
Chapter 4909

Classical Cyclotron910

Abstract This chapter introduces to the classical cyclotron, and to the theoretical911

material needed for the simulation exercises. It begins with a brief reminder of the912

historical context, and continues with beam optics and acceleration techniques which913

the classical cyclotron principle and methods lean on, including914

- ion orbit in a cyclic accelerator,915

- weak focusing and periodic transverse motion,916

- revolution period and isochronism,917

- voltage gap and resonant acceleration,918

- the cyclotron equation.919

920

The simulation of a cyclotron dipole will either resort to an analytical model of921

the field: the optical element DIPOLE, or will resort to using a field map together922

with the keyword TOSCA to handle it and raytrace through. An additional accelerator923

device needed in the exercises, CAVITE, simulates a local oscillating voltage. Run-924

ning a simulation generates a variety of output files, including the execution listing925

zgoubi.res, always, and other zgoubi.plt, zgoubi.CAVITE.out, zgoubi.MATRIX.out,926

etc., aimed at looking up program execution, storing data for post-treatment, pro-927

ducing graphs, etc. Additional keywords are introduced as needed, such as FIT[2],928

a matching procedure; FAISCEAU and FAISTORE which log local particle data in929

zgoubi.res or in a user defined ancillary file; MARKER; the ’system call’ command930

SYSTEM; REBELOTE, a ’do loop’; and some more. This chapter introduces in addi-931

tion to spin motion in accelerator magnets; dedicated simulation exercises include a932

variety of keywords: SPNTRK, a request for spin tracking, SPNPRT or FAISTORE,933

to log spin vector components in respectively zgoubi.res or some ancillary file, and934

the “IL=2” flag to log stepwise particle data, including spin vector, in zgoubi.plt file.935

Simulations include deriving transport matrices, beam matrix, optical functions and936

their transport, from rays, using MATRIX and TWISS keywords.937

19
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Notations used in the Text938

�; �0 field value; at reference radius '0

B; �'; �H field vector; radial component; axial component

�' = ?/@ magnetic rigidity

C; C0 orbit length, C = 2c'; reference, C0 = 2c'0

� ion energy

5rev, 5rf revolution and accelerating voltage frequencies

ℎ harmonic number, an integer, ℎ = 5rf/ 5rev
: =

'
�

3�
3'

radial field index

<; <0; " mass, < = W<0; rest mass; in units of MeV/c2

p; ?; ?0 ion momentum vector; its modulus; reference

@ ion charge

'; '0; '� orbit radius; reference radius '(?0); at energy E

'� Radio-Frequency: as per the accelerating voltage technology

B path variable

)rev, )rf revolution and accelerating voltage periods

v; E ion velocity vector; its modulus

+ (C); +̂ oscillating voltage; its peak value

, kinetic energy, , =
1
2
<E2

x, x’, y, y’ radial and axial coordinates in the moving frame [(∗) ′ = 3 (∗)/3B]

U momentum compaction

U trajectory deviation

V = E/2; V0; VB normalized ion velocity; reference; synchronous

W = �/<0 Lorentz relativistic factor

Δ?, X? momentum offset

YD Courant-Snyder invariant (D : G, A, H, ;, . , /, B, etc.)

\ azimuthal angle

q RF phase at ion arrival at the voltage gap

939

4.1 Introduction940

Cyclotrons are the most widespread type of accelerator, today, used by hundreds,941

with dominant application the production of isotopes. This chapter is devoted to the942

first cyclic accelerator: the 1930s “classical” cyclotron which its concept limited to943

low energy, a few 10s of MeV/nucleon, a limitation overcome a decade later by the944

azimuthally varying field (AVF) technique - subject of the next chapter.945

The 1930s cyclotron is based on two main principles:946

(i) resonant acceleration by synchronization of a fixed-frequency accelerating voltage947

on the quasi-constant revolution time, the very acceleration technique universally948

used a century later, and949

(ii) transverse beam confinement based on so-called weak focusing, a technique950
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which would be used over the years in all (but the AVF) cyclic accelerators: cyclotron,951

microtron, betatron, synchrotron, until the invention of alternating gradient strong952

focusing in the early 1950s; weak focusing it is still in use today, in betatrons and953

low energy proton synchrotrons mostly.954

Resonant acceleration had the great advantage that a small gap voltage is enough955

to accelerate with, in principle, no energy limitation, by contrast with the electrostatic956

techniques developed at the time which required the generation of the full voltage,957

such as the Van de Graaf limited for this reason at a few tens of MeV.958

The cyclotron concept goes back to the late 1920s [1], a cyclotron was first brought959

to operation in the early 1930s [2], its principles are summarized in Fig. 4.1: an960

oscillating voltage is applied on a pair of electrodes (“dees”) forming an accelerating961

gap and placed between the two poles of an electromagnet; ions reaching the gap962

during the acceleration phase of the voltage wave experience an energy boost; under963

the effect of energy increase, they spiral out in the quasi-constant field of the dipole.964

The first cyclotron achieved acceleration of �+
2

hydrogen ions to 80 keV [2], at
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Fig. 4.1 Left: dipole electromagnet used for a model of Berkeley’s 184-inch cyclotron, in 1943 [3].

Right: a schematic view of the resonant acceleration method: in the uniform field between the two

cylindrical magnetic poles (top), accelerated ions spiral out (bottom); a double-dee (or, a variant, a

single-dee facing a slotted electrode) forms a gap to which is applied a fixed-frequency oscillating

voltage + (C) of which the frequency is a harmonic of the revolution frequency; ions experiencing

proper voltage phase at the gap are accelerated; a septum electrode allows beam extraction

965

Berkeley in 1931. The apparatus used a dee-shaped electrode vis-à-vis a slotted966

electrode forming a voltage gap, the ensemble housed in a 5 in diameter vacuum967

chamber and placed in the 1.3 Tesla field of an electromagnet. A ≈ 12 MHz vacuum968

tube oscillator provided a 1 kVolt gap voltage.969

One goal foreseen in developing this technology was the acceleration of protons970

to MeV energy range for the study of atom nucleus - and in background a wealth971

of potential applications. An 11 in cyclotron followed which delivered a 0.01 `A972

�+
2

beam at 1.22 MeV [4], and a 27 in cyclotron later reached 6 MeV (Fig. 4.2) [5].973

