
Least Action Principle, Geometry of Special Relativity, Particles in E&M fields 
 
Recommendations:  

• This material is a brief top-level rehash of basic concepts in Classical Relativistic 
Mechanics and Electrodynamics 

• Some of advanced materials is not needed for PHY 554: hence, skip anything you do not 
feel comfortable to with (for example the Least action principle or derivations of 
Maxwell equations, EM tensors) and focus on less complex topics such as Lorentz 
transformation, Lorentz force and Maxwell equations for E and B  

 
Fundamentals of Hamiltonian Mechanics 
http://en.wikipedia.org/wiki/Hamilton_principle  

1.0. Least-Action Principle and Hamiltonian Mechanics 
 Let us refresh our knowledge of some aspects of the Least-Action Principle (LAP is humorously 
termed the coach potato principle) and Hamiltonian Mechanics. The Principle of Least Action is the 
most general formulation of laws governing the motion (evolution) of systems of particles and fields in 
physics. In mechanics, it is known as the Hamilton's Principle, and states the following:  

1) A mechanical system with  degrees of freedom is fully characterized by a monotonic generalized 
coordinate, t, the full set of  coordinates  and their derivatives 

 that are denoted by dots above a letter. We study the dynamics of the system 
with respect to t. All the coordinates, ;  should be treated as 
a functions of t that itself should be treated as an independent variable. 

2) Each mechanical system can be fully characterized by the Action Integral: 

 
  

     (1) 

   that is taken between two events A and B described by full set of coordinates * . The function 
under integral  is called the system’s Lagrangian function. Any system is fully described 
by its action integral. 

* For one particle, the full set of event coordinates is the time and location of the particle. The integral is 
taken along a particle’s world line (its unique path through 4-dimentional space-time) and is a 
function of both the end points and the intervening trajectory. 

 
After that, applying Lagrangian mechanics involves just  second -order ordinary differential equations: 

.  
We can find these equations, setting variation of  to zero: 

;  (2) 
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and taking into account . Thus, we have integral of the function in the brackets, 
multiplied by an arbitrary function  equals zero.  
Therefore, we must conclude that the function in the brackets also equals zero and thus obtain Lagrange's 
equations:  

       (3) 

Explicitly, this represents a set of n second-order equations 

 ó . 

The partial derivative of the Lagrangian over  is called generalized (canonical) momentum: 

;      (4) 

and the partial derivative of the Lagrangian over  is called the generalized force:  : (4) 

can be rewritten in more familiar form: . Then, by a definition, the energy (Hamiltonian) of the 

system is: 

     (5) 

Even though the Lagrangian approach fully describes a mechanical system it has some significant 
limitations. It treats the coordinates and their derivatives differently, and allows only coordinate 
transformations . There is more powerful method, the Hamiltonian or Canonical Method. 
The Hamiltonian is considered as a function of coordinates and momenta, which are treated equally. 
Specifically, pairs of coordinates with their conjugate momenta (4) (qi,Pi) or (qi,Pi) are called canonical 
pairs. The Hamiltonian method creates many links between classical and quantum theory wherein it 
becomes an operator. Before using the Hamiltonian, let us prove that it is really function of  i.e., 
that the full differential of the Hamiltonian is 

     (6) 

Using equation (5) explicitly, we can easily prove it: 

 

wherein we substitute with the expression for generalized momentum. In addition to this 
proof, we find some ratios between the Hamiltonian and the Lagrangian: 
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wherein we should very carefully and explicitly specify what type of partial derivative we use. For example, 
the Hamiltonian is function of  thus, partial derivative on  must be taken with constant 
momentum and time. For the Lagrangian, we should keep  to partially differentiate on .  
The last ratio gives us the first Hamilton's equation, while the second one comes from Lagrange's equation 
(5-11): 

    (7) 

both of which are given in compact form below in (11).  
 
Now, to state this in a formal way. The Hamiltonian or Canonical Method uses a Hamiltonian function 
to describe a mechanical system as a function of coordinates and momenta: 

       (8) 
 Then using eq. (5), we can write the action integral as 
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The total variation of the integral can be separated into the variation of the end points, and the variation of 
the integral argument: 

 

 The first term represents the variation caused by a change of integral limits (events), while the 
second represents the variation of the integral between the original limits (events). The total variation of 
the action integral (9) can separated similarly: 
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and the minimal-action principle gives us 

,    

which, after integration by parts of the last term translates into 

   

where the variation of coordinates and momenta are considered to be independent. Therefore, both 
expressions in brackets must be zero at a real trajectory. This gives us the Hamilton's equations of motion: 

      (11) 

It is easy to demonstrate that these equations are exactly equivalent to the Lagrange's equation of motion. 
This is not surprising because they are obtained from the same principle of least action and describe the 
motion of the same system.  
 
Let us also look at the full derivative of the Hamiltonian: 

 

This equation means that the Hamiltonian is constant if it does not depend explicitly on t. It is an 
independent derivation of energy conservation for closed system. The conservation of momentum is 
apparent from equation (11), viz., if the Hamiltonian does not depend explicitly on the coordinates, then 
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Returning to the Eq. (10), we now can consider motion along real trajectories. Here, the variation of the 
integral is zero and the connection between the action and the Hamiltonian variables is obtained by 
differentiation of the first term: 
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solving (12) without using the Lagrangian. All conservation laws emerge naturally from (10): if nothing 
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      (13) 

 

  
 

Hamiltonian method gives us very important tool – the general change of variables: , 
called Canonical transformations. From the least-action principle, two systems are equivalent if they 
differ by a full differential: (we assume the summation on repeating indices i=1,2,3, 

 and the use of co- and contra-variant vector components for the non-unity 

metrics tensor) 

   (14) 

where F is the so-called generating function of the transformation.  Rewriting (14), reveals that 
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In fact, generating functions on any combination of old coordinates or old momenta with new coordinates 
of new momenta are possible, totaling 4= 2 x 2 combinations:  

 

(15’) 
The most trivial canonical transformation is ;  with trivial generation function of  

 

Hence, this is direct proof that in the Hamiltonian method the coordinates and momenta are treated equally, 
and that the meaning of canonical pair (and its connection to Poisson brackets) has fundamental nature. 

The most non-trivial finding from the Hamiltonian method is that the motion of a system, i.e., the 
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with generation function being the action integral along a real trajectory (12): 

 

 
Special Relativity – a short detour 
 
1.1 Einstein principle of relativity.  
 There is nothing more un-natural than "non-relativistic" electrodynamics. And there are very few 
thing in our world as natural as relativistic electrodynamics. We can consider non-relativistic classical or 
quantum mechanics for objects which can rest or move slowly. But how we can describe electromagnetic 
wave without using speed of the light? which is the universal, as far as we know, physical constant: 

;    (1-1) 

The “c” does not depend on the system of reference . The standard non-relativistic Galileo's relativity 
principle claims 
 1. Free particle propagates with constant velocity (the law of inertia) ; 
 2. Time does not depend on the choice of inertial frame moving with velocity  with respect 
to initial frame of   reference:  

       (1-2) 
and velocity transformation is 

 .       (1-3) 
Many modern experimental facts disagree with Galileo's principle and confirm that: 

The speed of the light does not depend of the reference frame. 
Galileo assumed that we are leaving in Euclidean world. What is wrong in Galileo's principle is the 
assumption that time and distance between two points in 3-D space are absolute, i.e. independent from the 
reference frame.  
  

