PHY 554

 Advanced Accelerator Physics

 Advanced Accelerator Physics Lecture 6

C SE

Linear betatron motion

Vladimir N. Litvinenko
Yichao Jing
Gang Wang

CENTER for ACCELERATOR SCIENCE AND EDUCATION
Department of Physics \& Astronomy, Stony Brook University
Collider-Accelerator Department, Brookhaven National Laboratory

Transverse (Betatron) Motion

Linear betatron motion
Dispersion function of off momentum particle Simple Lattice design considerations Nonlinearities

What we learned:

Floquet Theorem

$$
X^{\prime \prime}+K(s) X=0 \quad K(s)=K(s+L)
$$

$$
\begin{gathered}
X(s)=a w(s) e^{j \psi(s)}, \quad w(s)=w(s+L), \quad \psi(s+L)-\psi(s)=2 \pi \mu \\
\beta(s)=w^{2}, \quad \alpha=-\frac{1}{2} \beta^{\prime}, \quad \gamma=\frac{1+\alpha^{2}}{\beta}, \quad w(s)=\sqrt{\beta(s)}, \quad \psi(s)=\int_{s_{0}}^{\beta} \frac{1}{\beta} d s
\end{gathered}
$$

$$
\binom{X\left(s_{2}\right)}{X^{\prime}\left(s_{2}\right)}=M\left(s_{2}, s_{1}\right)\binom{X\left(s_{1}\right)}{X^{\prime}\left(s_{1}\right)}
$$

$$
\begin{aligned}
M\left(s_{2}, s_{1}\right) & =\left(\begin{array}{ll}
\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \mu+\alpha_{1} \sin \mu\right) & \sqrt{\beta_{1} \beta_{2}} \sin \mu \\
-\frac{1+\alpha_{1} \alpha_{2}}{\sqrt{\beta_{1} \beta_{2}}} \sin \mu-\frac{\alpha_{1}-\alpha_{2}}{\sqrt{\beta_{1} \beta_{2}}} \cos \mu & \sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \mu-\alpha_{1} \sin \mu\right)
\end{array}\right) \\
& =\left(\begin{array}{ll}
\sqrt{\beta_{2}} & 0 \\
-\frac{\alpha_{2}}{\sqrt{\beta_{2}}} & \frac{1}{\sqrt{\beta_{2}}}
\end{array}\right)\left(\begin{array}{cc}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta_{1}}} & 0 \\
-\frac{\alpha_{1}}{\sqrt{\beta_{1}}} & \sqrt{\beta_{1}}
\end{array}\right)
\end{aligned}
$$

The values of the Courant-Snyder parameters $\alpha_{2}, \beta_{2}, \gamma_{2}$ at s_{2} are related to $\alpha_{1}, \beta_{1}, \gamma_{1}$ at s_{1} by

$$
\left(\begin{array}{c}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{2}=\left(\begin{array}{ccc}
M_{11}^{2} & -2 M_{11} M_{12} & M_{12}^{2} \\
-M_{11} M_{21} & M_{11} M_{22}+M_{12} M_{21} & -M_{12} M_{22} \\
M_{21}^{2} & -2 M_{21} M_{22} & M_{22}^{2}
\end{array}\right)\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{1}
$$

The evolution of the betatron amplitude function in a drift space is

$$
\begin{aligned}
& \beta_{2}=\frac{1}{\gamma_{1}}+\gamma_{1}\left(s-\frac{\alpha_{1}}{\gamma_{1}}\right)^{2}=\beta^{*}+\frac{\left(s-s^{*}\right)^{2}}{\beta^{*}} \\
& \alpha_{2}=\alpha_{1}-\gamma_{1} s=-\frac{\left(s-s^{*}\right)}{\beta^{*}}, \quad \gamma_{2}=\gamma_{1}=\frac{1}{\beta^{*}}
\end{aligned}
$$