Targets were mounted at the periphery of the 11-inch cyclotron, disintegrations were974
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observed in 1932. And, in 1933: ‘The neutron had been identified by Chadwick975

in 1932. By 1933 we were producing and observing neutrons from every target976

bombarded by deuterons.“ [5, M.S. Livingston, p. 22].977

V

Fig. 4.2 Berkeley 27-inch cyclotron, brought to operation in 1934, accelerated deuterons up to

6 MeV. Left: a double-dee (seen in the vacuum chamber, cover off), 22 in diameter, creates an

accelerating gap: 13 kV, 12 MHz radio frequency voltage is applied for deuterons for instance

(through two feed lines seen at the right). This apparatus was dipped in the 1.6 Tesla dipole field

of a 27 in diameter, 75 ton, electromagnet. A slight decrease of the dipole field with radius, from

the center of the dipole, ensures axial beam focusing. With their energy increasing, ions spiral out

from the center to eventually strike a target (arrow). Right: ionization of the air by the extracted

beam (1936); the view also shows the vacuum chamber squeezed between the pole pieces of the

electromagnet [3]

Fig. 4.3 Berkeley 184 in di-

ameter, 4,000 ton cyclotron

during construction [3]. Its

design was modified and it

was operated as a synchrocy-

clotron from the beginning, in

1946

A broad range of applications were foreseen: “At this time biological experiments978

were started. [...] Also at about this same time the first radioactive tracer experiments979

on human beings were tried [...] simple beginnings of therapeutic use, coming a980
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little bit later, in which neutron radiation was used, for instance, in the treatment981

of cancer. [...] Another highlight from 1936 was the first time that anyone tried982

to make artificially a naturally occurring radio-nuclide. (a bismuth isotope) [5,983

McMillan, p. 26].984

Limitation in energy985

A complete understanding of ion dynamics in the classical cyclotron took more or986

less until the mid-1930s and brought two news, a bad one and a good one,987

(i) bad one first: the energy limitation, a consequence of the loss of isochronism988

resulting from the relativistic increase of the ion mass so that “[...] it seems useless989

to build cyclotrons of larger proportions than the existing ones [...] an accelerating990

chamber of 37 in radius will suffice to produce deuterons of 11MeV energy which991

is the highest possible [...]” [6], or in a different form: “If you went to graduate992

school in the 1940s, this inequality (−1 < : < 0) was the end of the discussion of993

accelerator theory” [7].994

(ii) the good news now: the overcoming of the energy limit which results from the995

mass increase, by splitting the magnetic pole into valley and hill field sectors: the996

azimuthally varying field (AVF) cyclotron, by L.H. Thomas in 1938 [8] - the object997

of Chapt. 5. It took some years to see effects of this breakthrough.998

Fig. 4.4 Evolution of the

number of the various cy-

clotron species, over the

years [9] [10, Fig. 8]. From the

1950s on the AVF cyclotron

rapidly supplanted the 1930s’

classical cyclotron

With the progress in magnet computation tools, in computational speed and999

beam dynamics simulations, the AVF cyclotron ends up being essentially as simple1000

to design and build has in a general manner supplanted the classical cyclotron in all1001

energy domains (Fig. 4.4).1002
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4.2 Basic Concepts and Formulæ1003

The cyclotron was conceived as a means to overcome the technological difficulty of1004

a long series of high electrostatic voltage electrodes in a linear layout, by, instead,1005

repeated recirculation through a single accelerating gap in synchronism with an1006

oscillating voltage (Fig. 4.5). With its energy increasing, an accelerated bunch spirals

Fig. 4.5 Resonant accelera-

tion: in an ℎ = 1 configuration

an ion bunch meets an oscil-

lating field E across gap A, at

time C , on accelerating phase;

it meets again, half a turn later,

at time C + )rev/2, the acceler-

ating phase across gap A’, and

so on: the uniform magnetic

field recirculates the bunch

through the gap, repeatedly.

Higher harmonic allows more

bunches: the next possibility

with two dees is h=3, and 3

bunches, 120 degrees apart, in

synchronism with E
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Fig. 4.6 A ion which reaches

the double-dee gap at the

RF phase lrf C = q� or

lrf C = q� is accelerated. If it

reaches the gap at lrf C = q�

it is decelerated
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1007

out in the uniform magnetic field, the velocity increase comes with an increase in orbit1008

length; the net result is a slow increase of the revolution period )rev with energy, yet,1009

with appropriate fixed voltage frequency 5rf ≈ ℎ/)rev the revolution motion and the1010

oscillating voltage can be maintained in sufficiently close synchronism, )rev ≈ ℎ)rf ,1011

that the bunch will transit the voltage gap upon accelerating phase (Fig. 4.6) over a1012

large enough number of turns that it acquires a significant energy boost.1013

The orbital motion quantities: radius ', ion rigidity �', revolution frequency1014

5rev, satisfy1015

�' =
?

@
, 2c 5rev = lrev =

E

'
=

@�

<
=

@�

W<0

(4.1)
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relationships which hold at all W, so covering the classical cyclotron domain (E ≪ 2,1016

W ≈ 1) as well as the isochronous cyclotron (ion energy increase commensurate with1017

its mass - Chapt. 5). To give an idea of the revolution frequency, in the limit W = 1,1018

for protons, one has 5rev/� = @/2c< = 15.25 MHz/T.1019

The cyclotron design sets the constant RF frequency 5rf = lrf/2c at an interme-1020

diate value of ℎ 5rev along the acceleration cycle. The energy gain, or loss, by the ion1021

when transiting the gap, at time C, is1022

Δ, (C) = @+̂ sin q(C) with q(C) = lrfC − lrevC + q0 (4.2)

with q its phase with respect to the RF signal at the gap (Fig. 4.6), q0 = q(C = 0),
and lrevC the orbital angle. Assuming constant field �, the increase of the revolution

period with ion energy satisfies

Δ)rev

)rev

= W − 1

The mis-match so induced between the RF and cyclotron frequencies is a turn-by-turn1023

cumulative effect and sets a limit to the tolerable isochronism defect, Δ)rev/)rev ≈1024

