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Sylvester formulae
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∑ ;

φi λ,s( ) = eλs

λ − λ j( )l j
j≠i
∏

;φi
j( ) λ( ) =

∂ jφi
∂λ j .

Standard case of distinct eigen values, 1… 2n

Degenerated case of with m < 2n distinct 
eigen values, ni is the height (index) of the eigen value 
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We will discuss the sources of particles later in this course, while dedicating some of 

next classes for discussion of linear accelerator and RF accelerating cavities for storage 
rings and boosters. In general, time dependent elements of accelerators may require 

computer simulation when analytical solutions are not available. 

In this class we will focus on majority of elements, which are used in accelerators. 

These elements either have time independent EM field (DC) or it is varies very slow 

when compared with the time required for particles to pass through the elements. These 
elements are used for bending and focusing beams of particles in accelerators and 

transport channels or as elements of detectors. They include dipoles, quadrupoles, Sq-

quadrupoles, wigglers, undulators, solenoids, etc. 
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Even though it is tempting to remove electric fields, it does not either helps or hurts our 
consideration for matrix of a generic DC accelerator element. As you can see from next 
equation, it adds only a single non-relativistic term gy.  
For fields in vacuum we have  

= ,  

resulting in 

 

;  (7-2)  
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In the absence of longitudinal electric field, the momentum P2 is constant as well 

 d=const. The fact that particle’s energy does not change in such element is 

rather obvious (It is completely correct for magnetic elements. Presence of electric field 
makes it less obvious, but it comes from the fact that Hamiltonian does not depend on 

time!): , e.g. absence of the accelerating/decelerating electric field 

component. 

Equations of motion become specific: 

,  (7-3) 

   (7-4) 

and can be rewritten in a slightly different (just deceivingly looking better) way: 

       (7-
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Hence, solution for transverse motion (4-vector) in such an element can be written as 

combination general solution of homogeneous equation plus specific solution of 
inhomogeneous one: 

  (7-6) 

It worth noting that C=0 as soon as there is no EM field on the orbit – Ero=0, Bro=0. In 

this case R=0.  

Before finding 4x4 matrixes M and vector R, let’s see what we will know about the 6x6 

matrix after that. First, the obvious: 

   (7-7) 

with a natural question of what are non-trivial R5k elements? Usually these elements, with 

exception of R56 are not even mentioned in most of textbooks. Fortunately for us, Mr. 

Hamiltonian gives us a hand in the form of symplecticity of transport matrixes. Using 

(18) and (18-1) we can find that: 

where we used . 
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ds

= D(s) ⋅M ; M so( ) = I;

dR
ds
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⎢
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⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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We should note what XTSX=0 for any vector,  and only non-trivial 
condition from the equation above is: 

 

which gives us very valuable dependence of the arrival time on the transverse motions: 

.  (7-8) 
Element R56 is decoupled form the symplectic condition in this case and should be 
determined by direct integration  - no magic here: 

  (7-9) 

It is important to notice that all relation derived above were done without any 
assumptions about s-dependence of the magnetic and electric field, except assumptions 
that energy for the beam (reference particle) is constant and fields are time-independent. 
It means that all conclusions about structure of the 6x6 transport matrix, 4-vector R and 
eqs. (52-54) is correct for any beam-line combined of such elements.  
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&
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Since there is no general solution for s-depend linear equations, the matrix of the is  

  (7-10) 
A standard analytical approach to accelerator design is to assume that the coefficients 

in the Hamiltonian (7-4) are step-constant functions in intervals , or so called 
hard-edge element approach: 

     (7-11) 

This approach is frequently justified by design of the magnetic elements having constant 
field components along a patch of the reference orbit, whose length is much longer that 
the extend of the edge-field (e.g. transition area). In this case edge-field are typically 
included as a “local kick”.  