S(t +τ )− S(t) = Pidqi − Hdt( )
A

t+τ

∫ − Pidqi − Hdt( )
A

t

∫ ;

dS = Pi (t +τ )dqi − Pi (t)dqi + (Ht+τ − Ht )dt

c = 2.99792458(1.2) ⋅1010 cm sec

  
! 
v = conts

  
! 
V 

  t = ′ t ; ! r =
! 
′ r +
! 
V t

  
! v =
! 
′ v +
! 
V 



 7 

In 1905 Einstein modified principle of relativity to satisfy new experimental data. The Einstein principle 
of relativity comprises of two postulates: 
1. POSTULATE OF RELATIVITY (the same as Galileo):  
The laws of nature and results of all experiments are independent of translational motion of the system 
(reference frame) as whole. Precisely: there are a triply infinite set of equivalent Euclidean (3D) reference 
frames moving with constant velocities in rectilinear paths relative to one other in which all physical 
phenomena occur in an identical manner. 
2. POSTULATE OF THE CONSTANCY OF THE SPEED OF THE LIGHT (Einstein):  
The speed of the light (maximum velocity of propagation of interaction) is independent on the motion of its 
source. In other words: there is maximum velocity of propagation of any physical object (a particle, a wave, 
etc.), which interact with our world. 
 Galileo principle and  formulae for velocity transformation (1-3) do not satisfy second Einstein 
postulate. Therefore, Newton (or classical) mechanics based on the Galileo principles must be modified to 
satisfy experimental results. The most of famous experimental result contradicting to Galileo principle was 
Michelson-Morley experiment (1887). They tried to measure "ether drift" (the ether is imaginary substance 
in which electromagnetic waves are propagating; similar to the air for acoustic waves). They tried to 
measure difference between speed of the light in the direction of the Earth rotation and the opposite 
direction. According to the Galeleo law (1-3), there must be difference of ± . The result showed no 
difference. 
1.2 Events, 4-vectors, 4D-Intervals.  

 
Fig. 1. Two Inertial Reference Frames: system K' moves with velocity  with respect to system K. By 

choice of coordinate system (rotation in 3D space) we can make  parallel to the X axis. 
Let's introduce an important object in relativistic theory - an EVENT. An event is described by the location 
(in 3D coordinate system) where it occurred and by time when it occurred. As far as we know, it is full 
description of any event. We do not have any firm prove about the existence of other coordinates, so far... 
 Therefore, an event is defined by four coordinates (4-vector) in 4-dimensional time-space:  

;   .  

 (1-4) 
Let's look at two event A and B: A is the event when we sent a signal propagating with maximum possible 
speed , B is the event when signal arrived in different point of space. Both events can be described in any 
reference system: 
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K-system:  Event A: the signal was sent from location  at time  :
; 

  Event B: the signal was observed in location  at time : 
. 

K'-system: Event A: the signal was sent from location   at time  : 
; 

  Event B: the signal was observed in location   at time : 

. 

Signal propagates with the speed of the light in both systems. Therefore: 
  (1-5) 

   (1-5') 
The quantity for any arbitrary events A and B, defined as: 

   (1-6) 

is of special importance in special relativity. It is called the interval between two events. We have found 
that if interval is equal zero in one system it is equal to zero in all inertial system of references (eqs. (1-5) 
and (1-5')). Let's look at to events, which are infinitely close to each another:  
and interval  between them: 

.     (1-7) 
If =0, then it is equal zero in any other system =0. In addition,  and  are infinitesimals of 
the same order. Therefore,  must be proportional to each other: 

.      (1-8) 
The coefficient  can not depend on time or position not to violate homogeneity of the space and time. 
Similarly, it can not depend on direction of relative velocity not to contradict the isotropy of the space. 
Therefore, it can depend only on absolute value of relative velocity of the systems .  

 

 Fig. 2 

Three inertial reference systems K.K'.K''. K' moves with velocity  with respect to K, K" moves with 
velocity  with respect to K' and with velocity  with respect to K.  depends on both values and 
direction of . 
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2 = c2 ( ′ t B − ′ t A )

2 − ( ′ x B − ′ x A )
2 − ( ′ y B − ′ y A )

2 − ( ′ z B − ′ z A)
2 = 0.

sAB = c2 (tB − tA)
2 − (xB − xA )

2 − (yB − yA)
2 − (zB − zA )

2 ;

  
! r B =
! r A + d! r ; tB = tA + dt;

ds
ds2 = c2dt2 − dx 2 − dy2 − dz2

ds2 d ′ s 2 ds d ′ s 
ds2,d ′ s 2

ds2 = ad ′ s 2

a

  
a = a

! 
V ( )

K
K'

V

X

Y

Z
Z'

X'

Y'

K''

V' V''

  
! 
V 

  
! 
′ V   

! 
′ ′ V   

! 
′ ′ V 

  
! 
V ,
! 
′ V 
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Using relation (1-8) we have for K-system:    

; 

and for K'-system:     

 

yields the  ratio:      

. 

Left side depends on value of  which depends on both values and direction of , while right side 
depends only on absolute values of . Therefore, we should conclude that  does not depend on 
velocity at all: . The above relation reduces to , i.e.  (we drop trivial ). This 
great ratio gives us equality of infinitesimal intervals: 

      (1-9) 
and as result invariance of any finite intervals:  

.     (1-10) 

 
Fig. 3 World line (A-B) of the system and the light cone. 

There are three distinctive values of : positive, negative and zero. The sign and the value of  does 
not depend on system of reference: 

 

Spacelike interval: there is a system K' where two events occur at the same time, but in different points of 
space ; 

Timelike interval: there is a system K' where two events occur at the same place, but in different points of 
time ; 

  
ds2 = a

! 
V ( )d ′ s 2 ; ds2 = a

! 
′ ′ V ( )d ′ ′ s 2

  
d ′ s 2 = a

! 
′ V ( )d ′ ′ s 2;

  
a
! 
′ ′ V ( ) = a

! 
V ( )a ! ′ V ( )

  
! 
′ ′ V   

! 
V ,
! 
′ V 

  
! 
V ,
! 
′ V a

a = const a = a2 a = 1 a = 0

ds2 = d ′ s 2;

sAB = ds =
A

B

∫ d ′ s =
A

B

∫ ′ s AB

x

ct
Absolute    Future

Absolute     Past

Absolute 
Separation

Absolute 
Separation

A

B

s 2AB s 2AB

s 2AB < 0, spacelike separation
s2 AB > 0, timelike separation
s2 AB = 0, lightlike separation

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

  s
2

AB = c2 (tB − tA )
2 − (! r B −

! r A )
2 < 0;⇒s2 AB = −(! ′ r B −

! 
′ r A)
2 < 0

  s
2

AB = c2 (tB − tA )
2 − (! r B −

! r A )
2 > 0;⇒s2 AB = c2( ′ t B − ′ t A )

2 < 0
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Lightlike interval: two events can be connected by light signal .     
If we put event O in the origin, then  will define the light cone. All events inside the light cone 
(closer to t axis) can or could be connected with event O in future or in the past. Events outside this cone 
are absolutely remote with respect to this event: any exchange of information between these events and the 
event O is impossible. Fig. 3 illustrates this puncture for 1D space with light cone equation of . 
1.3 Lorentz transformations.  
 Transformation related to the change of reference system must preserve the value of interval  
between two arbitrary events: . An example of such transformation is 
rotation in 3D space which does not change time and preserves . We should look for some type 
of rotation in 4D space which preserves the interval. There are six independent rotation in 4D space: for 
example in planes . Three of them are 3 independent rotation in 3D space. The rest are 
special - they rotate THE TIME. Let's consider  "rotation", which does not change values of y and z. 
To preserve interval we should use hyperbolic functions instead of trigonometric: 

    (1-11) 

. 