2 − 3%, or highest velocity V = E/2 ≈ 0.22. This results for instance in a practical1025

limitation to ≈ 25 MeV for protons, and ≈ 50 MeV for D and U particles.1026

Over time multiple-gap accelerating structures where developed, whereby a1027

“multiple-Δ” electrode pattern substitutes a “double-D”. An example is GANIL C01028

injector with its 4 accelerating gaps and ℎ = 4 and ℎ = 8 RF harmonic operation [11].1029

4.2.1 Fixed-Energy Orbits, Revolution Period1030

In a laboratory frame (O;x,y,z), with (O;x,z) the bend plane (Fig. 4.7), assume

B|H=0 = BH , constant. An ion is launched from the origin with a velocity

v =

(
3G

3C
,
3H

3C
,
3I

3C

)
= (E sinU, 0, E cosU)

at an angle U from the I-axis.1031

Solving1032

< ¤v = @v × B (4.3)

with B = (0, �H , 0) yields the parametric equations of motion1033





G(C) = E

lrev

cos(lrevC − U) − E cosU

lrev

H(C) = constantz(t) = v

lrev

sin(lrevt − U) + v sinU

lrev

(4.4)

which result in1034
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Fig. 4.7 Circular motion of

an ion in the plane normal

to a uniform magnetic field

B. The orbit is centered

at G� = −E cos U/lrev,

I� = E sin U/lrev, its radius

is E/lrev

O
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)2

+
(
I − E sinU

lrev

)2

=

(
E

lrev

)2

(4.5)

a circular trajectory of radius ' = E/lrev centered at (G� , I� ) = (− E cos U
lrev

, E sin U
lrev

).1035

Stability of the cyclic motion - The initial velocity vector defines a, say “reference”,1036

closed orbit in the median plane of the cyclotron dipole; a small perturbation in U or1037

E defines a new orbit in the vicinity of the reference. An axial velocity component EH1038

on the other hand, causes the ion to drift away from the reference, vertically, linearly1039

with time, as there is no axial restoring force. The next Section will investigate the1040

necessary field property to ensure both horizontal and vertical confinement of the1041

cyclic motion in the vicinity of a reference orbit in the median plane.1042

4.2.2 Weak Focusing1043

In the early accelerated turns in a classical cyclotron (central region of the electro-1044

magnet, energy up to tens of keV/u), the accelerating electric field provides adequate1045

transverse focusing [11], whereas a flat magnetic field with uniformity 3�/� < 10−4
1046

is sufficient to maintain isochronism. Beyond this low energy region however, at1047

greater radii, a magnetic field gradient must be introduced to ensure transverse1048

stability: field must decrease with '.1049

Ion coordinates in the following are defined in the moving frame ("0; B, G, H)1050

(Fig. 4.8), which moves along the reference orbit (radius '0), with its origin "01051

the projection of ion location " on the reference orbit; the B axis is tangent to the1052

latter, the G axis is normal to B, the H axis is normal to the bend plane. Median-plane1053

symmetry of the field is assumed, thus the radial field component �' |H=0 = 0 at all1054

' (Fig. 4.9).1055
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Fig. 4.8 Moving frame

("0; B, G, H, B) along the ref-

erence circular orbit. The cur-

vature 1/'0 is constant along

the orbit and ("0; B, G, H)
can be considered equiva-

lent to the cylindrical frame

(C; \, '0, H)

   

B

reference

0
M

M x

y

v   

s

C

r(s)

0
R

Consider small motion excursions from (' = '0, H = 0): G(C) = '(C) −'0 ≪ '0;1056

introduce the Taylor expansion of the vertical field component1057

�H ('0 + G) = �H ('0) + G
m�H

m'

����
'0

+ G2

2!

m2�H

m'2

�����
'0

+ ... ≈ �H ('0) + G
m�H

m'

����
'0

�' (0 + H) = H
m�'

mH

����
0︸  ︷︷  ︸

=
m�H

m'

���
'0

+ H
3

3!

m3�'

mH3

����
0

+ ... ≈ H
m�H

m'

����
'0

(4.6)

Using these, and noting ¤(∗) = 3 (∗)/3C, the linear approximation of the differential1058

equations of motion in the moving frame writes1059

�G = < ¥G = −@E�H (') +
<E2

'0 + G
≈ −@E

(

�H ('0) +
m�H

m'

����
'0

G

)

+ <E2

'0

(
1 − G

'0

)

→ < ¥G = −<E2

'2
0

(
'0

�0

m�H

m'

����
'0

+ 1

)

G (4.7)

�H = < ¥H = @E�' (H) = @E
m�'

mH

����
H=0

H + higher order → < ¥H = @E
m�H

m'
H

1060

Note �H ('0) = �0 and introduce1061

l2
' = l2

rev

(
1 + '0

�0

m�H

m'

)
, l2

H = −l2
rev

'0

�0

m�H

m'
(4.8)

substitute in Eqs. 4.7, this yields1062

¥G + l2
Rx = 0 and ¥H + l2

yy = 0 (4.9)

A restoring force (linear terms in x and y, Eq. 4.9) arises from the radially varying1063

field, characterized by a field index1064
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Fig. 4.9 Axial motion stabil-

ity requires proper shaping of

field lines: �H has to decrease

with radius. The Laplace force

pulls a positive charge with

velocity pointing out of the

page, at I, toward the median

plane. Increasing the field

gradient (k closer to -1, gap

opening up faster) increases

the focusing

F
B=B y    
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Magnet pole, South

Magnet pole, North

plane
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y

g
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)

Fig. 4.10 Geometrical focus-

ing: in a uniform field, k=0,

the two circular trajectories

which start from A = '0 ± X'

(solid lines, going counter-

clockwise) undergo exactly

one oscillation around the

reference orbit A = '0. A neg-

ative k (triangles), a necessary

condition for axial focusing,

decreases the radial conver-

gence; a positive k (square

markers) increases the radial

convergence - and increases

vertical motion divergence
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Fig. 4.11 Radial motion sta-

bility in an axially symmetric

structure. Trajectories arcs at

p=mv are represented: case

of k=0 (thin black lines), of

-1<k<0 (thick blue lines),

and of k=-1 (dashed con-

centric circles). k decreasing

towards -1 reduces the geo-

metrical focusing, increases

axial focusing. The resultant

of the Laplace and centrifugal

forces, �C = −@E� +<E2/A ,

is zero at I, motion is sta-

ble if �C is toward I at 8,

i.e. @E�8 < <E2/'8 , and

toward I as well at 4, i.e.