From pure theoretical point of view, we always can chop the beam-line into segment 
where  are constant or have negligibly small variations* and write the step-wise 
solutions  

    (7-12) 

with our goal today to find exact expression for  and . Let’s find the 
solutions for 4x4 matrixes of arbitrary element and corresponding R-vectors. 
*The later has to be carefully checked  

 dM
ds

= D(s) ⋅M ⇒ M (s) = limN→∞ eD(s*
i )Δsi

i=0

N

∏ ; s*
i ∈ si , si+1{ } , sN = s, Δsi = si+1 − si;

dR
ds

= D(s) ⋅R + C(s)⇒ R s( ) = limN→∞ RN ; R0 = 0; Ri+1 = eD(s*
i )Δsi Ri + ΔRi( ), i = 0,1.., N{ }

ΔRi = e−D(s*
i ) s−si( )C(s)ds

si

si+1

∫ ;

s j , s j+1{ }

 D = Di,k (s){ }; Di,k (s) = const; s ∈ s j , s j+1{ };

Di,k (s)

 dM
ds

= D(s) ⋅M ⇒ M k (s) = eDk (s−sk ) eDiΔsi

i=0

k−1

∏ ; s ∈ sk−1, sk{ } ;

dR
ds

= D(s) ⋅R + C(s)⇒ Rk (s) = eDk (s−sk )Rk−1 + ΔRk (s)

eDk (s−sk ) ΔRk (s)
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As we discussed in previous class, characteristic equation for any linear Hamiltonian  

    (7-13) 

system is bi-quadratic. It comes from the fact that if  is an eigen value of  (solution 
of ), than is also an eigen value of : 

 (7-14) 

e.g.  contains only even powers of , e.g. . This fact has dramatic 
consequences for accelerators: it reduces power of the eigen value equation by a factor of 
two and allows to find analytical expressions for all possible cases. In 3D case it reduces 
equation to a cubic equation on , which has analytical solution. In general (non-
Hamiltonian case) we would face finding roots of a 6-th order polynomial, which does 
not have known analytical expressions. Again, this is demonstration of power of 
Hamiltonian approach and its symplectic metrics. 

′X = D ⋅X = SH ⋅X → d λ( ) = det D− λI[ ] = λi − λ( )
i=1

2n

∏ = 0

λi D
d λ( ) = 0 −λi D

detAT = detA; detAB = detBA; AB( )T = BTAT ; det −Am×m[ ] = −1( )m det A

ST = −S; HT = H; S2 = −I; detS = 1; ⇒

d λ( ) = det D− λI[ ] = det D− λI[ ]T = det SH( )T − λI⎡⎣ ⎤⎦ = det −(HS + λI)[ ]
−S(HS + λI)S = (SH + λI); det S(HS + λI)S[ ] = det HS + λI[ ]det2 S = det HS + λI[ ]⇒

d λ( ) = det −(HS + λI)[ ] = −1( )2n det HS + λI[ ] = d −λ( )
d λ( ) λ d λ( ) ≡ d1 λ 2( )

λ 2



Next step

13

det D − λI[ ] = det

−λ 1 −L 0
− f −λ −n −L
L 0 −λ 1
−n L −g −λ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Before going to case-by-case calculations, lets use Sylvester’s formulae and try to find 
solution of inhomogeneous equation: 

.    (7-17) 

When matrix det D¹0, (7-17) can be inversed using a  as a guess and the 
boundary condition : 

    (7-18) 
is the easiest solution. Prove is just straight forward: 

 

In all cases we can use method of variable constants to find it: 

  (7-19) 

It is important to remember that M-1(s) is just the M(-s) = e-Ds. Hence in all our formulae 
for matrixes from previous lectures we need to replace s by –s to get M-1(s).   
Other vice, we have to use general formula (33) for the homogeneous solution and use 
method of variable constants (see Appendix F in last class) to find it: 

 

(7-20) 
In all specific cases I, II, III, IV and V, integrating (7-19) directly is usually easier that 
using general form of (7-20). 
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⎭ ⎪ k=1

m

∑ D− λkI( )n

n= 0

nk −1

∑ sn

n!
⋅ (−1)p +1 D− λkI( ) p

p= 0

nk −1

∑ ⋅C ⋅ sp−q
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Case II:  

i.e. there are two cases: L=0 or .  
If both are equal zero, i.e. , this is equivalent to the case I above.  

Case II a: , K=0, Bs=0 -> L=k. Thus, this is just a drift (straight section) with 
rotation, whose matrix is trivial: Drift + rotation. There is not transverse force – hence 
R=0. 