Let's relate the angle of "rotation" and the movement of K' origin   (i.e. its velocity): 

; 

and yields final expression for Lorentz transformation: 

 

with conventional dimensionless parameters : 

.   (1-12) 

 Therefore, the Lorentz transformation in compact form is: 
    (1-13) 

gives us all necessary relation to proceed further. The inverse Lorentz transformation is following from (1-
13): 

    (1-14) 
which gives us identity relations if combined with (1-13): 

`  (1-15) 

using identity ratio: 

     (1-16) 

s 2AB = 0
  
! r 2 = c2t2

x = ±ct

s 2AB
  s
2

AB = c2 (tB − tA )
2 − (! r B −

! r A )
2

  (
! r B −
! r A)

2

xy, yz, zx, xt ,yt , zt
xt

x = ′ x coshψ + c ′ t sinhψ;
ct = c ′ t coshψ + ′ x sinhψ ;

y = ′ y ;
z = ′ z ;

s 2 = c ′ t coshψ + ′ x sinhψ( )2 − ′ x coshψ + c ′ t sinhψ( )2 − ′ y 2 − ′ z 2 =

c ′ t ( )2 cosh2 ψ − sinh2 ψ( ) − ′ x 2 cosh2 ψ − sinh2 ψ( ) − ′ y 2 − ′ z 2 = ′ s 2

′ x = 0

x = c ′ t sinhψ ;ct = c ′ t coshψ ; ⇒
V
c

=
x
ct

= tanhψ

sinhψ =
V
c

1 −
V2

c2
= βγ ; coshψ =1 1−

V 2

c2
= γ

0 ≤ β <1; 1 ≤γ < ∞

  
β =

V
c
;
! 
β =
! 
V 
c
; γ = 1 1 − V 2

c2
= 1 1 −β 2

x = γ ( ′ x + βc ′ t ); ct = γ (c ′ t + β ′ x ); y = ′ y ; z = ′ z ;

′ x = γ (x − βct); c ′ t = γ (ct − βx); ′ y = y; ′ z = z;

x = γ ( ′ x + βc ′ t ) =γ (γ (x − βct) + βγ (ct − βx))= γ 2(1−β 2 )x = x;
ct = γ (c ′ t + β ′ x ) = γ (cγ (ct − βx) + βγ (x − βct)) = γ 2(1−β 2 )ct = ct;

γ 2 (1 −β 2 ) = 1−β
2

1−β 2 =1.
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More general approach to the same derivation (we leave aside y and z which do not transform). In matrix 
form interval is: 

;    (1-17) 

and arbitrary Lorentz transformation in (x,t) is: 

     (1-18) 

with condition to preserve 4-interval (we chose + ): 

   (1-19) 

     

Applying standard conditions : coordinates move with ±V: 
 

we got 

. 

Constant speed of light gives the symmetry of (x,ct): 

 

Finally, detL=1 resolves the rest of puzzle: 

    (1-20) 

 
 

2.1 Proper Time, Proper Length and Proper Volume.  
 
 Proper time is defined in moving system K', i.e. in the rest frame of an object. (a clock). Let's 
consider a clock located in the origin of K'. Therefore,  and we can write proper time for moving 
object: 

 

;   (2-1) 

 

 

s2 = XTSX; S =
1 0
0 −1
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

X = L ⋅ ′ X ; L =
a b
c d
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ;

LT SL = S ⇒ det L = ±1; "+" ad − bc =1;

′ X = L−1 ⋅ X;L−1 =
d −b
−c a
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

′ x = 0; x = βct; c = βa; β = V / c; x = 0; ′ x = −βc ′ t ; c = −βd;⇒ a = d;

L =
a b
βa a
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

x = ct; ′ x = c ′ t ;
c ′ t 
c ′ t 
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = L

ct
ct
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ;⇒a + b = a + βa;⇒ b = βa

L = a
1 β
β 1
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ; det L = 1⇒ a = γ =

1
1 − β 2

  d
! 
′ r = 0

  ds2 = c2dt2 − d! r 2 = c2d ′ t 2

  
d ′ t = dt 1− d! r 2

c2dt 2
= dt 1 − v2

c2
= dt 1− β 2

′ t B − ′ t A = dt 1 − v2

c2
=

dt
γA

B

∫
A

B

∫ .
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Fig. 4 To find the proper time at origin of K', we compare one clock in K' with set of clocks in K (left); to 
find proper time at origin of K', we compare one clock in K with set of clocks in K (right). This process is 

asymmetric and a clock compared with a set of clocks always lags behind. 
 

 
Fig. 5 The only correct way to compare clocks: use two clocks, start them at the same point of space, 

leave one at the rest and bring second at the same point to compare elapsed time. The clock at rest will 
show more time then moving clock. Why? 

It is impossible to return clock using rectilinear motion; i.e. moving clock must be accelerated. Therefore, 
the system related to traveling clock is not inertial and is not identical to inertial system where first clock 
rests. Thus, a moving clock will show less time elapsed then a resting one. On other hand, we can look for 
the motion of K system from point of view of K'. Now we should locate a clock at the origin of K, and 

. Similar to eq. (2-1) we have: 
 

  (2-2) 

 
 It looks as a contradiction: time in K' system is both faster and slower then in K system. What is 
not correct is to compare different clocks in the resting system with fixed one in the moving system. The 
solution of “paradox” is illustrated by Figures 4 and 5. 

Y

K'

V

X

Z
Z'

X'

Y'

K
K'

V

X

Z
Z'

X'

Y'

K

Y

X

Z
K

Resting clock

  d
! r = 0

  
dt = d ′ t 1− d! ′ r 2

c2d ′ t 2
= dt 1− v2

c2
;tB − tA = d ′ t 1 − v2

c2
=

d ′ t 
γA

B

∫
A

B

∫ .
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 "Time paradox" is directly related to the Lorentz contraction. Suppose that there is a rod at rest in 
K system measured  where  are coordinates of two end of the rod. We should determine 
length of the same rod in K' system:  at the same moment of time 
: 
 

.    (2-3) 

 
Therefore, observed from a moving system the resting rod contracts by factor . The same will be correct 
if we look from K system on the rot resting in K' system at the same moment of time  using 

 
 

.      (2-4) 
 

 Again, there is no contradiction. We are looking for the length of the rod by observing its ends at 
the same moment of time, but in different systems. The source of “asymmetry”: time and space coordinates 
depend of the system of observation. 
 As we derived, coordinates transverse to the relative velocity of the system do not change 

. Therefore, the volume of the body will decrease proportionally to the contraction of 
coordinate parallel to the relative velocity of the system (x). This volume is called proper volume: 
 

      (2-5) 
 

 To finish discussion, let's consider a synchronization procedure of the clocks. The natural way to 
set clocks located at different positions  in K system is to send periodical light signal from the origin and 
set them at time  when light reach them. The traveling clock, fixed at origin of K', sees the distances 
in K system contracting by factor , and therefore the clock "thinks" that elapse time is . 
 What is most important that 4-dimentional volume  

 
is invariant of Lorentz transformations (we will discuss it at next lecture). It is direct consequence of the 
unit determinant of Lorentz transformation matrix:  

 
 

 

l = xB − xA xB, xA
xA = γ ( ′ x A + βc ′ t ); xB = γ ( ′ x B + βc ′ t ); ′ t 

′ l = ′ x B − ′ x A = xB − xA( ) / γ = l / γ

γ
t

′ x A = γ (xA − βct ); ′ x B = γ (xB − βct );

l = ′ l / γ

′ y = y; ′ z = z

V =V0 /γ

x
t = x / c

γ ′ t = x / γc

dΩ = cdtdV ≡ dx0dx1dx 2dx3

dΩ = det[L]d ′ Ω ;

L =

γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

; det[L] = γ 2(1− β2 ) = 1
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2.2 Transformation of velocities.  
 Lorentz transformation of coordinates and time give us all necessary information to calculate 
velocity of the particles is arbitrary inertial system: 

. 