@E�4 > <E2/'4

2

force toward Iforce toward I

BR<mv/q BR>mv/q  BR=
mv/q
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: =
'0

�0

m�H

m'

����
'='0 ,H=0

(4.10)

Radial stability - radially this force adds to the geometrical focusing (curvature1065

term “1” in l2
'

, Eq. 4.8, Fig. 4.10). In the weakly decreasing field �(') an ion1066

with momentum ? = <E moving in the vicinity of the '0-radius reference orbit1067

experiences in the moving frame a resultant force �C = −@E� + <
E2

A
(Fig. 4.11) of1068

which the (outward) component 52 = < E2

A
decreases with r at a higher rate than the1069

decrease of the Laplace (inward) component 5� = −@E�(A). In other words, radial1070

stability requires �' to increase with ', m�'
m'

= �+' m�
m'

> 0, this holds in particular1071

at '0, thus 1 + : > 0.1072

Axial stability requires a restoring force directed toward the median plane. Refer-1073

ring to Fig. 4.9, this means �H = −0× H (with 0 a positive quantity) and thus �' < 0,1074

at all (A, H ≠ 0). This is achieved by designing a guiding field which decreases with1075

radius, m�'

mH
< 0. Referring to Eq. 4.10 this means : < 0.1076

From these radial and axial constraints the condition of “weak focusing” for1077

transverse motion stability around the circular equilibrium orbit results, namely,1078

−1 < : < 0 (4.11)

Note regarding the geometrical focusing: the focal distance associated with the1079

curvature of a magnet of arc length L is obtained by integrating 32G
3B2 + 1

'2
0

G = 0 and1080

identifying with the focusing property ΔG ′ = −G/ 5 , namely,1081

ΔG ′ =

∫
32G

3B2
3B ≈ −G

'2

∫
3B =

−GL
'2

, thus 5 =
'2

L (4.12)

Isochronism: the axial focusing constraint: � deceasing with ', contributes break-1082

ing the isochronism (in addition to the effect of the mass increase) by virtue of1083

lrev ∝ �.1084

Paraxial Transverse Coordinates1085

Introduce the path variable, B, as the independent variable in Eq. 4.9 and neglect the1086

transverse velocity components: 3B ≈ E3C; the equations of motion in the moving1087

frame (Eq. 4.9) thus take the form1088

d2x

ds2
+ 1 + k

R2
0

x = 0 and
d2y

ds2
− k

R2
0

y = 0 (4.13)

Given −1 < : < 0 the motion is that of a harmonic oscillator, in both planes, with1089

respective restoring constants (1 + :)/'2
0

and −:/'2
0
, both positive quantities. The1090

solution is a sinusoidal motion,1091
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{
'(B) − '0 = G(B) = x0 cos

√
1+k
R0

(s − s0) + x′
0

R0√
1+k

sin
√

1+k
R0

(s − s0)
'′(B) = G ′(B) = −x0

√
1+k
R0

sin
√

1+k
R0

(s − s0) + x′
0

cos
√

1+k
R0

(s − s0)
(4.14)

1092 {
y(s) = y0 cos

√
−k

R0
(s − s0) + y′

0
R0√
−k

sin
√
−k

R0
(s − s0)

y′(s) = −y0

√
−k

R0
sin

√
−k

R0
(s − s0) + y′

0
cos

√
−k

R0
(s − s0)

(4.15)

Radial and axial wave numbers can be introduced,1093

a' =
l'

lrev

=
√

1 + : and aH =
lH

lrev

=
√
−: (4.16)

i.e., the number of sinusoidal oscillations of the paraxial motion about the reference1094

circular orbit over a turn, respectively radial and axial. Both are less than 1: there1095

is less than one sinusoidal oscillation in a revolution. In addition, as a result of the1096

axial symmetry,1097

a2
' + a2

H = 1 (4.17)

Off-Momentum Motion1098

In an axially symmetric structure, the equilibrium trajectory at momentum

{
p0

p = p0 + Δp

is at radius

{
R0 such that B0R0 = p0/q
R such that BR = p/q , with

{
B = B0 +

(
mB
mx

)

0
Δx + ...

R = R0 + Δx

On the other hand

�' =
?

@
⇒

[
�0 +

(
m�

mG

)

0

ΔG + ...

]
('0 + ΔG) = ?0 + Δ?

@

which, neglecting terms in (ΔG)2, and given �0'0 =
?0

@
, leavesΔG

[(
m�
mG

)

0
'0 + �0

]
=1099

Δ?

@
. With : =

'0

�0

(
m�
mG

)

0
this yields1100

ΔG = �
Δ?

?0

with � =
'0

1 + :
the dispersion function (4.18)

The dispersion � is an s-independent quantity as a result of the cylindrical symmetry1101

of the field (k and R=p/qB are s-independent).1102

To the first order in the coordinates, the vertical coordinates y(s), y’(s) (Eq. 4.15)1103

are unchanged under the effect of a momentum offset, the horizontal trajectory angle1104

x’(s) (Eq. 4.14) is unchanged as well (the circular orbits are concentric, Fig. 4.12)1105

whereas G(B) satisfies1106

x(s, p0 + Δp) = x(s, p0) + Δp
mx

mp

����
s,p0

= x(s, po) + D
Δp

p0
(4.19)
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Fig. 4.12 The equilibrium radius at location � is '0, the equilibrium momentum is ?0, rigidity is

�0'0. The equilibrium radius at � is ', equilibrium momentum ?, rigidity �'

Orbit and revolution period lengthening1107

A ? + X? off-momentum motion satisfies (Eq. 4.18)1108

XC
C =

X'

'
=

XG

'
= U

X?

?
with U =

1

1 + :
=

1

a2
'

(4.20)

with U the “momentum compaction”, a positive quantity: orbit length increases with1109

momentum. Substituting
XV

V
=

1
W2

X?

?
, the change in revolution period )rev = C/V21110

with momentum writes1111

X)rev

)rev

=
XC
�

− XV

V
=

(
U − 1

W2

)
X?

