High Gain Regime: Concept

1. Energy kick from radiation field +
dispersion/drift -> electron density
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*The plots are for illustration only. The right plot
actually shows somewhere close to saturation.

2. Electron density bunching makes more
electrons radiates coherently -> higher

radiation field;
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3. Higher radiation fields leads to more density
bunching through 1 and hence closes the
positive feedback loop -> FEL instability.
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The positive feedback loop

between radiation field and

electron density bunching is

‘E‘ x N, the underlying mechanism
- of high gain FEL regime.
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1-D Model for cold beam without
detuning
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Wave Equation

1-D theory and hence 9/dx=0 and 9/9y=0
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Wave equation for transverse vector potential: O A — A =—, ] (1)
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Transverse current perturbation: J Hijy, = V—(VX + IVy)jZ =6.e"], (2)
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We seek the solution for vector potential of the form: VL(Z)z7[005(’<uz)x—51n(ku2)y]
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1. Ignoring fast oscillating term ~ €

2. Ignoring second derivative by assuming that the variation of A;
is negligible over the optical wave length.



Wave Equation

After neglecting the fast oscillation terms, we get the following relation between the
current perturbation and the vector potential of the radiation field:
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In order to relate the vector potential to the electric fleld, we use the Maxwell
equation:
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Finally, the relation between the radiation field and the current modulation is obtained:
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1-D High Gain FEL Equation for Cold Beam and
Zero Detuning
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1D Gain Length

* At high gain limit, i.e. z>>1, th

e radiation field is given by

E(2)=Be** =B, exp{\/j FZ} exp[i %FZ}

and the radiation power is
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and the 1-D power gain length is

A: cross section of the radiation field
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Solution for Cold Beam with Nonzero Detuning
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For E(0)=E,, and E'(0)=E"(0)=0, the solution can be explicitly written as
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Low Gain Limit of High Gain Solution

Can we reproduce the previously obtained low gain solution by taking the proper limit of

the high gain solution?
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Bandwidth at High Gain Limit |

It is sometimes hard to extract insights from the exact
solution of the 3™ order polynomial equation for the
eigenvalue. Therefore, it is useful to get the approximate
solution which is simpler but gives accurate results for

the region that we are interested in.
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Bandwidth at High Gain Limit Il

After taking the approximate eigenvalue, the radiation field in frequency domain is
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Coherent Length

O»

Coherent length is the width of the radiation wave-packet generated by a delta-like excitation.
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FEL Gain for warm Beam with Lorentzian Energy
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the electron beam: dz

The eigenvalues are determined by : ﬂ,(/'t +q+ Ié)2 =1

* FEL gain reduced substantially when the relative energy spread
become comparable or larger than the Pierce parameter.




FEL Saturation |

Like any other amplification mechanism, the exponential growth of FEL radiation can not
continue forever. One of the criteria to determine the onset of saturation is when there is
no electrons to be bunched further, i.e.dn/n, ~1, which happens to be the point where
nonlinear effects starts to take over.

n(w) =M+ 5n(w) For FEL process starts from shot
noise, i.e. SASE, the maximal gain
can be derived as
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N, =L /4, isthe ratio between
coherent length and the radiation

wavelength.

M is the number of electrons in

e

undulator distance a radiation wavelength.
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FEL Saturation Il

There are other criteria which give similar results for the maximal Gain in SASE:

power A
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A: cross section of the beam (and the radiation field)

X+ anumerical factor in the order of one. (homework)
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Hence the Pierce parameter is also
called efficiency parameter.



FEL Saturation llI

* If we use the result that FEL typically saturates at 20
power gain length, the FEL bandwidth at saturation is
given by
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FEL bandwidth for radiation amplitude at saturation:
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FEL bandwidth for radiation power at saturation:

p Pierce parameter is roughly
ast _ Oost =+0.9p = p| equal to the bandwidth of
Wy \/_CU the FEL at saturation.




3D Effects: Diffraction

P »

2
The radius of the radiation at a given distance is given by W( Z) =W, 1+(£j
ZR

The Rayleigh length or Rayleigh range is the distance along the propagation direction of a
beam from the waist to the place where the area of the cross section is doubled.
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The size of the electron beam and the seeding radiation field optics have to be properly
chosen so that the interaction efficiency between radiation fields and electrons can be
optimized.

For a Gaussian radiation beam: Zs



Three Dimensional Effects: 3D Gain

* Inreality, the gain length will be longer than the 1D gain length due to diffraction,
electron emittance, and electron beam energy spread. It is difficult to obtain a general
analytical expression for the gain length with all these effects taken into account.

e The analytical approach typically involves expansion over a series of transverse modes.

* For the dominant transverse mode, there is a fitting formula derived by Ming Xie, which
is typically of the accuracy of 10% compared with simulation results.

Ming Xie’s fitting formula for 3D gain length LSD — l‘lD (1 3. A)
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Three-Dimensional Effects: transverse modes

Cylindrical coordinates, Laguerre-Gaussian modes  Cartesian coordinates, Hermite-Gaussian modes
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FIG. 9. (Color) Evolution of the LCLS transverse profiles at different z locations (courtesy of Sven Reiche, UCLA).
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Homeworks

* Show that for C<<1 , the eigenvalue of the growing
mode for the 1-D FEL (cold beam) can be
approximated as (slides 27)

A=a,+aC+aC’



Homework ||

* Assuming the saturation of a FEL takes place
at the condition (slides 32)

stat: eE%tesa)z | :\/51_,
| 7,65 L

show that the radiation power at saturation is

given by &
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and find the numerical coefficient x.