 
Let's rewrite (1-13) in form of differentials: 

   (2-6) 
 
and divide coordinate differential by time differential: 

 

   (2-7) 

 

 
The transformation of velocities is more complex then transformation of space-time coordinates. It should 
not be of any surprise; e.g. the 3-D velocity is not a 4D object and it combines time and coordinates in 
"unnatural way for 4D world". 
 Let check that non-relativistic transformation of velocities is correct: for  or 

. Truly, we got . Let see that speed of the light transfer itself in the 
speed of the light: 
 

 (2-8) 
 
Therefore, Lorentz transformation preserves speed of the light, as was required.  

  

! 
v =

d
! 
r 

dt
= ˆ e x

dx
dt

+ ˆ e y
dy
dt

+ ˆ e z
dz
dt

; ! ′ v =
d
! 
′ r 

d ′ t 
= ˆ e x

d ′ x 
d ′ t 

+ ˆ e y
d ′ y 
d ′ t 

+ ˆ e z
d ′ z 
d ′ t 

;

cdt = γ (cd ′ t + βd ′ x );dx = γ (d ′ x +βcd ′ t );dy = d ′ y ;dz = d ′ z ;

vx =
dx
dt

=
cγ (d ′ x + βcd ′ t )
γ (cd ′ t +βd ′ x )

=

d ′ x 
d ′ t 

+ βc

1 +β / c ⋅
d ′ x 
d ′ t 

=
′ v x + V

1+ ′ v xV / c2
;

vy =
dy
dt

=
cd ′ y 

γ (cd ′ t +βd ′ x )
=

d ′ y 
d ′ t 

γ (1+ βd ′ x 
cd ′ t 

)
=

′ v y 1− V 2

c2

1+
′ v xV
c2

;

vz =
dz
dt

=
cd ′ z 

γ (cd ′ t +βd ′ x )
=

d ′ z / d ′ t 
γ (1+ β / c ⋅ d ′ x / d ′ t )

=
′ v z 1− V 2

c2

1 + ′ v xV / c2
.

v << c, V << c
c→ ∞ vx ≅ ′ v x + V ;vy ≅ ′ v y;vz ≅ ′ v z

  

′ v = c; ⇒ ′ v 2x + ′ v y
2 + ′ v z

2 = c2 ; vy
2 + vz

2 = c2 − ′ v 2x

! 
v 2 = vx

2 + vy
2 + vz

2 =
′ v x + V( )2 + ′ v y

2 + ′ v z
2( ) 1 −V 2 / c2( )

1 + ′ v xV / c2( )2
=

′ v x + V( )2 + c2 − ′ v 2x( ) 1 − V2 / c2( )
1+ ′ v xV / c2( )2

=

′ v 2x + 2 ′ v xV + V 2 + c2 −V 2 − ′ v 2x + ′ v 2xV 2 / c2

1 + ′ v xV / c2( )2
=

c2 + 2 ′ v xV + ′ v 2 xV 2 / c2

1 + ′ v xV / c2( )2
= c2
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 Before ending this section, let's look on generalization of Lorentz transformation when velocity of 
K' system is not parallel to the X-axis.  

 
  (2-9) 

where . This transformation defers from (1-14) by rotation in 3D space of X-axis into direction 
of . It derivation is rather simple: 

 

 

Other useful form of (2-9) is (using ): 
 

; 
 

 
 

Appendix A: 4-D metric of special relativity 
“Tensors are mathematical objects - you'll appreciate their beauty by using them” 

 
4-scalars, 4 vectors, 4- tensors. (closely follows [CTF]) 
 
 An event is fully described by coordinates in 4D-space (time and 3D-space), i.e., by a 4 vector: 

; .   (A-1) 
Consider a non-degenerated transformation in 4D space  

;      (A-2) 
;    (A-3) 

 and allowing the inverse transformation 

    (A-4) 

Jacobian matrices describe the local deformations of the 4D space: 

      (A-5) 

 and are orthogonal to each other 

;   (A-6) 

Here, we start with the convention to "silently" summate the repeated indexes: 

  
c ′ t = γ ct −

! 
β 
! r ( ); ! ′ r =

! r +
! 
β 
γ −1
β 2 (

! 
β 
! r ) − γ

! 
β ct;

  
! 
β =
! 
V / c

  
! 
V 

  

βx =
! 
β 
! 
r = γ (

! 
β 
! 
′ r + β 2c ′ t );

! 
r ⊥ = ˆ y ⋅ y + ˆ z ⋅ z =

! 
β × [! r ×

! 
β ]/ β2 =

! 
r −
! 
β (
! 
β 
! 
r ) /β 2 ; ! r ⊥ =

! 
′ r ⊥ ;

! 
r =
! 
r ⊥ +
! 
r // =
! 
r −
! 
β (
! 
β 
! 
r ) /β 2 + γ

! 
β (
! 
β 
! 
′ r + β2c ′ t ) /β 2

  
! 
β = ˆ n β

  
! r =
! r ⊥ +
! r // = ˆ n × [! ′ r × ˆ n ] + γˆ n (ˆ n ! ′ r + βc ′ t )

  ct = γ (c ′ t + β ˆ n ! ′ r );

  X
i = (x0 ,x1, x2 ,x3 ) ≡ (x0 , ! r ) x0 = ct; x1 = x; x 2 = y; x3 = z

′ X = ′ X (X )
′ x i = ′ x i (x0, x1,x 2, x3 ); i = 0,1,2,3

X = X ( ′ X )
xi = x i( ′ x 0 , ′ x 1, ′ x 2 , ′ x 3 ); i = 0,1,2,3

∂ ′ x i

∂x j ;
∂x j

∂ ′ x i ;

∂ ′ x i

∂x j ⋅
∂x j

∂ ′ x k
j =0

j =3

∑ =
∂ ′ x i

∂x j ⋅
∂x j

∂ ′ x k =
∂ ′ x i

∂ ′ x k = δ k
i
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.      (A-7) 

 A 4-scalar is defined as any scalar function that preserves its value while undergoing Lorentz 
transformation (including rotations in 3D space):  

     (A-8) 
 Contravariant 4-vector  is defined as an object for which the transformation 
rule is the same as for the 4D-space vector: 

     (A-9) 

i.e., 

;      (A-10) 

or explicitly 

    (A-11) 