Passing through a thin-lens quadrupole, the evolution of betatron function is

$$
\beta_{2}=\beta_{1}, \quad \alpha_{2}=\alpha_{1}+\frac{\beta_{1}}{f}, \quad \gamma_{2}=\gamma_{1}+\frac{2 \alpha_{1}}{f}+\frac{\beta_{1}}{f^{2}}
$$

$$
\begin{gathered}
X=\sqrt{2 \beta J} \cos \psi, \quad X^{\prime}=-\sqrt{\frac{2 J}{\beta}}(\sin \psi+\alpha \cos \psi) \\
P_{X}=\beta X^{\prime}+\alpha X=-\sqrt{2 \beta J} \sin \psi
\end{gathered}
$$

$\left(X, P_{X}\right)$ form a normalized phase space coordinates with $x^{2}+P_{x}^{2}=28 J$, here J is called action.

Courant-Snyder Invariant

Example: Ellipses (vertical) with different optical parameters

The betatron phase space ellipses of a particle with actions $\mathrm{J}=10 \pi \mathrm{~mm}$-mrad. The btatron parameters are $\beta_{y}=10 \mathrm{~m}$, and α_{y} shown by each curve. The scale for the ordinate y is mm , and y^{\prime} in mrad. The betatron parameters for each ellipse are marked on the graph. All ellipses has the maximum y coordinate at $\left(2 \beta_{\nu}\right)^{1 / 2}$. The maximum anglular coordiante y^{\prime} is $\left.\left(2\left(1+\alpha_{y}{ }^{2}\right)\right) / \beta_{y}\right)^{1 / 2}$. All ellipses have the same phase space area of 2 J .

Courant-Snyder Invariant

$$
\gamma X^{2}+2 \alpha X X^{\prime}+\beta X^{\prime 2}=\frac{1}{\beta}\left[X^{2}+\left(\alpha X+\beta X^{\prime}\right)^{2}\right]=2 J \equiv \varepsilon
$$

Given a normalized distribution function $\rho\left(X, X^{\prime}\right)$ with $\int \rho\left(X, X^{\prime}\right) d X d X^{\prime}=1$, the moments of the beam distribution are

$$
\begin{aligned}
& \langle X\rangle=\int X \rho\left(X, X^{\prime}\right) d X d X^{\prime}, \quad\left\langle X^{\prime}\right\rangle=\int X^{\prime} \rho\left(X, X^{\prime}\right) d X d X^{\prime}, \\
& \sigma_{X}^{2}=\int(X-\langle X\rangle)^{2} \rho\left(X, X^{\prime}\right) d X d X^{\prime}, \quad \sigma_{X^{\prime}}^{2}=\int\left(X^{\prime}-\left\langle X^{\prime}\right\rangle\right)^{2} \rho\left(X, X^{\prime}\right) d X d X^{\prime}, \\
& \sigma_{X X^{\prime}}=\int(X-\langle X\rangle)\left(X^{\prime}-\left\langle X^{\prime}\right\rangle\right) \rho\left(X, X^{\prime}\right) d X d X^{\prime}=r \sigma_{X} \sigma_{X^{\prime}}
\end{aligned}
$$

Where σ_{x} and $\sigma_{x^{\prime}}$ are the rms beam widths, $\sigma_{x x}$ is the correlation, and r is the correlation coefficient. The rms beam emittance is then defined as

$$
\varepsilon_{r m s}=\sqrt{\sigma_{X}^{2} \sigma_{X^{\prime}}^{2}-\sigma_{X X^{\prime}}^{2}}=\sigma_{X} \sigma_{X^{\prime}} \sqrt{1-r^{2}}
$$