   (IIa-1) 

R56 is as for a drift: 

      (IIa-2) 

� 

b =  
f − g( )2

4
+ 2L2 f + g( ) + n2 = 0;

f = g; n = 0  and  L2 f + g( ) = L2 K 2 + Ω2 + El2( ) = 0;Ω = eBs / poc;E⊥ = 0.

� 

f + g = 0

� 

f + g = 0;  L = 0

� 

f + g = 0

� 

M4x4 =
Md ⋅ cosκs −Md ⋅ sinκs
Md ⋅ sinκs Md ⋅ cosκs
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; Md =

1 s
0 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  R =

0
0
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.

� 

R56 = m2c 2

po
2 s

2
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Case II b cont…
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Case III:  
We have to use degenerated case formula, but the maximum height of the eigen vector is 
2 and only for 3-rd eigen value. Since it is not scary at all: n1=1;n2=1;n3=2. Let’s do it 
step by step: 

 

 

 

 (III-1) 

� 

a + b = 0; det D = 0;  ω 2 = 2b;  λ1,2 = ±iω;λ3 = 0; m = 3.

exp Ds⎡⎣ ⎤⎦ = eλ1s
D− λ2I( )
λ1 − λ2( )

D− λ3I( )2

λ1 − λ3( )2 + eλ2s
D− λ1I( )
λ2 − λ1( )

D− λ3I( )2

λ2 − λ3( )2

φ3 λ3,s( ) + ′φ3 λ3,s( ) D− λ3I( )( ) D− λ1I( ) D− λ2I( )
φ3 λ,s( ) = eλs

λ3 − λ1( ) λ3 − λ2( ) ; λ1,2 = ±iω ; λ3 = 0

exp Ds⎡⎣ ⎤⎦ = eiωs
D+ iωI( )

2iω
D2

iω( )2 − e
− iωs D− iωI( )

2iω
D2

iω( )2 + I +D ⋅s
ω 2 D2 +ω 2I( )

φ3 λ,s( ) = eλs

λ 2 +ω 2( ) ; ′φ3 λ,s( ) = s ⋅eλs

λ 2 +ω 2( ) + 2λ ⋅eλs

λ 2 +ω 2( )2 ;

φ3 λ = 0,s( ) = 1
ω 2 ; ′φ3 λ = 0,s( ) = s

ω 2

exp Ds⎡⎣ ⎤⎦ = I +D ⋅s( ) I + D
2

ω 2

⎛
⎝⎜

⎞
⎠⎟
− D

2

ω 2 Icosωs+Dsinωs( )

M4x4 s( ) = I +D ⋅s( ) I + D
2

ω 2

⎛
⎝⎜

⎞
⎠⎟
− D

2

ω 2 Icosωs+Dsinωs( )
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Case III continued.. 
 
Similarly 

� 

R = I + D2

ω 2
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⎝ 
⎜ 
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⎠ 
⎟ Is + D s2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

D2

ω 4 D(cosωs−1) − Iω sinωs( )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
C    (III-2) 

Next is just 

� 

CT I + D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Iz + D z2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

D2

ω 4 D(cosωz −1) − Iω sinωz( )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
C

o

s

∫ dz =

CT I + D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I s2

2
+ D s3

6
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

D2

ω 4 D sinωs
ω

− s
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ I(cosωz −1)

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
C

  

with result of: 

� 

R56 = m2c 2 / pos + CT I + D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I s2

2
+ D s3

6
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

D2

ω 4 D sinωs
ω

− s
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ I(cosωz −1)

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
C  (III-3) 
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Case IV: all roots are different, no degeneration. Use formula (36) 

     

with only one term in the product: 

 (IV-1) 

For R we invoke a simplest formula:  
     (IV-2) 

For R56 it is tedious but easy: 

  (IV-3) 

� 

exp Ds[ ] = eλk s + e−λk s

2
I + eλk s − e−λk s

2λk

D
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

D2 − λ j
2I

λk
2 − λ j

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ∏

k=1

2

∑

� 

M4x4 = 1
ω1

2 −ω2
2 Icosω1s + D sinω1s

ω1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 + ω2

2I( ) − Icosω2s + D sinω2s
ω2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 + ω1

2I( )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

� 

R = M4x4(s) − I( )D−1 ⋅C

  

� 

R56 = m2c 2 / pos + CTMD−1C;

