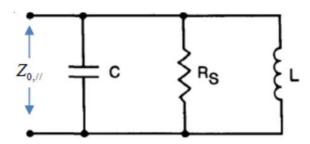
Home Work 17

1. (10 points)

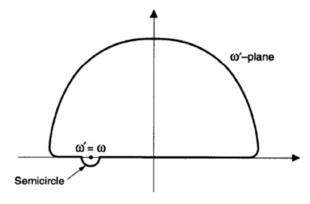


The impedance of a resonator model can be related to a circuit shown above. Show the impedance of above circuit can be expressed as

$$Z_{0,//} = \frac{R_s}{1 + iQ\left(\frac{\omega_R}{\omega} - \frac{\omega}{\omega_R}\right)},$$

and find the expression for ${\it Q}$ and ${\it \omega_{\rm R}}$ in terms of ${\it C}$, ${\it R_{\rm s}}$, and ${\it L}$.

2. (10 points) Perform a contour integral of $\frac{Z_{//}(\omega')}{\omega'-\omega}$ in the complex ω' plane over the upper half plane along the contour shown in the figure.



Show that if $Z_{{\scriptscriptstyle //}}(\omega^{{}})$ converges sufficiently fast as $|\omega^{{}}|\! \to\! \infty$,

$$Z_{II}(\omega) = -\frac{i}{\pi} P.V. \int_{-\infty}^{\infty} \frac{Z_{II}(\omega')}{\omega' - \omega} d\omega', \qquad (1)$$

and eq. (1) leads to Kramers-Kronig relations.

$$\operatorname{Re}\left[Z_{II}(\omega)\right] = \frac{1}{\pi} P.V. \int_{-\infty}^{\infty} \frac{\operatorname{Im}\left[Z_{II}(\omega')\right]}{\omega' - \omega} d\omega'$$

$$\operatorname{Im} \left[Z_{\parallel}(\omega) \right] = -\frac{1}{\pi} P.V. \int_{-\infty}^{\infty} \frac{\operatorname{Re} \left[Z_{\parallel}(\omega') \right]}{\omega' - \omega} d\omega'$$