Homework PHY 554 \#4.

HW 1 (3 points): Cavities filled with ferrite material are used for RF system requiring large frequency tuning range. The frequency is controlled by applying external magnetic field, $B_{\text {ext }}$, to the ferrite material and by doing so to change it magenta permeability $\mu\left(\mathrm{B}_{\text {ext }}\right)$. A 300 m in circumference AGS synchrotron accelerates polarized protons from total energy of 2.5 GeV to 25 GeV .
(a) Calculate the range of the beam revolution frequency in AGS;
(b) Assuming 100% filling by ferrite, what should be ratio of $\mu_{\max }$ to $\mu_{\min }$. Where μ should have maximum value?

Note: RF systems operate on a fixed integer harmonic of the revolution frequency.

Solution:

(a) Rest energy of a proton is 0.9837 GeV . It means that Lorentz factor changes from 2.66 to 26.6 and v / c changes from 0.9269 to 0.9993 , e.g. revolution frequency increases 1.0781 fold during acceleration from 927.5 kHz to 999.987 kHz (e.g. 1 MHz !).
(b) Since the frequency of an RF cavity scales the same as speed of light in the media:

$$
\omega_{\text {res }}=\frac{\omega_{o}}{\sqrt{\varepsilon \mu}} \rightarrow \mu \propto \omega_{\text {res }}{ }^{-2}
$$

one should reduce μ 1.162-fold to accommodate necessary change in resonant frequency.

HW 2 (2 points): In RF cavity operating at 500 MHz , amplitude of the magnetic field at the part surface is 500 Gs or 500 Oe . Find power losses per square meter of the surface for:
(a) Cu cavity*
(b) SRF cavity with surface resistance, $\mathrm{R}_{\mathrm{s}}=510^{-9} \mathrm{Ohm}$.

How much water you can heat from $20 \mathrm{C}^{\circ}$ to $40 \mathrm{C}^{\circ}$ in one hour (3,600 second) by cooling such Cu cavity?
*Hint: you may use the conductivity of Cu or scale R_{s} from results shown in Lecture 11. Thermal capacitance of water is $4,179 \mathrm{~J} / \mathrm{kg} / \mathrm{C}^{\circ}$.

Solution:

We should use formula for surface losses for a good conductor (it is in SI units):

$$
\frac{P_{\text {loss }}}{A}=\frac{1}{2} R_{s}\left|\overrightarrow{\mathbf{H}}_{/ /}\right|^{2}
$$

The most confusing is to transfer H from CGS $(\mathrm{Gs}=\mathrm{Oe})$ units to SI $(\mathrm{A} / \mathrm{m})$ with coefficient $1000 / 4 \pi: \mathrm{H}=3.9810^{4} \mathrm{~A} / \mathrm{m}$: With $\mathrm{A}=1 \mathrm{~m}^{2}$ power lost is simply

$$
P_{\text {loss }}=\frac{1}{2} R_{s}\left|\overrightarrow{\mathbf{H}}_{/ /}\right|^{2} A=\frac{1}{2} R_{s}\left|\overrightarrow{\mathbf{H}}_{/ /}\right|^{2}
$$

and for SRF cavity we would have 3.96 W losses per one square meter of the surface. For Cu surface impedance scales with the frequency

$$
R_{s}=\sqrt{\frac{\omega \mu}{\sigma}}[\Omega]
$$

In slide 8 , lecture 11 we shown that for $\mathrm{Cu} R_{s}=10 \mathrm{mOhm}$ at frequency of 1.5 GHz , which is 3 time higher than in our case. Thus

$$
R_{s}(C u, 500 \mathrm{Mhz})=\frac{10 \mathrm{~m} \Omega}{\sqrt{3}} \approx 5.8 \mathrm{~m} \Omega
$$

and power loss density is 4.57 MW per m^{2}. In one hour the EM field generates 1.6510^{10} J in $1 \mathrm{~m}^{2}$ of the Cu surface. Heating one kg (e.g. one liter) of water by 20 K requires 83.6 kJ : hence this power will heat from $20 \mathrm{C}^{\circ}$ to $40 \mathrm{C}^{\circ} 197$ tons of water! e.g. a cube approximately 6 mx 6 mx 6 m .

HW 3 (4 points): Superconducting RF pillbox cavity operating at 2 K temperature would quench when the surface magnetic field reaches above 0.1 T (e.g. 1,000 Gs or 1,000 Oe).
(a) For such pillbox cavity operating in fundamental TM_{010} mode find maximum attainable accelerating electric field on axis of the cavity.
(b) For Rs $=5$ nanoOhm, calculate thermal losses in such cavity operating at 20 MV/m (Hint do not forget side walls!)

Solution:

(a) In pillbox cavity

$$
\begin{aligned}
& \mathbf{E}_{z}=E_{o} \cdot J_{o}\left(2.405 \frac{r}{a}\right) \sin (\omega t) \\
& \mathbf{B}_{\theta}=E_{o} \cdot J_{1}\left(2.405 \frac{r}{a}\right) \cos (\omega t)
\end{aligned}
$$

and magnetic field (e.g., J_{1}) has maximum at intermediate radius:

$$
J_{1}(x)_{\max }=0.581865 \quad \text { at } x=1.84118
$$

e.g., we have limit $\mathbf{B}_{\theta}=0.581865 E_{o} \leq 10^{3} G s$. Now we just need to remember that 1 Gs (CGS system) is equal to $299.79 \mathrm{~V} / \mathrm{c} \sim 30 \mathrm{kV} / \mathrm{m}$. Hence we get limitation for accelerating field on axis $\boldsymbol{E o}<\mathbf{5 1 . 5} \mathbf{M V} / \boldsymbol{m}$.