?
(4.21)

Given that −1 < : < 0 and W & 1, it results that U − 1/W2 > 0: the revolution period1112

increases with energy, the increase in radius is faster than the velocity increase.1113

4.2.3 Quasi-Isochronous Resonant Acceleration1114

The energy , of an accelerated ion (in the non-relativistic energy domain, which is1115

that of the classical cyclotron) satisfies the frequency dependence1116

, =
1

2
<E2

=
1

2
< (2c' 5rev)2

=
1

2
<

(
2c'

5rf

ℎ

)2

(4.22)

Observe in passing: given the cyclotron size (radius '), 5rf and ℎ set the limit1117

for the acceleration range. The revolution frequency decreases with energy and the1118

condition of synchronism with the oscillating voltage, 5rf = ℎ 5rev, is only fulfilled1119

at that particular radius where lrf = @�/< (Fig. 4.13-left). The out-phasing Δq of1120

the RF at ion arrival at the gap builds-up turn after turn, decreasing in a first stage1121
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(towards lower voltages in Fig. 4.13-right) and then increasing back to q = c/2 and1122

beyond towards c. Beyond q = c the RF voltage is decelerating.
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Fig. 4.13 Left: a sketch of the synchronism condition at one point (h=1 assumed). Right: the span

in phase of the energy gain Δ, = @+̂ sin q (Eq. 4.2) over the acceleration cycle

1123

Withlrev constant between two gap passages, differentiating q(C) (Eq. 4.2) yields1124

¤q = lrf −lrev. Between two gap passages on the other hand, Δq = ¤qΔ) = ¤q)rev/2 =1125

¤q c'
E

, yielding a phase-shift of1126

half-turn Δq = c

(
lrf

lrev (')
− 1

)
= c

(
<lrf

@�(') − 1

)
(4.23)

The out-phasing is thus a gap-after-gap, cumulative effect. Due to this the classical1127

cyclotron requires quick acceleration (limited number of turns), which means high1128

voltage (tens to hundreds of kVolts). As expected, withlrf and B constant, q presents1129

a minimum ( ¤q = 0) at lrf = lrev = @�/< where exact isochronism is reached1130

(Fig. 4.13). The upper limit to q is set by the condition Δ, > 0: acceleration.1131

The cyclotron equation determines the achievable energy range, depending on1132

the injection energy �8 , the RF phase at injection q8 , the RF frequency lrf and gap1133

voltage +̂ , and writes [12]1134

cos q = cos q8 + c

[
1 − lrf

lrev

� + �8

2"

]
� − �8

@+̂
(4.24)

and is represented in Fig. 4.14 for various values of the peak voltage and phase at1135

injection q8 . " [eV/c2] and � [eV] are respectively the rest mass and relativistic1136

energy, @+̂ is expressed in electron-volts, the index 8 denotes injection parameters.1137
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Fig. 4.14 A graph of the

cyclotron equation (Eq. 4.24),

for three different acceler-

ating voltage settings: 100,

200 and 400 kV/gap (re-

spectively square, circle

and triangle markers). The

sole settings resulting in

−1 < cos q (�) < 1, ∀� ,

allow complete acceleration

to top energy. q8 = c/4 at

injection for instance, does not

allow acceleration to 20 MeV

(upper three curves). Accel-

eration to 20 MeV works for

q8 = 3c/4 (lower three

curves), with as low as

100 kV/gap
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4.2.4 Beam Extraction1138

From ' = ?/@� and assuming �(') ≈constant (this is legitimate as : is normally1139

small), in the non-relativistic approximation (, ≪ " , , = ?2/2") one gets1140

3'

'
=

1

2

3,

,
(4.25)

Integrating yields1141

'2
= '2

8

,

,8

(4.26)

with '8 ,,8 initial conditions. From Eqs. 4.25, 4.26, assuming,8 ≪ , and constant1142

acceleration rate 3, such that , = = 3, after n turns, one gets the scaling laws1143

' ∝
√
=, 3' ∝ '

,
∝ 1

'
∝ 3,,

3'

3=
=

'

2=
(4.27)

Thus, in particular, the turn separation 3'/3= is proportional to the orbit radius R1144

and to the energy gain per turn.1145

The radial distance between successive turns decreases with energy, toward zero1146

(Fig. 4.15), eventually resulting in insufficient spacing for insertion of an extraction1147

septum.1148

Orbit modulation1149

Consider an ion bunch injected in the cyclotron with some (G0, G
′
0
) conditions in the1150

vicinity of the reference orbit, and assume very slow acceleration. While accelerated1151

the bunch undergoes an oscillatory motion around the local closed orbit (Eq. 4.14).1152
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Fig. 4.15 The radial distance

between successive turns

decreases with energy, in

inverse proportion to the

orbit radius. The red and

blue segments here figure the

accelerting gap
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Observed at the extraction septum this oscillation modulates the distance of the1153

bunch to the local reference closed orbit, moving it outwards or inwards depending1154

on the turn number, which modulates the distance between the accelerated turns.1155

This effect can be exploited to increase the separation between the final two turns1156

and so enhance the extraction efficiency [9].1157

4.2.5 Spin Dance1158

The magnetic field B of the cyclotron dipole exerts a torque on the spin angular1159

momentum S of an ion, causing it to precess following the Thomas-BMT differential1160

equation [13]1161

3S

3C
= S × @

<

[
(1 + �)B‖ + (1 + �W)B⊥

]

︸                                   ︷︷                                   ︸
8sp

(4.28)

wherein C is the time; 8sp the precession vector: a combination of B‖ and B⊥1162

components of B respectively parallel and orthogonal to the ion velocity vector. �1163

is the gyromagnetic anomaly,1164

G=1.7928474 (proton), -0.178 (Li), -0.143 (deuteron), -4.184 (3He) ...1165

S in this equation is in the ion rest frame, all other quantities are in the laboratory1166

frame.1167

In the case of an ion moving in the median plane of the dipole, B‖ = 0, thus the1168

precession axis is parallel to the magnetic field vector, BH , so that 8sp =
@

<
(1 +1169

�W)BH . The precession angle over a trajectory arc L is1170

\sp, Lab =
1

E

∫

(L)
lsp 3B = (1 + �W)