The rms emittance is invariant in linear transport:

$$
\begin{aligned}
& \varepsilon^{2}=\sigma_{X}^{2} \sigma_{X^{\prime}}^{2}-\sigma_{X X^{\prime}}^{2} \\
& \sigma_{X}^{2}=\left\langle X^{2}\right\rangle-\langle X\rangle^{2}, \quad \sigma_{X^{\prime}}^{2}=\left\langle X^{\prime 2}\right\rangle-\left\langle X^{\prime}\right\rangle^{2}, \quad \sigma_{X X^{\prime}}=\left\langle X X^{\prime}\right\rangle-\langle X\rangle\left\langle X^{\prime}\right\rangle
\end{aligned}
$$

we find

$$
\begin{aligned}
& \frac{d \sigma_{X}^{2}}{d s}=2\left\langle X X^{\prime}\right\rangle-2\langle X\rangle\left\langle X^{\prime}\right\rangle \\
& \frac{d \sigma_{X^{\prime}}^{2}}{d s}=2\left\langle X^{\prime} X^{\prime \prime}\right\rangle-2\left\langle X^{\prime}\right\rangle\left\langle X^{\prime \prime}\right\rangle \\
& \frac{d \sigma_{X X^{\prime}}}{d s}=\left\langle X^{\prime 2}\right\rangle-\left\langle X^{\prime}\right\rangle^{2}-\langle X\rangle\left\langle X^{\prime \prime}\right\rangle+\left\langle X X^{\prime \prime}\right\rangle \\
& \quad X^{\prime \prime}+K X=0 \\
& \frac{d \varepsilon^{2}}{d s}=\sigma_{X}^{2} \frac{d \sigma_{X^{\prime}}^{2}}{d s}+\sigma_{X^{\prime}}^{2} \frac{d \sigma_{X}^{2}}{d s}-2 \sigma_{X X^{\prime}} \frac{d \sigma_{X X^{\prime}}}{d s}=0
\end{aligned}
$$

The σ-matrix is defined as

$$
\begin{aligned}
& \sigma=\left(\begin{array}{cc}
\sigma_{11} & \sigma_{12} \\
\sigma_{12} & \sigma_{22}
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{y}^{2} & \sigma_{y y^{\prime}} \\
\sigma_{y y^{\prime}} & \sigma_{y^{\prime}}
\end{array}\right)=\left\langle(\mathbf{y}-\langle\mathbf{y}\rangle)(\mathbf{y}-\langle\mathbf{y}\rangle)^{\dagger}\right\rangle \\
& \sigma\left(s_{2}\right)=M\left(s_{2} \mid s_{1}\right) \sigma\left(s_{1}\right) M\left(s_{2} \mid s_{1}\right)^{\dagger} \\
& \epsilon_{\mathrm{rms}}=\sqrt{\sigma_{y}^{2} \sigma_{y^{\prime}}^{2}-\sigma_{y y^{\prime}}^{2}}=\sigma_{y} \sigma_{y^{\prime}} \sqrt{1-r^{2}}
\end{aligned}
$$

If the beam distribution function is a function of the CourantSnyder invariant, the σ-matrix is given by

$$
\begin{array}{r}
\left(\begin{array}{cc}
\sigma_{x}^{2} & \sigma_{x x^{\prime}} \\
\sigma_{x x^{\prime}} & \sigma_{x^{\prime}}^{2}
\end{array}\right)=\epsilon_{\mathrm{rms}}\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right) . \\
\text { or } \quad \mathbf{x}^{\dagger} \sigma^{-1} \mathrm{x}=\frac{1}{\epsilon_{\mathrm{rms}}}\left(\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}\right) .
\end{array}
$$

Thus $\mathbf{y} \dagger \sigma^{-1} \mathbf{y}$ is invariant under linear transport systems. An invariant beam distribution is

$$
\rho\left(y, y^{\prime}\right)=\rho\left(\mathbf{y}^{\dagger} \sigma^{-1} \mathbf{y}\right)
$$

