
USPAS’23: Hadron Beam Cooling in Particle Accelerators

Solutions for Homework#3: Stochastic Cooling

Problem #1: Numerical model of SC (Total: 8 points)

In this problem we will use a simple model to simulate the effects of Stochastic Cooling. You can use
your favourite tool (Python, Matlab, Mathematica, MathCad, etc.) to follow along this exercise.

1. Develop a simple SC model (2 points):

• Generate an array of N random numbers [x1, x2, .., xN] - these are the initial positions of
your particles. Generate at least several thousands of particles.

• Calculate and record the variance of the array.

• Slice your bunch into Ns = 20 equal samples and calculate the average of each sample (i.e.
errors to be corrected).

• Subtract sample average from the position of its respective sample (i.e. apply correction).

• Randomize the order of the elements in the corrected array to get a new series.

• Repeat at least 2000 times.

2. Characterize your system and discuss:

• (2 points) Plot the particle distribution before and after cooling. Check how the beam
variance changes with time.

• (2 points) Repeat the procedure for Ns = 10, 300, 600. How does it affect the cooling process
and why?

• (2 points) How can you change this model to take the gain into account? Implement that
and study how gain affects the cooling time.

Solution:

1. Example of a simple script in Matlab:
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Particle distribution before and after cooling and the beam variance vs. time are shown in
Fig. 1(a). The similar plots are obtained for Ns = 10, 300, 600 (Fig. 1(b), (c) and (d) respec-
tively). The results indicate that as the number of slices increase, the sample size decreases which
results in a faster cooling process.

One can introduce the gain as a multiplication factor at the stage of the correction. In the code
shown above we will replace the line
data((islice− 1) ∗Ns + i, 1) = data((islice− 1) ∗Ns + i, 1)− avgslice
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(a) (b)

(c) (d)

Figure 1: Particle positions before (blue) and after (orange) cooling and beam variance as a function
of time for various number of samples Ns: (a) Ns = 20; (b) Ns = 10; (c) Ns = 300; (d) Ns = 600.

with
data((islice− 1) ∗Ns + i, 1) = data((islice− 1) ∗Ns + i, 1)− gain ∗ avgslice.
The results of a simple simulation that includes the gain is shown in Fig. 2. As expected, for the
partial correction (g < 1), the cooling will slow down, and for the gain> 1 cooling stops and the
process is eventually turned into heating.
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Figure 2: Beam variance as a function of time for the gain = [0.1, 1, 2]
.

4



Problem #2: Mixing, cooling rate, and bandwidth
(Total: 8 points)

In the lectures, we have introduced an expression for the r.m.s. cooling rate that includes Kicker-to-
Pick-Up mixing, M , and Pick-Up-to-Kicker mixing, M̃ :

1

τ
=

W

N

[
2g

(
1− M̃−2

)
− g2 (M + U)

]
, (1)

1. (3 points) Using Eq. 1, find the expressions for the maximum achievable cooling rate and the
respective optimum gain. If you have an ideal system, how long would it take to cool N = 109

particles if the system bandwidth is W = 1 GHz? How about N = 4× 1013?

2. (2 points) Assuming that the time-of-flight dispersion between Pick-Up and Kicker and between
Kicker and Pick-Up are such that the unwanted mixing is 1/2 of the wanted mixing, plot cooling
time as a function of number of particles (N ∈ [105, 1013]) for a system with W = 1 GHz. Explore
all combinations of the following parameters: M = 1, 10, 50; U = 0, 10. Discuss.

3. (3 points) It appears that the unwanted mixing imposes a limit on the upper frequency of
the cooling band. Using the parameters of the “first generation cooling experiment” at the
Antiproton Accumulator Ring at CERN (1984), obtain the upper frequency of the cooling band
for that machine by following the steps below:

• Assume a band-pass with flat response from fmin to fmax. Find an expression for the useful
width of the correction pulse Tc.

• Express the time of flight error δtPK in terms of the momentum spread ∆p/p and local
Pick-Up-to-Kicker slip factor ηPK.

• What is the upper frequency of the cooling band for given momentum spread ∆p/p =
2×10−2, slip factor ηPK ≈ η = 0.1, flight time (Pick-Up-to-Kicker/circumference) αT = 0.5,
and revolution frequency frev = 1.5 MHz?

Solution:

1. One can simply differentiate Eq. 1 with respect to the gain and find the optimum value:

g0 =
1− M̃−2

M + U

Then the maximum cooling rate is:

1

τ0
=

W

N

(
1− M̃−2

)2

M + U

In the best case scenario, M = 1, U = 0, M̃−2 = 0, which results in τ = N/W . Then for
W = 1 GHz and N = 109 we obtain cooling time of 1s, and for N = 4× 1013 cooling time of 11
hours.