∫
(L) � 3B

�'
= (1 + �W)U (4.29)
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Fig. 4.16 Spin and velocity

vector precession in a constant

field, from S to S′ and v to

v′ respectively. In the moving

frame the spin precession

along the arc L = 'U

is �WU, in the laboratory

frame the spin precesses by

(1 +�W)U

R

y

v

S x

α

xy

S

x’

G
γα

(1
+

G
γ)α

S
’

v’

with U the trajectory deviation angle (Fig. 4.16). The precession angle in the moving1171

frame (the latter rotates by an angle U along L) is1172

\sp = �WU (4.30)

thus the number of 2c spin precessions per ion orbit around the cyclotron is �W. By1173

analogy with the wave numbers (Eq. 4.16) this defines the “spin tune”1174

asp = �W (4.31)
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4.3 Exercises1175

4.1 Modeling a Cyclotron Dipole: Using a Field Map1176

Solution: page 2591177

In this exercise, ion trajectories are ray-traced, various optical properties addressed1178

in the foregoing are recovered, using a field map to simulate the cyclotron dipole.1179

Fabricating that field map is a preliminary step of the exercise.1180

The interest of using a field map is that it is an easy way to account for fancy magnet1181

geometries and fields, including field gradients and possible defects. A field map can1182

be generated using mathematical field models, or from magnet computation codes, or1183

from magnetic measurements. The first method is used, here. TOSCA keyword [14,1184

cf. INDEX] is used to ray-trace through the map.1185

Working hypotheses:A 2-dimensional<(', \) polar meshing of the median plane1186

is considered (Fig. 4.17). It is defined in a ($; -,. ) frame and covers an angular1187

sector of a few tens of degrees. The mid-plane field map is the set of values �/ (', \)1188

at the nodes of the mesh. During ray-tracing, TOSCA extrapolates the field along1189

3D space (', \, /) ion trajectories from the 2D map [14].1190

Fig. 4.17 Principle of a 2D

field map in polar coordinates,

covering a 180> sector (over

the right hand side dee).

The mesh nodes <(', \)
are distant Δ' radially, Δ\

azimuthally. The map is used

twice to cover the 360>

cyclotron dipole as sketched

here, while allowing insertion

of an accelerating gap between

the two dees

O

X

Y

m(R,  )θ

θ

R

R∆

    

∆θ  

(a) Construct a 180> two-dimensional map of a median plane field �/ (', \),1191

proper to simulate the field in a cyclotron as sketched in Fig. 4.1. Use one of the1192

following two methods: either (i) write an independent program, or (ii) use zgoubi1193

and its analytical field model DIPOLE, together with the keyword CONSTY [14,1194

cf. INDEX].1195

Besides: use a uniform mesh (Fig. 4.17) covering from Rmin=1 to Rmax=76 cm,1196

with radial increment Δ' = 0.5 cm, azimuthal increment Δ\ = 0.5 [cm]/'0 with '01197

some reference radius (say, 50 cm, in view of subsequent exercises), and constant1198

axial field �/ = 0.5 T. The appropriate 6-column formatting of the field map data1199

for TOSCA to read is the following:1200

' cos \, /, ' sin \, �., �/, �-1201
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with \ varying first, ' varying second; Z is the vertical direction (normal to the map1202

mesh), / ≡ 0 in the present case. Note that proper functioning of TOSCA requires1203

the field map to begin with the following line of numerical values:1204

Rmin [cm] Δ' [cm] Δ\ [deg] / [cm]1205

Produce a graph of the �/ (', \) field map content.1206

(b) Ray-trace a few concentric circular mid-plane trajectories centered on the1207

center of the dipole, ranging in 10 ≤ ' ≤ 80 cm. Produce a graph of these concentric1208

trajectories in the ($; -,. ) laboratory frame.1209

Initial coordinates can be defined using OBJET, particle coordinates along tra-1210

jectories during the stepwise ray-tracing can be logged in zgoubi.plt by setting IL=21211

under TOSCA. In order to find the Larmor radius corresponding to a particular1212

momentum, the matching procedure FIT can be used. In order to repeat the latter for1213

a series of different momenta, REBELOTE[IOPT=1] can be used.1214

Explain why it is possible to push the ray-tracing beyond the 76 cm radial extent1215

of the field map.1216

(c) Compute the orbit radius ' and the revolution period )rev as a function of1217

kinetic energy , or rigidity �'. Produce a graph, including for comparison the1218

theoretical dependence of )rev.1219

(d) Check the effect of the density of the mesh (the choice of Δ' and Δ\ values,1220

i.e., the number of nodes #\ × #' = (1 + 180>

Δ\
) × (1 + 80 cm

Δ'
)), on the accuracy of1221

the trajectory and time-of-flight computation.1222

(e) Consider a mesh with such Δ', Δ\ density as to ensure reasonably good1223

convergence of the numerical resolution of the differential equation of motion [14,1224

Eq. 1.2.4].1225

Check the effect of the integration step size on the accuracy of the trajectory and1226

time-of-flight computation, by considering a smallΔB = 1 cm and a largeΔB = 20 cm,1227

at 200 keV and 5 MeV (proton).1228

(f) Consider a periodic orbit, thus its radius R should remain unchanged after1229

stepwise integration of the motion over a turn. However, the size ΔB of the numerical1230

integration step has an effect on the final value of the radius:1231

for two different cases, 200 keV (a small orbit) and 5 MeV (a larger one), provide1232

the dependence of the relative error X'/' after one turn, on the integration step size1233

ΔB (consider a series of ΔB values in a range ΔB : 0.1 mm → 20 cm). Provide a1234

graph of the two X'
'
(ΔB) curves (200 keV and 5 MeV).1235

4.2 Modeling a Cyclotron Dipole: Using an Analytical Field Model1236

Solution: page 2671237

This exercise is similar to exercise 4.1, yet using the analytical modeling1238

DIPOLE, instead of a field map. DIPOLE provides the Z-parallel median plane1239

field B(', \, / = 0) ≡ B/ (', \, / = 0) at the projected <(', \, / = 0) ion location1240

(Fig. 4.18), while B(', \, /) at particle location is obtained by extrapolation.1241