(b) We need to integrate on 3 surfaces: front and back faces (circles with radius a) and a cylinder of radius a and length d. Reversing the relations, $20 \mathrm{MV} / \mathrm{m}$ is equivalent to $\mathrm{B}=667$ Gs. Corresponding $H_{o}=5.3110^{4} \mathrm{~A} / \mathrm{m}$.

$$
\begin{gathered}
\mathbf{H}_{\theta}=\frac{\mathbf{B}_{\theta}}{\mu_{o}}=H_{o} \cdot J_{1}\left(2.405 \frac{r}{a}\right) \cos (\omega t) ; \\
P_{\text {loss }}=\frac{1}{2} R_{s} \oiint d a\left|\overrightarrow{\mathbf{H}}_{/ /}\right|^{2}=R_{s} \frac{H_{o}}{2}\left(2 \oiint_{\text {circle }} J_{1}^{2}\left(2.405 \frac{r}{a}\right) d a+J_{1}^{2}(2.405) \oiint_{\text {culinder }} d a\right) \\
P_{\text {loss }}=2 \pi R_{s} \frac{H_{o}{ }^{2}}{2}\left(2 a^{2} \int_{0}^{1} J_{1}^{2}(2.405 x) x d x+a d J_{1}^{2}(2.405)\right) \\
\int_{0}^{1} J_{1}^{2}(2.405 x) x d x=0.134757 ; \quad J_{1}^{2}(2.405)=0.269475 ; \\
P_{\text {loss }} \simeq 2 \pi R_{s} \frac{H_{o}{ }^{2}}{2} \cdot 0.27\left(a^{2}+a d\right) \approx 0.85 \cdot H_{o}{ }^{2}\left(a^{2}+a d\right)
\end{gathered}
$$

or, in other terms:

$$
P_{l o s s}[W] \simeq 12 *\left(a^{2}+a d\right)\left[m^{2}\right]
$$

With ratio between the RF wavelength and the pillbox-cavity of

$$
a=\frac{2.405}{2 \pi} \lambda_{R F} ; \lambda_{R F}=\frac{c}{f_{r f}}
$$

and assuming a maximum gain form the cavity with $d=\lambda_{R F} / 2$, the losses become

$$
P_{\text {loss }}[W] \simeq 12 \cdot \frac{2.405}{2 \pi}\left(\frac{2.405}{2 \pi}+\frac{1}{2}\right) \lambda_{R F}^{2}\left[m^{2}\right] \approx 4 \lambda_{R F}^{2}\left[m^{2}\right]
$$

e.g. if $R s$ is a constant, than the losses are increasing with reducing the frequency! This is the case of rather low frequencies when the so-called residual resistivity is larger that regular SRF surface resistance.
As an example, for 500 MHz pillbox cavity we would have RF wavelength of 0.6 m , and losses will be 1.44 W .

HW 4 (6 points): For SRF Nb cavity the London penetration depth is equal to 40 nanometers.
(a) What is the density of superconducting electrons, n_{s} ?
(b) For surface magnetic field of 500 Gs or 500 Oe , find the density of surface current.
(c) For frequency of 1 GHz , find value of electric field on the surface of the superconductor.
(d) Assuming conductivity on normal component (non-superconducting electron) of Nb is $3 \times 10^{8} \mathrm{~S} / \mathrm{m}$ (e.g., conductivity of $6 \times 10^{6} \mathrm{~S} / \mathrm{m}$ at room temperature multiplied by RRR of 50), find what is the value of the normal component of the surface current.

Hint: assume that the superconducting conductivity is significantly higher than normal part.

Solution: Use lecture 12
(a) Use your favorite unit system, mine is clearly CGS:

$$
\lambda=\sqrt{\frac{m}{\mu_{o} e^{2} n_{s}}}(S I)=\sqrt{\frac{1}{4 \pi r_{e} n_{s}}}(C G S) ; \quad r_{e}=\frac{e^{2}}{m c^{2}}
$$

with classical radius of electron being $2.810^{-13} \mathrm{~cm}, \lambda=410^{-6} \mathrm{~cm}$

$$
n_{s}=\frac{1}{4 \pi r_{e} \lambda^{2}}=1.76 \cdot 10^{22} \mathrm{~cm}^{-3}
$$

(b) Again, in CGS units

$$
\oint H d l=\frac{4 \pi}{c} I \rightarrow \frac{I}{l}=\frac{c}{4 \pi} H
$$

and in SI units

$$
J_{s}=\frac{I}{l}\left[\frac{A}{m}\right]=H\left[\frac{A}{m}\right]=\frac{10^{3} H[G s]}{4 \pi} \approx 40\left[\frac{k A}{m}\right]
$$

(c) The current density at the surface

$$
j_{s}=\frac{J_{s}}{\lambda}=\approx 10^{12}\left[\frac{A}{m^{2}}\right] ; E=\mu_{o} j_{s} \cdot \omega \lambda^{2}=12.6 \mathrm{~V} / \mathrm{m}
$$

(d) we need to remember expression for Ohms law (lecture 10, slide 8)

$$
j_{n}=\sigma_{n} E=3.8 \cdot 10^{9} \mathrm{~A} / \mathrm{m}^{2} ; J_{n}=j_{n} \lambda=150 \mathrm{~A} / \mathrm{m}
$$