2. By using the result from part 1 with M̃ = 2M , one can plot the maximum achievable cooling
rate as a function of the number of particles (see Fig. 3).
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Figure 3: Cooling time as a function of number of particles for various combinations of M = 1, 10, 50;
U = 0, 10.

3. The useful width of the correction pulse:

Tc ≈ 1/ [2(fmax − fmin)]

Expressing the time of flight error:

δtPK = tPKηPK
∆p

p
= αTTrevηPK

∆p

p

The condition δtPK < Tc yields:

1/ [2(fmax − fmin)] > αTTrevηPK
∆p

p

Then for the given parameters one obtains fmax − fmin ≈ fmax < 0.75 GHz.
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Problem #3: Optical Stochastic Cooling (Total: 9 points)

Let us consider the application of optical stochastic cooling to three types of particles: electrons/positrons,
protons/antiprotons, and heavy ions.

1. Electrons: (9 points) Since electrons already have a good damping mechanism due to syn-
chrotron radiation, examine what OSC can do in low energy regime.
Consider a 150 MeV ring of 60 m circumference with 2 cooling insertions: one for longitudinal-
horizontal cooling and one for longitudinal-vertical. Assume the following beam parameters:
N = 5× 109, normalized transverse emittances εx,n = εy,n = 5× 10−4 m, bunch length lb = 2.5
cm, and relative energy spread of 10−3. For the amplifier with central wavelength of 0.8 µm
and a bandwidth of 10%, calculate the optimal amplification factor g (3 points), the damping
time for betatron oscillations τx,y (3 points), and the damping time for energy oscillations τδ (2
points). Verify that with one bunch in the ring and with the obtained amplification factor, the
average output power of the amplifier is about 5 W in each cooling insertion (1 point).

2. Protons: (dropped - 0 points) Assume once again a machine with two cooling insertions, but this
time we’ll be cooling six bunches with 1 × 1011 protons/bunch with relative momentum spread
of 3 × 10−4, and a revolution frequency of 47.7 kHz. Consider an amplifier with an average
output power of 100 W and a central wavelength λ = 0.8µm. The undulator radiation with this
wavelength could be obtained in an undulator with a peak magnetic field of 8 T and λu = 1.5m.
Estimate the damping times for betatron and synchrotron oscillations.

3. Heavy Ions: (dropped - 0 points) Consider damping of lead ions at an energy of 32.8 TeV.
Assume 124 bunches of 1 × 108 ions/bunch, a relative momentum spread of 3 × 10−4, and
revolution frequency of 43 kHz. With two cooling insertions, and an undulator with a peak
magnetic field of 8 T and λu = 0.3m, and the same optical amplifier as above, calculate the
damping times for betatron and synchrotron oscillations.

Solution:

1. Electrons:

To find the optimal amplification factor, g, one can use the following approximation:

g ≃ 1

4

ε||

r0

1

N

∆f

f
, with r0 = q2/mc2, ε|| = γlb∆E/E

Then in our case g ≈ 13.

Alternatively, you can use a slightly different expression for the transit-time OSC, and obtain a
similar result if we assume F = 1 :

g ≃ 1√
e

ε||

r0

ΓF

N
, with Γ = ∆f/f

The damping time:

τ ≃ Trev
eN

Γ

λ

F lb

Then one obtains that for betatron cooling the damping time will be ∼870 ms.
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Since there are two cooling insertions, the longitudinal cooling time will be twice shorter than
the betatron cooling time, resulting in τδ ∼ 475 ms.

Of course, it’s a very crude approximation, and one should expect the optimal gain of this system
to be ∼350, and cooling times for betatron and momentum cooling on the order of 30 ms and
15 ms, respectively.

To estimate the average power, one can assume K ≈ 1, and find that the it is, indeed, below
5 W.

τx
T

=

[
Nλ

WcTK2

σ2
δ (Eb/q)

2

Z0

]1/2
2. Protons:

We will use the following equation that connects the optimal damping time and the average
output power of the amplifier.

τx
T

=

[
Nλ

WcTK2

σ2
δ (Eb/q)

2

Z0

]1/2
One can first find the undulator factor K that can be expressed in terms of the magnetic field
and the period of the undulator λu:

K =
qBλu

2πmc2

The wavelength of the EM radiation from the pick-up undulator depends on the undulator factor,
undulator period and relativistic factor of the beam:

λ =
[
λu(1 +K2/2)

]
/2γ2,

After we determine the energy of the beam, all other parameters are known in order to find the
damping time. The resulting damping time for betatron oscillations is ∼ 5 mins, and due to the
presence of two cooling section, damping time for momentum cooling is ∼ 2.5 mins.

3. Heavy Ions:

Following the same procedure as in part 2, and taking into account the fact that we are dealing
with lead ions (Z = 82), one finds the damping time for betatron oscillations is ∼ 2 mins, and
the damping time for momentum cooling is ∼ 1 min.
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