 Covariant 4-vector  is defined as an object for which the transformation rule 
is 

;      (A-12) 

i.e., the inverse transformation is used for covariant components.  
 Contravariant  and Covariant  4-tensors of rank 2 are similarly defined : 

    (A-13) 

Mixed tensors with co- and contra- variant indexes are transformed by mixed rules: 

    (A-14) 

 Tensors of higher rank also are defined in this way. Thus, a tensor of rank n has 4n components: 4-
scalar - n=0, 40=1 component; 4-vector - n=1, 41=4 components; a tensor of rank 2 - n=2, 42=16 
components; and so on. Some components may be dependent ones. For example, symmetric- and 
asymmetric-tensors of rank 2 are defined as . A symmetric tensor has 10 independent 
components: four diagonal terms , and six  non-diagonal terms. An asymmetric tensor has 
six independent components: , while all diagonal terms are zero . Any 
tensor of second rank can be expanded in symmetric- and asymmetric-parts: 

.     (A-15) 

The scalar product of two vectors is defined as the product of the co- and contra-variant vectors: 
;       (A-16) 

It is the invariant of transformations: 

aibi ≡ aibi
i= 0

i= 3

∑

f ( ′ X ) = f (X); ∀ ′ X = L ⊗X
Ai = (A0,A1,A2,A3)

d ′ x i =
∂ ′ x i

∂x j dx j

′ A i =
∂ ′ x i

∂x j A j

′ A i =
∂ ′ x i

∂x0
A0 +

∂ ′ x i

∂x1
A1 +

∂ ′ x i

∂x2
A2 +

∂ ′ x i

∂x3
A3 ;

Ai = (A0,A1,A2 ,A3 )

′ A i =
∂x j

∂ ′ x i Aj

F jl Gjl

′ F ik =
∂ ′ x i

∂x j
∂ ′ x k

∂xl F jl ; ′ G ik =
∂x j

∂ ′ x i
∂xl

∂ ′ x k G jl ;

′ F i
k =

∂ ′ x i

∂x j
∂xl

∂ ′ x k F j
l ; ′ G i

k =
∂x j

∂ ′ x i
∂ ′ x k

∂xl Gj
l .

Sik = Ski; Aik = −Aki

Sii Si, k≠i = Sk≠ i,i

Ai,k≠ i = −Ak ≠i,i Aii = −Aii ≡ 0

Fik =
1
2
Fik + F ki( )+ 12 Fik − Fki( )

A ⋅B = AiB
i
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;   (A-17) 

where 

     (A-18) 

is the unit tensor. Note that the trace of any tensor is a trivial 4-scalar .  
;   (A-19) 

 
The metrics (or norm that must be a 4-scalar) defines the geometry of the 4-space. The traditional 
(geometric) way is to define it as . The 4-scalar is defining interval between events, details 
on which can be found in any text on relativity (see additional material to the course or in you favorite 
book, for example, L.D. Landau, E.M. Lifshitz, "The Classical Theory of Fields") 
An infinitesimal interval defines the norm of our "flat" space-time in special relativity: 

;   (A-20) 

and the diagonal metric tensor : 

; 

    (A-21) 

in which all non-diagonal term are zero . The metric (A-21) is a consequence of the Euclidean 
space- frame. In general, it suffices that  must be symmetric . Note that the contraction of the 
metric tensor yield the unit tensor . Comparing (A-21) and (A-20) we conclude that  

;     (A-22) 

i.e., the metric tensor  raises indexes and  lowers them, transforming the co- and contra-variant 
components 

     (A-23) 

For 4-vectors, the lowering or rising indexes change the sign of spatial components. There is no distinction 
between co- and contra- variants; they can be switched without any consequences. Convention defines them 
as follows : 

;     (A-24) 

 

 The  tensors are special as they are identical in all inertial frames (coordinate 
systems). This is apparent for :  

    (A-25) 

while  invariance is obvious from the invariance of the interval (A-20). Hence, it is better to say that the 

′ A i ′ B i =
∂x j

∂ ′ x i
∂ ′ x i

∂xk AjB
k =

∂x j

∂x k AjB
k = δ k

j Aj B
k = AkB

k

δ k
j =

1; j = k
0; j ≠ k

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Trace(F) = Fi
i ≡ F0

0 + F11 + F2
2 + F3

3 = ′ F i
i

ds 2 = dxidxi

ds 2 = dx0
2
− dx1

2
− dx 2

2
− dx3

2
= dx0

2 − dx1
2 − dx2

2 − dx3
2

gik

ds 2 = gikdx
idx k = gikdxidxk

gik = g
ik; g00 = 1;g11 = −1;g22 = −1;g33 = −1;

;gi≠ k = 0
gik gik = gki

gijg
jk = δ i

k

xi = gik xk ; xi = gikx
k

gik gik

F......i ...
...k ....... = gkjF.... j .i...

.......... = gkjgilF.... j ....
........l ..;etc.

  

Ai = (A0,
! 
A ) = (A0,A1,A2,A3)

Ai = (A0, −
! 
A ) = (A0, −A1, −A2 ,−A3 )

  A ⋅B = Ai ⋅ Bi = A0B0 −
! 
A ⋅
! 
B 

gkj , gil , gi
k ≡ δ i

k

δ i
k

′ δ j
i =

∂x k

∂ ′ x j
∂ ′ x i

∂xl δ l
k =

∂xk

∂ ′ x j
∂ ′ x i

∂x k =
∂ ′ x i

∂ ′ x j = δ j
i ;

gik
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preservation of  determines an allowable group of transformations in the 4D-space - the Lorentz group 
(see Appendix B). There is one more special tensor: the totally asymmetric 4-tensor of rank 4: . Its 
components change sign when any if indexes are interchanged:  

.    (A-26) 
 meaning that the components with repeated indexes are zero:  and only non-zero 
components are permutations of .  
By convention 

     (A-27) 

So that . The tensor  also is invariant of Lorentz transformation that is directly related to the 

determinant of the Jacobian matrix of Lorentz transformations .  

   (A-28) 

For Lorentz transformations . In the best courses on linear algebra, the above equation is used as the 
definition of the matrix determinant. For details, see Section 3.4 (pp. 132-134) and section 4.1 in G. 
Arfken’s “Mathematical Methods for Physicists” (where Eq. 4.2 is equivalent to 

). As mentioned in Landau CSF (footnote in §6), the invariance of 
a totally asymmetric tensor of rank equal to the dimension of the space with respect to rotations is the 
general rule. This is very easy to prove for 2D space. The 2D totally asymmetric tensor of rank 2 is

 has transformations of 

;

 (A-29) 
Therefore: 

 

(A-30) 

for rotations when . Finally, convolution of absolutely asymmetric tensor of rank n is equal 

n! - a number of permutations. In particular,  
  

gik
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⎩ 

⎫ 
⎬ 
⎭ 

= 1

eiklmeiklm = 4! = 24.



 19 

 Tensors of any rank can be real tensors or pseudo-tensors, i.e., scalars and pseudo-scalars, vectors 
and pseudo-vectors, and so forth. They follow the same rules for rotations, but have different properties 
with respect to the sign inversions of coordinates: special transformations that cannot be reduced to 
rotations. An example of these transformations is the inversion of 3D coordinates signs.  
The totally asymmetric tensor  is pseudo-tensor - it does not change sign when the space or time 
coordinates are inverted:  (it is the same as for 3D version of it, 

, ). Recall that the vector product in 3D space is a pseudo-
vector. Under reflection  
 We can represent six components of an asymmetric tensor by two 3D-vectors;  

.   (A-31) 

 
The time-space components of this tensor change sign under the reflection of coordinates, while purely 
spatial components do not. Hence,  is a real (polar) 3 -D vector , and  is 3D pseudo-vector (axial) vector. 