The Gaussian distribution function

The equilibrium beam distribution in the linearized betatron phase space may be any function of the invariant action. However, the Gaussian distribution function is commonly used to evaluate the beam properties. Expressing the normalized Gaussian distribution in the normalized phase space, we obtain

$$
\rho\left(X, P_{X}\right)=\frac{1}{2 \pi \sigma_{X}^{2}} e^{-\left(X^{2}+P_{X}^{2}\right) / 2 \sigma_{X}^{2}}
$$

where $\left\langle X^{2}\right\rangle=\left\langle P_{x}^{2}\right\rangle=\sigma_{X}^{2}=\beta_{X} \varepsilon_{r m s}$ with an rms emittance $\varepsilon_{r m s}$. Transforming $\left(X, P_{x}\right)$ into the action-angle variables (J, ψ) with

$$
X=\sqrt{2 \beta J} \cos \psi, \quad P_{X}=-\sqrt{2 \beta J} \sin \psi
$$

The Jacobian of the transformation is β_{x}, and the distribution function becomes

$$
\rho(J)=\frac{1}{\varepsilon_{r m s}} e^{-J / \varepsilon_{m s s}}, \quad \rho(\varepsilon)=\frac{1}{2 \varepsilon_{r m s}} e^{-\varepsilon / 2 \varepsilon_{m s}}
$$

The percentage of particles contained within $\varepsilon=n \varepsilon_{\text {rms }}$ is $1-\mathrm{e}^{-\mathrm{n} / 2}$

$\epsilon / \epsilon_{\text {rms }}$	2	4	6	8
Percentage in 1D [\%]	63	86	95	98
Percentage in 2D [\%]	40	74	90	96

The maximum phase-space area that particles can survive in an accelerator is called the admittance, or the dynamic aperture. The admittance is determined by the vacuum chamber size, the kicker aperture, and nonlinear magnetic fields.

Adiabatic damping and the normalized emittance: $\varepsilon_{\mathrm{n}}=\varepsilon \beta \gamma$

The Courant-Snyder invariant, derived from the phase-space coordinate X, X^{\prime}, is not invariant when the energy is changed. To obtain the Liouville invariant phase-space area, we should use the conjugate phase-space coordinates (X, P_{x}) in Hamiltonian. Since $p_{X}=p_{x}{ }^{\prime}=m c \beta \gamma X^{\prime}$, where m is the particle's mass, p is its momentum, and $\beta \gamma$ is the Lorentz relativistic factor, the normalized emittance defined by $\varepsilon_{n}=\varepsilon \beta \gamma$ is invariant. The beam emittance decreases with increasing beam momentum, i.e. $\varepsilon=\varepsilon_{n} / \beta \gamma$. This is called adiabatic damping. Since the transverse velocity of a particle does not change during acceleration, the transverse angle $X^{\prime}=p_{X} / p$ becomes smaller at a higher particle momentum. Thus the beam emittance $\varepsilon=\varepsilon_{n} / \beta \gamma$ decreases with energy. The adiabatic damping also applies to beam emittance in proton or electron linacs.

Because of the quantum fluctuation, The beam emittance in electron storage rings increases with energy ($\sim \gamma^{2}$). The corresponding normalized emittance is proportional to γ^{3}.

Some simple examples:

1. Large colliders are normally made of arcs and insertion regions (IRs), where arcs are made of FODO cells for beam transport, and IRs are used for physics experiments. The IR matches all optical functions for special properties relevant to physics experiments.
2. Synchrotron radiation facilities are designed to minimize emittance and retain a straight section for IDs.
3. We examine the effect of edge angle in beam motion.

$$
M_{x}=\left(\begin{array}{cc}
1 & 0 \\
\frac{\tan \delta}{\rho} & 1
\end{array}\right) \quad M_{z}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{\tan \delta}{\rho} & 1
\end{array}\right)
$$

The particle orbit enters and exits a sector dipole magnet perpendicular to the dipole edges. If the gradient function of the dipole is zero, i.e. $\partial \mathrm{Bz} / \partial \mathrm{x}=0$, the transfer matrix is

$$
M_{x}=\left(\begin{array}{cc}
\cos \theta & \rho \sin \theta \\
-\frac{\sin \theta}{\rho} & \cos \theta
\end{array}\right), \quad M_{z}=\left(\begin{array}{ll}
1 & \ell \\
0 & 1
\end{array}\right)
$$

where θ is the bending angle, ρ is the bending radius, and ℓ is the length of the dipole. A sector magnet gives rise to horizontal focusing. A rectangular dipole gives a transport matrix: $\quad \begin{array}{ll}1 & \rho \sin \theta \\ 0 & 1\end{array}$