(a) Simulate a 180> sector dipole; DIPOLE requires a reference radius [14,1242

Eqs. 6.3.19-21], noted '0 here; for the sake of consistency with other exercises, it is1243

suggested to take '0 = 50 cm. Take a constant axial field �/ = 0.5 T.1244
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Fig. 4.18 DIPOLE provides

the value �/ (<) of the

median plane field at m,

projection of particle position

" (', \, / ) in the median

plane. B(', \, / ) is obtained

by extrapolation
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Explain the various data that define the field simulation in DIPOLE: geometry,1245

role of '0, field and field indices, fringe fields, integration step size, etc.1246

Produce a graph of �/ (', \).1247

(b) Repeat question (b) of exercise 4.1.1248

(c) Repeat question (c) of exercise 4.1.1249

(d) As in question (e) of exercise 4.1, check the effect of the integration step size1250

on the accuracy of the trajectory and time-of-flight computation.1251

Repeat question (f) of exercise 4.1.1252

(e) From the two series of results (exercise 4.1 and the present one), comment on1253

various pros and cons of the two methods, field map versus analytical field model.1254

4.3 Resonant Acceleration1255

Solution: page 2721256

Based on the earlier exercises, using indifferently a field map (TOSCA) or an1257

analytical model of the field (DIPOLE), introduce a sinusoidal voltage between the1258

two dees, with peak value 100 kV. Assume that ion motion does not depend on RF1259

phase: the boost through the gap is the same at all passes, use CAVITE[IOPT=3] [14,1260

cf. INDEX] for that. Note that using CAVITE requires prior PARTICUL in order to1261

specify ion species and data, necessary to compute the energy boost (Eq. 4.2).1262

(a) Accelerate a proton with initial kinetic energy 20 keV, up to 5 MeV, take1263

harmonic h=1. Produce a graph of the accelerated trajectory in the laboratory frame.1264

(b) Provide a graph of the proton momentum ? and total energy � as a function1265

of its kinetic energy, both from this numerical experiment (ray-tracing data can be1266

stored using FAISTORE) and from theory, all on the same graph.1267

(c) Provide a graph of the normalized velocity V = E/2 as a function of kinetic1268

energy, both numerical and theoretical, and in the latter case both classical and1269

relativistic.1270

(d) Provide a graph of the relative change in velocityΔV/V and orbit lengthΔC/C1271

as a function of kinetic energy, both numerical and theoretical. From their evolution,1272

conclude that the time of flight increases with energy.1273

(e) Repeat the previous questions, assuming a harmonic h=3 RF frequency.1274
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4.4 Spin Dance1275

Solution: page 2751276

Cyclotron modeling in the present exercise can use Exercise 4.1 or Exercise 4.21277

technique (i.e., a field map or an analytical field model), indifferently.1278

(a) Add spin transport, using SPNTRK [14, cf. INDEX]. Produce a listing1279

(zgoubi.res) of a simulation, including spin outcomes.1280

Note: PARTICUL is necessary here, for the spin equation of motion (Eq. 4.28) to1281

be solved [14, Sect. 2]. SPNPRT can be used to have local spin coordinates listed in1282

zgoubi.res (at the manner that FAISCEAU lists local particle coordinates).1283

(b) Consider proton case, take initial spin longitudinal, compute the spin preces-1284

sion over one revolution, as a function of energy over a range 12 keV→5 MeV. Give1285

a graphical comparison with theory.1286

FAISTORE can be used to store local particle data, which include spin coor-1287

dinates, in a zgoubi.fai style output file. IL=2 [14, cf. INDEX] (under DIPOLE or1288

TOSCA, whichever modeling is used) can be used to obtain a print out of particle1289

and spin motion data to zgoubi.plt during stepwise integration.1290

(c) Inject a proton with longitudinal initial spin S8 . Give a graphic of the lon-1291

gitudinal spin component value as a function of azimuthal angle, over a few turns1292

around the ring. Deduce the spin tune from this computation. Repeat for a couple of1293

different energies.1294

Place both FAISCEAU and SPNPRT commands right after the first dipole sector,1295

and use them to check the spin rotation and its relationship to particle rotation, right1296

after the first passage through that first sector.1297

(d) Spin dance: the input data file optical sequence here is assumed to model a1298

full turn. Inject an initial spin at an angle from the horizontal plane (this is in order1299

to have a non-zero vertical component), produce a 3-D animation of the spin dance1300

around the ring, over a few turns.1301

(e) Repeat questions (b-d) for two additional ions: deuteron (much slower spin1302

precession), 3�42+ (much faster spin precession).1303

4.5 Synchronized Spin Torque1304

Solution: page 2811305

A synchronized spin kick is superimposed on orbital motion. An input data file for1306

a complete cyclotron is considered as in question 4.4 (d), for instance six 60 degree1307

DIPOLEs, or two 180 degree DIPOLEs.1308

Insert a local spin rotation of a few degrees around the longitudinal axis, at the1309

end of the optical sequence (i.e., after one orbit around the cyclotron). SPINR can1310

be used for that, to avoid any orbital effect. Track 4 particles on their closed orbit,1311

with respective energies 0.2, 108.412, 118.878 and 160.746 MeV.1312

Produce a graph of the motion of the vertical spin component (H along the circular1313

orbit.1314

Produce a graph of the spin vector motion on a sphere.1315

4.6 Weak Focusing1316

Solution: page 2851317
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(a) Consider a 60> sector as in earlier exercises (building a field map and using1318

TOSCA as in exercise 4.1, or using DIPOLE as in exercise 4.2), construct the sector1319

accounting for a non-zero radial index : in order to introduce axial focusing, say1320

: = −0.03, assume a reference radius '0 for a reference energy of 200 keV ('0 and1321

�0 are required in order to define the index k, Eq. 4.10). Ray-trace that 200 keV1322

reference orbit, plot it in the lab frame: make sure it comes out as expected, namely,1323

constant radius, final and initial angles zero.1324

(b) Find and plot the radius dependence of orbit rigidity, �'('), from ray-1325

tracing over a �' range covering 20 keV to 5 MeV; superpose the theoretical curve.1326

REBELOTE can be used to perform the scan.1327

(c) Produce a graph of the paraxial axial motion of a 1 MeV proton, over a few1328

turns (use IL=2 under TOSCA, or DIPOLE, to have step by step particle and field1329

data logged in zgoubi.plt). Check the effect of the focusing strength by comparing1330

the trajectories for a few different index values, including close to -1 and close to 0.1331