       (A-32) 

is called the dual tensor to asymmetric tensor , and vice versa. The convolution of dual tensors is 
pseudo-scalar . Similarly,  is a tensor of rank 3 dual to 4 vector . 

Differential operators 
 Next consider differential operators 

     (A-32) 

that follow the transformation rule for covariant vectors. Therefore, the differentiation with respect to a 
contravariant component is a covariant vector operator and vice versa! Accordingly, we can now express 
standard differential operators: 

4-gradient:   ;   

 (A-33) 

4-divergence    ;    

 (A-34) 

4-Laplacian (De-Lambert-dian): o .      (A-35) 

 Using differential operators allows us to construct 4-vectors and 4-tensors from 4-scalars. For 
example: 

.       (A-36) 
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Other example is the phase of an oscillator: . The phase is 4-scalar; 

it does not depend on the system of observation. It is very important, but not an obvious fact! Imagine a 
sine wave propagating in space and a detector that registers when the wave intensity is zero. Zero value of 
wave amplitude is the event and does not depend on the system of observation. Similarly, we can detect 
any chosen phase. Therefore, the phase is 4-scalar and 

      (A-37) 
is a 4-wave-vector undergoing standard transformation. Thus, we readily assessed the transformation of 
frequency and wave-vector from one system to the other, called the Doppler shift: 

     (A-38) 
then simply applying Lorentz transformations we found as last time: 
 

    (A-39) 

 
4-velocity, 4-acceleration 
Another way to create new 4-vectors is to differentiate a vector as a function of the scalar function, for 
example, the interval. Unsurprisingly, 3D velocity transformation rules do not satisfy simple 4-D vector 
transformation rules; to differentiate over time that is not 4-scalar will be meaningless.  4-velocity is 
defined as derivative of the coordinate 4-vector  over the interval : 

;       (A-40) 

and ,with simple way to connect it to 3D velocity  we obtain : 

      (A-41) 
that follows all rules of transformation. The first interesting result is that 4-velocity is dimension-less and 
has unit 4-length: 

       (A-42) 

which is evident by taking into account that . Thus, it follows directly that 4-
velocity and 4-acceleration 

      (A-43) 

are orthogonal to each other: 

.      (A-44) 
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What is more amazing is that simply multiplying 4-velocity by the constant  yields the 4-momentum: 
    (A-45) 

, furthermore, gives the simple rules to calculate energy and momentum of particles in arbitrary frame 
(beware of definition of γ here!): 

    (A-46) 

 
Integrals and their relations 
 Transformation rules are needed for elements of hyper-surfaces and for the generalization of Gauss 
and Stokes theorems. Those who studied have external differential forms in advances math courses will 
find it trivial, but for those who have not they may not be easy to follow. We will use all necessary relations 
during the course when we need them. Here is a simple list:  
1. The integral along the 4-D trajectory has an element of integration  i.e,. similar to  for the 
3D case. 
2. An element of the 2D surface in 4D space is defined by two 4-vectors  and an element of 

the surface is the 2-tensor . A dual tensor  is normal to the 

surface tensor: . It is similar to 3D case when the surface vector 

 is perpendicular to the surface. 

3. An element of the 3D surface (hyper-surface or 3D manifold) in 4D space is defined by three 4-
vectors  and the three tensor element and dual vector of the 3D surface are 

.  (A-47) 

Its time component is equal to the elementary 3D-volume . 

4. The easiest case is that of a 4D-space volume created by four 4-vectors:  
which is a scalar  

 => ;  

5. The rules for generalization of the Gauss and Stokes theorems ( actually one general Stokes 
theorem, expressed in differential forms) are similar to those for 3D theorems, but there more of them: 

  (A-48) 

  
 
1.1 Relativistic Mechanics 
From here further: i=0,1,2,3 in Minkowki space with (1,-1,-1,-1) metric.  
 Let’s use Principle of Least Action for a relativistic particle. To determine the action integral for a 
free particle (which does not interact with the rest of the world), we must ensure that the action integral 
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does not depend on our choice of the inertial system. Otherwise, the laws of the particle motion also will 
depend on the choice of the reference system, which contradicts the first principle of relativity. Therefore, 
the action must be invariant of Lorentz transformations and rotation in 3D space; i.e., it must depend on a 
4D scalar. So far, from Appendix A, we know of one 4D scalar for a free particle: the interval. We can 
employ it as trial function for the action integral, and, by comparing the result with classical mechanics find 
a constant  connecting the action with the integral of the interval: 

 

.      (16) 

The minus sign before the integral reflects a natural phenomenon: the law of inertia requires a resting free 
particle to stay at rest in inertial system. The interval  has a maximum possible value (

) and requires for the action to be minimal, that the sign is set to be "-". 
 The integral (16) is taken along the world line of the particle. The initial point  (event) 
determines the particle’s start time and position, while the final point  (event) determines its final time 
and position. The action integral (16) can be represented as integral with respect to the time: 

;  

where  signifies the Lagrangian function of the mechanical system. It is important to note that while the 
action is an invariant of the Lorentz transformation, the Lagrangian is not. It must depend on the reference 
system because time depends on it. To find coefficient , we compare the relativistic form with the known 
classical form by expanding  by : 

 ;  

which confirms that  is positive and , where  is the mass of the particle.  
Thus, we found the action and the Lagrangian for a relativistic particle: 

;        (17) 

       (18) 

The energy and momentum of the particles are defined by the standard relations eqs. (4) and (5): 

       (19) 

      (20) 
with ratio between them of 

       (21) 
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The energy of the resting particle does not go to zero as in classical mechanics but is equal to the famous 
Einstein value,  with the standard classical additions at low velocities ( ): 

 

 
Four-momentum, conservation laws. The least-action principle gives us the equations of motion and an 
expression for the momentum of a system. Let us consider the total variation of an action for a single 
particle: 

 

where  is 4-velocity. Integrating by parts,  

     (22) 

we obtain the expression that can be used for all purposes. First, using the least-action principle with fixed 
A and B , to derive the conservation of 4-velocity for a free particle: 

 or the inertia law.  

Along a real trajectory  the action is a function of the limits A and B (see eq. (12): 

, i.e.,  is the full differential of t and  with energy and 
momentum as the parameters. We note that this form of the action already is a Lorentz invariant: 

 

i.e. classical Hamiltonian mechanics always encompassed a relativistic form and a metric: a scalar 
 is a 4-product of  and  with the metric (1,-1,-1,-1). Probably one of most remarkable things 

in physics is that its classic approach detected the metric of 4-D space and time at least a century 
before Einstein and Poincaré. 

