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Recap: 

As we discussed in previous lectures, motion in a linear Hamiltonian system is fully described by 
transport matrix: 

H = 1
2

hij (s)xi
i=1

2n

∑
i=1

2n

∑ x j ≡
1
2
XT ⋅H(s) ⋅X,  XT = q1,P1...,qn ,Pn{ } ≡ x1, x2..., x2n−1, x2n{ };

d
ds
X = D(s) ⋅X; D(s) ≡ S ⋅H(s) → X(s) =M so s( )X(so );

d
ds
M so s( ) = D(s) ⋅M so s( ); M so so( ) = I.

; 

(r1) 

We proved that the matrix is symplectic 

 M
T ⋅S ⋅M=M ⋅S ⋅MT = S ! M−1 = −S ⋅MT ⋅S ;    (r2) 

We also found the order of matrices multiplication: the first transport matrix is on the right and 
the last one is on the left: 

X(s1) =M so s1( )X(so ); X(s2 ) =M s1 s2( )X(s1) =M s1 s2( )M so s1( )X(so );

M s0 s2( ) ≡M s1 s2( )M so s1( )→ X(s2 ) =M s0 s2( )X(so ).
;   (r3) 

It the transport line consist of N element, the matrix of the line will be just an ordered product of 
its matrices: 

Mtl = Mn
ordered n=1

N

∏ ≡MNMN−1.....M2M1; ;     (r4) 
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Summary of 1D treatment 
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What we learned today
• We fond stability criteria for periodic linear 

Hamiltonian system via its single period 
transport matrix

• We found that eigen vectors of this matrix is 
natural parameterization of the particle’s 
motion

• It reduces it to something similar of harmonic 
oscillator with variable frequency of 
oscillations
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