Three parameters that determine the edge focusing focal length: the edge angle (δ), gap height (g), and the fringe field integral (FINT, κ).

$$
\begin{aligned}
-\frac{1}{f}=-\frac{1}{\rho} \tan (\delta-\psi) \quad \psi & =\frac{g \kappa}{\rho} \sec (\delta)\left(1+\sin ^{2} \delta\right) \quad \kappa=\int_{-\infty}^{\infty} \frac{B_{y}(s)\left(B_{0}-B_{y}(s)\right)}{g B_{0}^{2}} d s \\
\psi & =\kappa_{1} \frac{g}{\rho} \frac{1+\sin 2 \delta}{\cos \delta}\left[1-\kappa_{2} \kappa_{1} \frac{g}{\rho} \tan \delta\right]
\end{aligned}
$$

CIS: Circumference $=17.364 \mathrm{~m}$, $\operatorname{Inj} \mathrm{KE}=7 \mathrm{MeV}$, extraction: 240 MeV Dipole length $=2 \mathrm{~m}, 90$ degree bend, edge angle $=12 \mathrm{deg}$.

eCIS: No constraint on circumference ($\mathbf{C = 2 0 m}$). Use CIS dipoles \& cavity Need Damping wigglers, chicane, electrostatic kickers \& septum

Xiaojian Kang (Ph.D. Thesis, 1998): Betatron tunes of CIS 200 \& 225 MeV ramping

Ldip $=3.0 \mathrm{~m}, \rho=1.91 \mathrm{~m}$, Edge_angle $=8.5^{\circ}$
Circum $=28.5 \mathrm{~m}, \mathrm{Qx}=1.68, \mathrm{Qz}=0.71, \mathrm{KE}$ tr= $=356 \mathrm{MeV}$

Nader Al Harbi \& S.Y. Lee, RSI, 74, 2540 (2003).

Low energy synchrotrons often rely on the bending radius $K_{x}=1 / \rho^{2}$ for horizontal focusing and edge angles in dipoles for vertical focusing. Find the lattice property of the low energy synchrotron described by the following input data file (MAD). What is the effects of changing the edge angle and dipole length? Discuss the stability limit of the lattice.

TITLE,"CIS BOOSTER (1/5 Cooler), (90degDIP)"
! CIS $=1 / 5$ of Cooler circumference $=86.82 \mathrm{~m} / 5=17.364 \mathrm{~m}$
! It accelerates protons from 7 MeV to 200 MeV in $1-5 \mathrm{~Hz}$.
LCELL:=4.341! cell length $17.364 \mathrm{~m} / 4$
$\mathrm{L} 1:=2.0$! dipole length
L2:=LCELL-L1! straight section length
RHO:=1.27324
EANG:=12.*TWOPI/360! use rad. for edge angle
ANG := TWOPI/4
OO : DRIFT,L=L2
BD : SBEND,L=L1, ANGLE=ANG, E1=EANG,E2=EANG, K2=0.
SUP: LINE=(BD,OO) ! a superperiod
USE,SUP,SUPER=4
PRINT,\#S/E
TWISS,DELTAP=0.0,TAPE
STOP