To get 4-momentum, we consider a real trajectory  and set : 

    (23) 

with an obvious scalar product ( , see Appendix A. eq. (A.42)) 

.     (24) 
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     (25) 

and, Lorentz transformation ( is a 4-vector, K' moves with ): 

  (26) 

where subscripts are used for  to define the velocity to which they are related. .  
 Equation (24) expresses energy, velocity, and the like  in terms of momenta and allows us to 
calculate all differentials: 

    (27) 

   

(28) 

Coefficients  differ from the above by constants, and satisfy similar relations. 
 The conservation laws reflect the homogeneity of space and time (see Mechanics): these natural 
laws do not change even if the origin of the coordinate system is shifted by . Then, 

. We can consider a closed system of particles (without continuous interaction, i.e., 
for most of the time they are free). Their action is sum of the individual actions, and 

   (29) 

.    (30) 

 
1.2 Particles in the 4-potential of the EM field.  
The EM field propagates with the speed of light, i.e., it is a natural product of relativistic 4-D space-time; 
hence, the 4-potential is not an odd notion!  
 
In contrast with the natural use of the interval for deriving the motion of the free relativistic particle, there 
is no clear guideline on what type of term should be added into action integral to describe a field. It is 
possible to consider some type of scalar function * to describe electromagnetic fields, but this 
would result in wrong equations of motion. Nevertheless, the next guess is to use a product of 4-vectors 

, and surprisingly it does work, even though we do not know why? Hence, the fact that 

electromagnetic fields are fully described by the 4-vector of potential  must be 
considered as an experimental fact! 
 Nevertheless, it looks natural that the interaction of a charge with electromagnetic field is 
represented by the scalar product of two 4-vectors with the  coefficient chosen by convention: 
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;      (31) 

where the integral is taken along the particle’s world line. A charge  and speed of the light c are moved 
outside the integral because they are constant; hence, we use the conservation of the charge  and 
constancy of the speed of the light ! 
It is essential that field is GIVEN, SINCE we are CONSIDERING a particle interacting with a given field. 
 

*You can check that this function will give the equations of motion  

Turning our attention back to the Least-Action Principle and Hamiltonian Mechanics 
The standard presentation of 4-potential is  

;       (32) 
where  is called the scalar potential and  is termed the vector potential of electromagnetic field. 
Gauge Invariance. As we discussed earlier the action integral is not uniquely defined; we can add to it an 
arbitrary function of coordinates and time without changing the motion: . This corresponds 
to adding the full differential of f in the integral  (31)  

  

This signifies that the 4-potential is defined with sufficient flexibility to allow the addition of any 4-gradient 

to it (let us choose ) 

      (33) 

without affecting the motion of the charge, a fact called THE GAUGE INVARIANCE .  
 We should be aware that the evolution of the system does not change but appearance of the equation 
of the motion for the system could change. For example, as follows from  (33), the canonical momenta will 
change: 

. 
Nevertheless, only the appearance of the system is altered, not its evolution. Measurable values (such as 
fields, mechanical momentum) do not depend upon it. One might consider Gauge invariance as an 
inconvenience, but, in practice, it provides a great opportunity to find a gauge in which the problem becomes 
more comprehensible and solvable. 
The action is an additive function: therefore, the action of a charge in electromagnetic field is simply the 
direct sum of a free particle’s action and action of interaction: (remember 
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     (34) 
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  (35) 

That gives us a 4-momentum 

     (36) 

with  

   (37) 

The Hamiltonian must be expressed in terms of generalized 3-D momentum,  and it is 

    (38) 

with Hamiltonian equation following from it: 

 

 

From this equation we can derive (without any elegance!) the equation for mechanical momentum 
. We will not do it here, but rather we will use easier way to obtain the 4D equation of motion via the least-
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As usual, the expression inside the round brackets must be set at zero to satisfy (39); i.e., we have the 
equations of charge motion in an electromagnetic field: 

      (40) 

wherein we introduce an anti-symmetric electromagnetic field tensor 

      (41) 

Electromagnetic field tensor: The Gauge Invariance can be verified very easily: 

 

which means that the equation of motion (40) is not affected by the choice of the gauge, and the 
electromagnetic field tensor is defined uniquely! Using the Landau convention, we can represent the 
asymmetric tensor by two 3-vectors (see Appendix A):  

 

         (42) 

 is the so-called vector of the electric field and  is the vector of the magnetic field. Note the occurrence 
of the Lorentz group generator (see special material for Lecture 2) in (42).  
The 3D expressions of the field vectors can be obtained readily:  

   (43) 

   (44) 

 A 3D asymmetric tensor  and the  definition are used to derive last equation and use Greek 
symbols for the spatial 3D components. The electric and magnetic fields are also Gauge invariant being 
components of Gauge invariant tensor. 
We have the first pair of Maxwell's equations without further calculation using the fact that differentiation 
is symmetric operator ( ): 
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or explicitly: 
.     (46) 
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     (47) 

I note that (47) is the exact 3D equivalent of invariant 4D Maxwell equations (45) that you may wish to 
verify yourself. There are 4 equations in (45): i=0,1,2,3. The div is one equation and curl gives three (vector 
components) equations. Even the 3D form looks very familiar; the beauty and relativistic invariance of the 
4D form makes it easy to remember and to use. 
EM Fields transformation, Invariants of the EM field. The 4-potential was defined as 4-vector and it 
transforms as 4-vector. The electric and magnetic fields, as components of the asymmetric tensor, follow 
its transformation rules (See Appendix A). 

     (48) 

and the rest is unchanged. An important repercussion from these transformations is that the separation of 
the electromagnetic field in two components is an artificial one. They translate into each other when the 
system of observation changes and MUST be measured in the same units (Gaussian). The rationalized 
international system of units (SI) system measures them in V/m, Oe, A/m and T. Why not use also a horse 
power per square mile an hour, the old British thermal units as well? This makes about the same sense as 
using Tesla or A/m. 
While the values and directions of 3D field components are frame-dependent, two 4-scalars can be build 
from the EM 4-tensor    

         (49) 
which in the 3D-form appear as  

        (50) 
This conveys a good sense what can and cannot be done with the 3D components of electromagnetic fields. 
Any reference frame can be chosen and both fields transferred in a minimal number of components limited 
by (50). For example; 1) if  in one system it is true in all systems and vice versa; and (2) if fields 
are perpendicular in one frame, , this is true in all frames. When  a frame can always 
be found where  or  are equal to zero (locally!). 
Lorentz form of equation of a charged particle’s motion. 
The equations of motion (40) can rewritten in the form: 

   (51) 

So, we have expressions for the generalized momentum and energy of the particle in an electromagnetic 
field. Generalized momentum is equal to the particle’s mechanical momentum plus the vector potential 
scaled by e/c. The total energy of the charged particle is its mechanical energy, , plus its potential 
energy ,  , in an electromagnetic field. The Standard Lorentz (not Hamiltonian!) equations of motion for 
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      (52) 

with the force caused by the electromagnetic field (Lorentz force) comprised of two terms: the electric 
force, which does not depend on particle’s motion, and, the magnetic force that is proportional to the vector 
product of particle velocity and the magnetic field, i.e., it is perpendicular to the velocity. Accordingly, the 
magnetic field does not change the particle’s energy. We derived it in Eq. (51):  

      (53) 

Eqs. (52) and (53) are generalized equations. Using directly standard Lorentz equations of motion in a 3D 
form is a poor option. The 4D form is much better (see below) and, from all points of view, the Hamiltonian 
method is much more powerful! 