(d) Produce a graph of the magnetic field experienced by the ion along these1332

trajectories.1333

4.7 Loss of Isochronism1334

Solution: page 2941335

Compare on a common graphic the revolution period )rev (') for a field index1336

value : ≈ −0.95, −0.5, −0.03, 0−. The scan method of exercise 4.6, based on1337

REBELOTE, can be referred to.1338

4.8 Ion Trajectories1339

Solution: page 2961340

In this exercise individual ion trajectories are computed. DIPOLE or TOSCA1341

magnetic field modeling can be used, indifferently. No acceleration here, ions cycle1342

around the cyclotron at constant energy.1343

(a) Produce a graph of the horizontal and vertical trajectory components x(s)1344

and y(s) of an ion with rigidity close to �'('0) ('0 is the reference radius in the1345

definition of the index k), over a few turns around the cyclotron. From the number of1346

turns, give an estimate of the wave numbers. Check the agreement with the expected1347

a' (:), aH (:) values (Eq. 4.16).1348

(b) Consider now protons at 1 MeV and 5 MeV, far from the reference energy1349

� ('0); the wave numbers change with energy: consistency with theory can be1350

checked. Find their theoretical values, compare with numerical outcomes.1351

(c) Consider proton, 200 keV energy, plot as a function of B the difference between1352

G(B) from raytracing and its values from Eq. 4.14. Same for y(s) compared to Eq. 4.15.1353

IL=2 can be used to store in zgoubi.plt the step-by-step particle coordinates across1354

DIPOLE.1355

(d) Perform a scan of the wave numbers over 200 keV−5 MeV energy interval,1356

computed using MATRIX, and using REBELOTE to repeat MATRIX for a series1357

of energy values.1358
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4.9 RF Phase at the Accelerating Gap1359

Solution: page 3021360

Consider the cyclotron model of exercise 4.6: field index : = −0.03 defined at1361

'0 = 50 cm, field �0 = 5 :� on that radius. two dees, double accelerating gap.1362

Accelerate a proton from 1 to 5 MeV: get the turn-by-turn phase-shift at the gaps;1363

use CAVITE[IOPT=7] to simulate the acceleration. Compare the half-turn Δq so1364

obtained with the theoretical expectation (Eq. 4.23). Produce similar graphs �(')1365

and Δ, (q) to Fig. 4.13.1366

Accelerate over more turns, observe the particle decelerating.1367

4.10 The Cyclotron Equation1368

Solution: page 3041369

The cyclotron model of exercise 4.3 is considered: two dees, double accelerating1370

gap, uniform field � = 0.5 T, no gradient.1371

(a) Set up an input data file for the simulation of a proton acceleration from1372

0.2 to 20 MeV. In particular, assume that cos(q) reaches its maximum value at1373

,< = 10 MeV; find the RF voltage frequency from 3 (cos q)/3, = 0 at ,<.1374

(b) Give a graph of the energy-phase relationship (Eq. 4.24), for q8 =
3c
4
, c

2
, c

4
,1375

from both simulation and theory.1376

4.11 Cyclotron Extraction1377

Solution: page 3061378

(a) Acceleration of a proton in a uniform field B=0.5 T is first considered (field1379

hypotheses as in exercise 4.3). RF phase is ignored: CAVITE[IOPT=3] can be used1380

for acceleration. Take a 100 kV gap voltage.1381

Compute the distance Δ' between turns, as a function of turn number and of1382

energy, over the range � : 0.02 → 5 MeV. Compare graphically with theoretical1383

expectation.1384

(b) Assume a beam with Gaussian momentum distribution and rms momentum1385

spread X?/? = 10−3. An extraction septum is placed half-way between two suc-1386

cessive turns, provide a graph of the percentage of beam loss at extraction, as a1387

function of extraction turn number - COLLIMA can be used for that simulation and1388

for particle counts, it also allows for possible septum thickness.1389

(c) Repeat (a) and (b) considering a field with index: take for instance �0 = 0.5 T1390

and : = −0.03 at '0 = '(0.2 MeV) = 12.924888 cm.1391

(d) Investigate the effect of injection conditions (.8 , )8) on the modulation of the1392

distance between turns.1393

Show numerically that, with slow acceleration, the oscillation is minimized for1394

an initial |)8 | = | G0a'

'
| (after Ref. [9, p. 133]).1395

4.12 Acceleration and Extraction of a 6-D Polarized Bunch1396

Solution: page 3111397

The cyclotron simulation hypotheses of exercise 4.10-a are considered.1398
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Add a short “high energy” extraction line, say 1 meter, following REBELOTE in1399

the optical sequence, ending up with a “Beam_Dump” MARKER for instance.1400

(a) Create a 1,000 ion bunch with the following initial parameters:1401

- random Gaussian transverse phase space densities, centered on the closed orbit,1402

truncated at 3 sigma, normalized rms emittances Y. = Y/ = 1 c`m, both emittances1403

matched to the 0.2 MeV orbit optics,1404

- uniform bunch momentum density 0.2× (1−10−3) ≤ ? ≤ 0.2× (1+10−3) MeV,1405

matched to the dispersion, namely (Eq. 4.19), ΔG = �
Δ?

?
,1406

- random uniform longitudinal distribution −0.5 ≤ B ≤ 0.5 mm,1407

Note: two ways to create this object are, (i) using MCOBJET[KOBJ=3] which1408

generates a random distribution, or (ii) using OBJET[KOBJ=3] to read an external1409

particle coordinate file.1410

Add spin tracking request (SPNTRK), all initial spins normal to the bend plane.1411

Produce a graph of the three initial 2-D phase spaces: (Y,T), (Z,P), (X;,X?/?),1412

matched to the 200 keV periodic optics. Provide Y, Z, dp/p, X; and (/ histograms,1413

check the distribution parameters.1414

(b) Accelerate this polarized bunch to 20 MeV, using the following RF conditions:1415

- 200 kV peak voltage,1416

- RF harmonic 1,1417

- initial RF phase q8 = c/4.1418

Produce a graph of the three phase spaces as observed downstream of the extrac-1419

tion line. Provide the Y, Z, dp/p, X; and (/ histograms. Compare the distribution1420

parameters with the initial values.1421

What causes the spins to spread away from vertical?1422
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