M= 1
ω1

2 −ω 2
2

I sinω1s
ω1

+ D1− cosω1s
ω1

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 +ω 2

2I( ) −

I sinω 2s
ω 2

+ D1− cosω 2s
ω 2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 +ω1

2I( ) − I⋅ s

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ 
⎪ 

⎭ 
⎪ 
⎪ 
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Now we are ready to calculate matrix of arbitrary DC element in accelerator.  To finish 
discussion of few remaining topics for 6x6 matrix of an accelerator. First is multiplication 
of the 6x6 matrixes for purely magnetic elements: 

 (7-21) 

i.e. having transformation rules for mixed size objects: a 4x4 matrix M, 4-elemetn 
column R, 4 element line L, and a number R56. As you remember, L is dependent (L4-7) 
and expressed as L= RTSM. Thus: 

 (7-22) 
� 

Mk (6x 6) =  
Mk (4 x4 ) 0 Rk

Lk 1 R56 k

0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
;

M2 (6x 6)M1(6x 6) =

M(4x 4 ) 0 R
L 1 R56

0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

==

M2M1 0 R2 + M2R1

L2 + L1M2 1 R561
+ R56 2

+ L2R1

0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

� 

M(4x 4 ) = M2M1; R = M2R1 + R2; L = L2M1 + L1; R56 = R561
+ R56 2

+ L2R1



25

F

F



How we do it?
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exp Ds[ ] = eλks D−λ jI
λk −λ jj≠k

∏
k=1

2n

∑

D4x4 =
Dx 0
0 Dy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;exp D4 x 4s[ ] =

exp Dxs[ ] 0

0 exp Dys⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
;

D = 0 1
−Ω2 0

⎡

⎣
⎢

⎤

⎦
⎥;det D− λI[ ] = λ − iΩ( ) λ + iΩ( );λ1,2 = ±iΩ;

MF = exp Ds[ ] = D + iΩI
2iΩ

eiΩs − D− iΩI
2iΩ

e− iΩs = cosΩs sinΩs
Ω

−Ω⋅sinΩs cosΩs

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
;

D = 0 1
Ω2 0

⎡

⎣
⎢

⎤

⎦
⎥;det D− λI[ ] = λ −Ω( ) λ + Ω( );λ1,2 = ±Ω;

MD = exp Ds[ ] = D + ΩI
2Ω

eΩs − D−ΩI
2iΩ

e−Ωs =
cosh fΩs sinh fΩs

Ω
Ω⋅sinh fΩs cosh fΩs

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
;



One more - less trivial case, a solenoid

• It is interesting that it can be found in two ways
– Directly without using torsion – case 3
– Using torsion –case 2b  
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Matrix of solenoid –Case 3
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!hn = π1
2 +π 3

2

2
+ Ω2 x2

2
+ Ω2 y2

2
+ Ω xπ 3 − yπ1( ) + π o

2

2
⋅ m2c2

po
2 ; L = Ω = eBs

2 poc
; f = g = Ω2;n = 0..

a = − f + g + 2L2

2
= −2Ω2;b =

f − g( )2

4
+ 2L2 f + g( ) + n2 = 2Ω2;

� 

a + b = 0; det D = 0;  ω 2 = 2b;  λ1,2 = ±iω;λ3 = 0; m = 3.

� 

M4x4 = I + D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I + sD( ) − D2

ω 2 Icosωs + D
ω

sinωs
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

ω = 2Ω

D =

0 1 −L 0
− f 0 −n −L
L 0 0 1
−n L −g 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

==

0 1 −Ω 0
−Ω2 0 0 −Ω
Ω 0 0 1
0 Ω −Ω2 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

; D2

ω 2 = 1
2

−1 0 0 −Ω−1

0 −1 Ω 0
0 Ω−1 −1 0
−Ω 0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

;

I + D2

ω 2 = 1
2

1 0 0 −Ω−1

0 1 Ω 0
0 Ω−1 1 0
−Ω 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

; I + D2

ω 2

⎛
⎝⎜

⎞
⎠⎟

D = 0→ I + D2

ω 2

⎛
⎝⎜

⎞
⎠⎟

Ds vanishes



Matrix of solenoid: 
using case 3we get an unusual matrix
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� 