 
First pair of Maxwell's equations (a little more of juice) 
 We will derive full set of Maxwell equations using the least action principle. Nevertheless, you can 
consider the Maxwell equation as given - in any case they were derived originally from numerous 
experimental laws! 
 First pair of Maxwell's equations is the consequence of definitions of electric and magnetic field 
through the 4-potential: 

 it is equivalent to   (59) 

Nevertheless, it is very important to remember that they are actually originated from experiment. First 
Maxwell equation is the Faraday law and the second is nothing else that absence of magnetic charge! You 

should remember all time that inclusion of the term  into action integral is consequence 

of experiment! Thus, the first pair of Maxwell equations governing the electromagnetic fields is: 

      (60) 

      (61) 

with well known integral ratios following it: 

Gauss' theorem:          (62) 

Stokes' theorem:    
 

  (63) 

where  is vector of the element of the surface and  is a vector of a contour length. Integral equations 
read: the  
1) Flux of the of the magnetic field though the surface covering any volume V is equal zero; 
2) The circulation of electric field around the contour (electromotive force) is equal to the derivative 

of the magnetic flux though the contour scaled down by "-c" - the Faraday law.  
7.2 Action of the electromagnetic field. 
 As we discussed earlier, in the relativistic picture of the world, the field acquires its it’s own 
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physical reality. Therefore, the action of whole system including a particle and a field must consist of three 
parts: the action of free particle, the action of free field and the action their interaction: 

     (64) 
We already got first and last term. For a several free particles, the action is the direct sum of individual 
actions: 

      (65) 

and interaction with the field is the sum of their individual interactions: 

      (66) 

The sum of (65) and (66) gives us equation of particle's motion in "external", i.e. pre-defined 
electromagnetic fields. Now we want to know how charged particles influence the EM field and how EM 
field evolves on its own? We do not know, also, what defines properties of a free field? First pair of Maxwell 
equations gives us only two connections: the time derivative of the magnetic field and its divergence (zero). 
We still don't know what is time derivative of electric field and what is its divergence? 
 Please remember that all following discussion must be considered as a logical excise. Final form 
of the field action has to have the most important property: it must satisfy the experimental observations! 
Where to start to get them? 
 One of the most important properties of the field confirmed by experiments is the Principle of 
Superposition: 
the resulting field produced by various sources is a simple composition (the direct sum) of the fields 
produced by individual sources! It means that resulting electric and magnetic fields are vector sum of 
individual fields. Thus, we have a clue that we should look for type of equations, which allows superposition 
of solutions, i.e. linear differential field equations*. In order to generate linear differential equations, the 
action should contain quadratic expression of the field components**, which described by field 4-tensor 

.  
*In field theory the 4-vector of the field  is coordinate of the field. Therefore, field's 4-tensor is first order derivative 
of the coordinates. According to Hamiltonian principle, the action could have under integral only coordinates and 
their first derivatives. This requirement excludes derivatives of  from the action's integral. 
** 4-vector of the field  is not unique (Gauge transformation) and trial function comprising 4-vector of the field 
will give non-unique equation of the field. The difference with interaction term is that last includes first order of 4-
potential and non-uniqueness does not affect equation of motions. Situation is not the same for quadratic term! A 
variation acts in similar manner as a differentiation  - “to get linear (2x1) we need to differentiate (x2)”. 
 In addition, the action must be 4-invariant (4-scalar, not pseudo-scalar!), which leaves us with 

. Finally, the field is "an entity leaving" in space and time coordinates. In order to 
describe total field we should integrate over all space between two "time" events  
which is 4-invariant:  where a,b,c,d four 4-vectors defining element of 4-volume. 
Therefore, a probable form of the action of the EM field is: 

      (67) 

The choice of the coefficient before integral is equivalent to the choice of the units to measure the field. In 
the Gaussian system of units, which we are using, fields are measured in Gs and coefficient is  
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.      (68) 

The total action is: 

    (69) 

4-current and equation of continuity.  The conservation of the charge should affect our equations. Let's 
make a glance on this issue and write a charge conservation law in the form useful for future derivation of 
the field equations. It is very useful to describe charges by a distribution function. The charge density  is 
defined as the charge contained in unit volume: 
 

;      (70) 
and microscopic (exact in classical EM) definition of  is sum of Dirac's delta-functions: 

;      (71) 

where index a is index to count particles. 4-vector of current is defined as: 

.       (72) 

The fact that  is a 4-vector comes from equivalence: 

;     (73) 

and the fact that charge is 4-scalar or invariant (experimental fact) and  is the 4-scalar. Thus: 

      (74) 
To be exact, for point charges, the 4--current is: 

     (75) 

It is the microscopic 4-current for ensemble of particles. When it is necessary, it can be averaged over a 
"small volume" for macroscopic description. We do not need averaging now and can comfortably use Eq. 
(75). Our goal is to get the equation of continuity: 

     (76) 

which is resulting from charge conservation. It is easy to do for microscopic distribution (75): 

;

 (77) 
with  and we use derivative of Dirac's delta-function. Now we are ready 
for next trick, i.e. to present action of the interaction as integral of 4-current: 
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 (78) 

Side note: Today we are using the method, which is standard for all modern filed theories: QED, QCD, 
SUSY, etc. In self-consistent theories, particles become fields as well. In QED, an electron is not a point 
particle but a "wave" described by 4-spinor . We can include this into our action very easy by writing 
correct QED current in the interaction term (78) 

. 
In this case, the current is a continuous function of the space and time. It is a better way that having Dirac's 
delta-function. The nature of the current, as we would see, does not change equation of the field motion. It 
means that Maxwell equations do not change when we introduce quantum description of charges! In this 
case, the equation of the charges motion should be also proper, i.e. those derived by Dirac: 

. 
I would not go into details of Dirac's description of electron and his 4x4 γ-matrices. If you are interested, 
look through one of many QED books. Thus, equivalent form of (7-12) is: 
 

   (79) 

Second pair of Maxwell's equations: more of the least action… 
 We already found equation of charges motion in the field. Let's consider all charges following their 
equation of motion  

.     (80) 

Let's changes move along their real trajectories. Now we will vary only the field to find its equations of 
motion: 

  (81) 

where we use  
.     (82) 

It is important to remember that we can vary both particle's trajectories and field if we wish. It will give us 
two terms in the variation of the action: one containing variation of the trajectories 

   (83) 

and the other containing variation of the field. Variations for each particle and the field are independent. 
Therefore, each independent component of action’s variation must be equal zero. (83) will give us again 
equation of particle's motion, while field terms (81) will bring us to the field equations. Let's rewrite second 
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term in (81): 
  

 
 .  (84) 

Now we can integrate by parts: 

 (85) 

with second integral obtained by 4D Gauss theorem:  

,     (86) 

where  is element of hyper-surface surrounding 4-volume . It is not so essential, how it looks. One 
simple case: we integrate over all space and fixed time interval (t1,t2). Surface of the � is full 3D space at 
moments of t1,t2. The least action method calls for zero variations on the boundaries  and 
second integral in (85) disappears leaving us with:  

.    (87) 

Please notice that we are left only with variations of 4-potential. It is very natural because variations of 4-
potential fully define field's variations. Equation (87) gives us "second pair" of Maxwell equations in 4D 
form: 

     (88) 

3D form follows directly from (88) and form of the field tensor: 

;     (89) 

and yields: 

       (90) 

      (91) 

Integral equations are obvious applications of Stokes and Gauss theorems to Eqs (90-91) 

       (92) 
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      (93) 

Equivalent forms of Maxwell equations: 

      (94) 

Compact 4-D:  
 

;        (95) 
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