz

and neglecting terms proportional

to eikwz−ik z−ct( )  since they will change
fast over the FEL (same as the
helicity argument).



Wave Equation
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In order to relate the vector potential to the electric field, we use the Maxwell 
equation:

After neglecting the fast oscillation terms, we get the following relation between the 
current perturbation and the vector potential of the radiation field:

Finally, the relation between the radiation field and the current modulation is obtained:
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is normalized longitudinal location 
along wiggler,

is the 1-D Gain rate parameter

is called Alfven current

1-D High Gain FEL Equation for Cold Beam and 
Zero Detuning

( ) ( )2
0z

d B z i D z
dz c

ω
γ

= −


1
2 s

d D e E
dz

θ= −

BnecE
dz
d s

2
0

2 θμ=

3

3ˆ
d E iE
dz

=
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1D Gain Length
• At high gain limit, i.e.           , the radiation field is given by
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Solution for Cold Beam with Nonzero Detuning

The general solution of the ODE reads:
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Applying initial condition to get the coefficients

For                     and                              , the solution can be explicitly written as  ( ) extEE =0 ( ) ( ) 00''0' == EE
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For non-vanishing detuning, the differential equation becomes



Low Gain Limit of High Gain Solution
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Can we reproduce the previously obtained low gain solution by taking the proper limit of 
the high gain solution?

The high gain solution indeed give identical
solution when the undulator is shorter than
the gain length. But it also tell us what
happens if the undulator is long and hence it is
more general than the low gain solution.



Bandwidth at High Gain Limit I
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Zeroth order equation: 2
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It is sometimes hard to extract insights from the exact
solution of the 3rd order polynomial equation for the
eigenvalue. Therefore, it is useful to get the approximate
solution which is simpler but gives accurate results for
the region that we are interested in.
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Bandwidth at High Gain Limit II
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After taking the approximate eigenvalue, the radiation field in frequency domain is

1D FEL bandwidth for radiation field:
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Coherent Length
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Coherent length is the width of the radiation wave-packet generated by a delta-like excitation.



FEL Gain for warm Beam with Lorentzian Energy 
Distribution

The eigenvalues are determined by : ( ) iCiq =++
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Pierce Parameter

• FEL gain reduced substantially when the relative energy spread
become comparable or larger than the Pierce parameter.

If there is no initial modulation in 
the electron beam:



is the number of electrons in 
a radiation wavelength.

is the ratio between 
coherent length and the radiation 
wavelength.

FEL Saturation I
Like any other amplification mechanism, the exponential growth of FEL radiation can not 
continue forever. One of the criteria  to determine the onset of saturation is when there is 
no electrons to be bunched further, i.e.                  , which happens to be the point where 
nonlinear effects starts to take over. 
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FEL Saturation II
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+ û sin ψ + π
2







= 0

2
0

ˆ 1 3s
p

w z G

u eE
l c L

θ ω
γ

Ω = = ≈ = Γ


2 0
0sat sat eP cE A I

e
ε χ ρ= = ⋅ ⋅ :  cross section of the beam (and the radiation field) A

:  a numerical factor in the order of one.χ (homework)

There are other criteria which give similar results for the maximal Gain in SASE:

Hence the Pierce parameter is also 
called efficiency parameter.



FEL Saturation III

• If we use the result that FEL typically saturates at 20 
power gain length, the FEL bandwidth at saturation is 
given by
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FEL bandwidth for radiation amplitude at saturation:

FEL bandwidth for radiation power at saturation:

Pierce parameter is roughly 
equal to the bandwidth of 
the FEL at saturation.



3D Effects: Diffraction
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The Rayleigh length or Rayleigh range is the distance along the propagation direction of a 
beam from the waist to the place where the area of the cross section is doubled.

( )
2

0 1
R

zw z w
z

 
= +  

 
The radius of the radiation at a given distance is given by

The size of the electron beam and the seeding radiation field optics have to be properly 
chosen so that the interaction efficiency between radiation fields and electrons can be 
optimized.

For a Gaussian radiation beam:



Three Dimensional Effects: 3D Gain
• In reality, the gain length will be longer than the 1D gain length due to diffraction, 

electron emittance, and electron beam energy spread. It is difficult to obtain a general 
analytical expression for the gain length with all these effects taken into account.

• The analytical approach typically involves expansion over a series of transverse modes.
• For the dominant transverse mode, there is a fitting formula derived by Ming Xie, which 

is typically of the accuracy of 10% compared with simulation results. 

Energy spread effects Electron emittance effects Diffraction effects

Ming Xie’s fitting formula for 3D gain length



Three-Dimensional Effects: transverse modes
Cylindrical coordinates, Laguerre-Gaussian modes Cartesian coordinates, Hermite-Gaussian modes



Backup Slides



Homeworks

• Show that for , the eigenvalue of the growing
mode for the 1-D FEL (cold beam) can be
approximated as (slides 27)

with , , and .
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Homework II

• Assuming the saturation of a FEL takes place 
at the condition (slides 32)

show that the radiation power at saturation is  
given by 

and find the numerical coefficient    .  
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