Import particles into Genesis

G. Wang

First (primary) approach: import particles into Genesis

- Genesis requires each slice has the same number of particles, which is usually not satisfied when importing particles from beam dynamics simulation.
- This approach get around the issue by adding particles with negative energy (gamma=-1) since Genesis ignores particles with negative energy, i.e treat them as lost particles.
- When using this approach, we set curlen=0 (or negative values) so that the local current is proportional to the number of imported particles with positive energies.

local current = curpeak * npart / npart0

Import particles using PARTFILE, NWIG=1

3500

There was a problem with mpi, which is solved the the following modification

с	writing the record		
С	j=6*(islice-firstout-1)+1		
c cgw + +	<pre>if (mpi_size.gt.1) then ! creata temporary files ndmp2tmp=ndmp2 ndmp2=ndmp2+30 open(ndmp2,file=outputfile(1:strlen(outputfile))</pre>	May be a typo in the original code?	
с	enalt		
	<pre>write(ndmp2,rec=j) (gamma(i),i=1,npart0) write(ndmp2,rec=j+1) (theta(i),i=1,npart0) write(ndmp2,rec=j+2) (xpart(i)/xkper0,i=1,npart0) write(ndmp2,rec=j+3) (ypart(i)/xkper0,i=1,npart0) write(ndmp2,rec=j+4) (px(i),i=1,npart0) write(ndmp2,rec=j+5) (py(i),i=1,npart0)</pre>		
се	<pre>if (mpi_size.gt.1) then close(ndmp2) ndmp2=ndmp2tmp endif endif</pre>		0
c c f	ield distribution		
c			
i	f (idmpfld.eq.0) return		
с р	roblems arise if the dump is used for another run		
-(DOS) output.t 6/% LX00 (Fortran)			

Another approach: Import Distribution Into Genesis Using DISTFILE

- When using DISTFILE, Genesis read in the particles, make mirror particles and then add particles so that the number of particles in each slice is equal (=npart in .in file).
- The advantages is one can generate as many as particles needed within Genesis and hence easy to incoporate the slice from modulator simulation.
- The disadvantage is that macro-particles from difference slice will have different charge, which may require modification of the kicker code.

NTAIL=5, NSLICE=3000, NWIG=1

- One need to vary NTAIL and NSLICE to choose desired longitudinal range of the distribution.
- The .dpa and .dfl files needs to be deleted before any Genesis run to get the correct particle distributions.

NTAIL=5, NSLICE=3000, NWIG=1

output after 1 wiggler period

x (m)

Input particles

0 0.001 0.002 0.003 0.004 0.005

wiggler period

Input particles

xp (rad)