M4x4 = I + D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I + sD( ) − D2

ω 2 Icosωs + D
ω

sinωs
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

ω = 2Ω; Ω = eBs

poc

M4 x 4 = I + D2

ω 2

⎛
⎝⎜

⎞
⎠⎟
− D2

ω 2 Icosω s + D
ω

sinω s⎛
⎝⎜

⎞
⎠⎟ = 1

2

1 + cos2Ωs sin2Ωs
Ω

−sin2Ωs −1− cos2Ωs
Ω

−Ωsin2Ωs 1 + cos2Ωs Ω 1− cos2Ωs( ) −sin2Ωs

sin2Ωs 1− cos2Ωs
Ω

1 + cos2Ωs sin2Ωs
Ω

−Ω 1− cos2Ωs( ) sin2Ωs −Ωsin2Ωs 1 + cos2Ωs

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Actually this matrix has a very simple structure, 
which can be easily reviled if we use torsion

(s1)



Matrix of solenoid
To bring it to Case 2, we can use torsion to 

eliminate coupling terms in the Hamiltonian
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!hn = π1
2 +π 3

2

2
+ Ω2 x2

2
+ Ω2 y2

2
+ π o

2

2
⋅ m2c2

po
2 ; Ω = eBs

2 poc
;κ = −Ω⇒ L = eBs

2 poc
+κ = 0;

a = − f + g
2

= −Ω2;b = 0; D4x4 =

0 1 0 0
−Ω2 0 0 0

0 0 0 1
0 0 −Ω2 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= D 0
0 D

⎡

⎣
⎢

⎤

⎦
⎥;exp D4 x 4s[ ] =

exp Ds[ ] 0

0 exp Ds[ ]
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;

D = 0 1
−Ω2 0

⎡

⎣
⎢

⎤

⎦
⎥;det D− λI[ ] = λ − iΩ( ) λ + iΩ( );λ1,2 = ±iΩ;

M = exp Ds[ ] = D + iΩI
2iΩ

eiΩs − D− iΩI
2iΩ

e− iΩs = cosΩs sinΩs
Ω

−Ω⋅sinΩs cosΩs

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
;M4x4 = M 0

0 M
⎡

⎣
⎢

⎤

⎦
⎥

It means that in rotating coordinate system x and y motions are 
decoupled and it is simple oscillation caused by uniform focusing 

in both directions. What remains is rotation by angle 

ϕ =κ s = −Ωs



Matrix of solenoid… continued
To bring it to the same coordinate frame we need to rotate the 

coordinate back by angle   
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R4x4 θ( ) = Icosθ −Isinθ
Isinθ Icosθ

⎡

⎣
⎢

⎤

⎦
⎥;M4x4 = R4x4 Ωs( ) ⋅M4x4 = McosΩs −MsinΩs

MsinΩs McosΩs
⎡

⎣
⎢

⎤

⎦
⎥

It means that solenoid focuses equally in all direction and rotates 
planes of oscillation by and angle 

−ϕ = −κ s = Ωs

θ = eBs

2 pos
s

(s2)

It easy to show that 4x4 matrices (s2) and (s1) are identical using 
simple ratios like cos2θ = 1 + cos2θ

2
;sinθ cosθ = sin2θ

2
;sin2θ = 1− cos2θ

2

It is interesting that matrix of s solenoid with arbitrary 
dependence of magnetic field has the same form   

M4x4 =
M s( )cosθ −M s( )sinθ
M s( )sinθ M s( )cosθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;θ = 1

2 poc
Bs

s

∫ z( )dz.



What we learned today?
• Majority of accelerator elements are either drifts or magnets, 

located in the places where energy of the beam is constant
• Many of them can be considered to be DC, e.g. time independent
• Typical approach of calculating a beamline transport matrix is to 

consider elements with step-wise constant “coefficients”
• Since energy if the beam is constant, the 6x6 matrix is reduced to 

4x4 matrix, as special solution (4-vector) for particle with deviated 
energy and a slip-factor R56 accounting for dependence of the travel 
time on the particle’s energy.

• We applied  Sylvester formulae, derive during last class. 
• There is only five distinct cases covering any possible DC hard-edge elements, 

or any shot slice of s-dependent magnet parameter (such as magnet edge field)
• Now you should be able to write matrix of any DC element you encounter  in 

accelerator
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