Betatron motion: Effects of Linear Magnetic field Error

$$
\begin{array}{ll}
x^{\prime \prime}+K_{x}(s) x=\frac{\Delta B_{y}}{B \rho}, \quad y^{\prime \prime}+K_{y}(s) y=-\frac{\Delta B_{x}}{B \rho} \\
\Delta B_{y}+j \Delta B_{x}=B_{0} \sum_{n}\left(b_{n}+j a_{n}\right)(x+j y)^{n}, & \text { Dipole field error } \\
B_{y}=B_{0} b_{0}, \quad B_{x}=B_{0} a_{0}, & \text { Quadrupole field error } \\
B_{y}=B_{0} b_{1} x, \quad B_{x}=B_{0} b_{1} y, & \text { Skew Quadrupole fielderror } \\
B_{y}=-B_{0} a_{1} y, B_{x}=B_{0} a_{1} x, & \text { Sextupole field error } \\
B_{y}=B_{0} b_{2}\left(x^{2}-y^{2}\right), B_{x}=2 B_{0} b_{2} x y, & \\
B_{y}=-2 B_{0} a_{2} x y, B_{x}=B_{0} a_{2}\left(x^{2}-y^{2}\right), & \\
x^{\prime \prime}+\left[K_{x}(s)+k(s)\right] x=\frac{b_{0}}{\rho}, \quad y^{\prime \prime}+\left[K_{y}(s)-k(s)\right] y=-\frac{a_{0}}{\rho}
\end{array}
$$

Effect of dipole field error:

We consider a single localized dipole error with the kick angle given by $\theta=\Delta \mathrm{B} \ell / \mathrm{B} \rho$. Because of the dipole field error, the reference orbit is perturbed! The idea is to find a new closed orbit that include the dipole field error.

$$
X^{\prime \prime}+K_{X}(s) X=\theta \delta\left(s-s_{0}\right)
$$

The closed orbit is given by the following condition:

$$
\binom{X_{0}}{X_{0}^{\prime}-\theta}=M\binom{X_{0}}{X_{0}^{\prime}}=\left(\begin{array}{ll}
\cos \Phi+\alpha_{0} \sin \Phi & \beta_{0} \sin \Phi \\
-\gamma_{0} \sin \Phi & \cos \Phi-\alpha_{0} \sin \Phi
\end{array}\right)\binom{X_{0}}{X_{0}^{\prime}}
$$

Where $\Phi=2 \pi v, v$ is the betatron tune, the parameters α_{0}, β_{0}, and γ_{0} are values of the Courant-Snyder parameters at the kicker location. The solution is

$$
\begin{aligned}
& X_{0}=\frac{\beta_{0} \theta}{2 \sin \pi \nu} \cos \pi \nu \\
& X_{0}^{\prime}=\frac{\theta}{2 \sin \pi v}\left(\sin \pi v-\alpha_{0} \cos \pi v\right)
\end{aligned}
$$

We have solved the closed orbit at one point s_{0}. The closed orbit of the accelerator can be obtained by making mapping matrix:

$$
\begin{aligned}
& \binom{X(s)}{X^{\prime}(s)}_{\mathrm{co}}=M\left(s, s_{0}\right)\binom{X_{0}}{X_{0}^{\prime}} \quad X_{\mathrm{co}}(s)=G\left(s, s_{0}\right) \theta \\
& G\left(s, s_{0}\right)=\frac{\sqrt{\beta\left(s_{0}\right) \beta(s)}}{2 \sin \pi v} \cos \left[\pi v-\left|\psi(s)-\psi\left(s_{0}\right)\right|\right]
\end{aligned}
$$

Note that the closed orbit is described by Green's function. When the betatron
 tune is an integer, the closed orbit diverges. Each time, when the particle arrives the same location will receive a coherent kick and the particle becomes unstable.
How? And Why

Left, a schematic plot of the closed-orbit perturbation due to an error dipole kick when the betatron tune is an integer. Here $p_{x}=\beta_{x} \Delta X^{\prime}=\beta_{x} \theta$, where θ is the dipole kick angle and β_{x} is the betatron amplitude function value at the dipole. Right, a schematic plot of the particle trajectory resulting from a dipole kick when the betatron tune is a half-integer; here the angular kicks from two consecutive orbital revolutions cancel each other.

An accelerator with circumference 360 m is made of 18 FODO cells. The horizontal betatron tune of the synchrotron is $v_{x}=4.8$. If one of the 36 dipoles has an error of -2 mrad and another has error of -1 mrad.

TLS orbit vs dipole field error: Lecture note by C.C. Kuo (2002 OCPA Singapore)

