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Synchrotron Motion
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All accelerator components repeat in each 
orbital period. It would be nice to use s as the 
independent coordinate. How to make this 
coordinate transfer?

Longitudinal motion is hidden in the Hamiltonian:

The phase space coordinates are (x,s,z) with independent coordinate t. 
In one revolution, the time advances T0, called the orbital period. In 
one orbital period, the particle orbit is equal to the circumference C. 
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These equations indicate that –ps becomes the new Hamiltonian 
with the (x,px,z,pz,t,-H) and s as the independent coordinate.
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A collection of SRF cavities 
developed at Cornell University 
with frequencies spanning 200 
MHz to 3 GHz



The longitudinal electric field at an rf gap

V=V0sin(ωrft+φ)
ωrf=hf0

We assume that the reference particle passes through the cavity gap in time 
t∈nT0+(−g/2βc, g/2βc) (n = integer), where g is the rf cavity gap width. The 
energy gain for the reference particle per passage is

where ω0=β0c/R0 is the angular revolution frequency of a reference (synchronous) 
particle, ε0 is the amplitude of the electric field, β0c and R0 are respectively the 
speed and the average radius of the reference orbiting particle, h is the harmonic 
number, and fs is the phase angle for a synchronous particle. 

The effective voltage seen by the orbiting particle is 
V=ε0gT. The acceleration rate for a synchronous 
particle is



We consider a non-synchronous particle with small deviations of rf parameters 
from the synchronous particle, i.e.

The energy gain per revolution for this non-synchronous particle is eV sin φ, where 
φ is the rf phase angle. Thus the acceleration rate of a non-synchronous particle is

The equation of motion for the energy difference is

Here fs, θ s, ω0, p0, E0 are respectively the rf phase angle, azimuthal orbital angle,
angular revolution frequency, momentum, and energy of a synchronous particle, and
f, θ, ω, p, E are the corresponding parameters for an off-momentum particle. The 
phase coordinate is related to the orbital angle by Δf=f−fs = −hΔθ, or



The time evolution of the phase angle variable ϕ is

Let p=mcβγ=p0+p be the momentum of a non-synchronous particle. 
The fractional off-momentum coordinate δ is



Expressing β and γ in terms of the off-momentum coordinate δ, we 
obtain

where (f,E/ω0) or equivalently (f,δ) are conjugate phase-space 
coordinates.
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For the moment, we neglect all nonlinear effects in the phase slip 
factor. The equation of motion is given by



The Synchrotron Hamiltonian
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The stability condition for synchrotron 
oscillation is η0 cos φs < 0, discovered by 
McMillan and Veksler. Below the 
transition energy, with γ < γT or η0 < 0, the 
synchronous phase angle should be 0 < φs 
< π/2. Similarly the synchronous phase 
angle should be shifted to π − φs above the 
transition energy.



The angular synchrotron frequency is

where c is the speed of light and R is the average radius of the synchrotron. The 
synchrotron tune, defined as the number of synchrotron oscillations per 
revolution, is

Typically the synchrotron tune is of the order of ≤ 10−3 for proton synchrotrons 
and 10−1 for electron storage rings.

3.23E-02 5.89E-04 1.37E-02 1.50E-01 8.39E-04 3.95E-04

At 0.4 GeV injection, the synchrotron tune becomes 0.0924 for FNAL-Booster  
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Synchrotron bucket area, separatrix

Left: schematic drawing of the rf potentials for fs=0 and π/6. The dashed line shows 
the maximum “energy” for stable synchrotron motion. Middle: the corresponding 
separatrix orbits in (πh|η|/eVβ2E)1/2Esx vs f. The phase fu is the turning point of the 
separatrix orbit. Right: an example of stable rf buckets, called fish diagram, with 
fs=π/6.
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In Hamiltonian formalism, the rf electric field is considered to be uniformly 
distributed in an accelerator. In reality, rf cavities are localized in a short section of 
a synchrotron, and therefore synchrotron motion is more realistically described by 
the symplectic mapping equation

The physics of the mapping equation can be visualized as follows. First, the 
particle gains or loses energy at its nth passage through the rf cavity, then the rf 
phase fn+1 depends on the new off-momentum coordinate δn+1. It is no surprise that 
satisfies the symplectic condition:

The mapping from (fn, δn) to (fn+1, δn+1) preserves phase-space area. The phase-
space area enclosed by a trajectory (φ, δ) obtained from the above mapping equation 
is independent of energy. It can not be used in tracking simulations of beam 
acceleration. During beam acceleration, the phase-space area in (f,E/ω0) is 
invariant. The phase-space mapping equation for phase-space coordinates (f,E/ω0) 
should be used. The adiabatic damping of phase-space area can be obtained by 
transforming phase-space coordinates (f,E/ω0) to (f, δ).





Two tori in phase-space coordinates 
(φ, E/β2E) obtained from mapping 
equations with parameters V = 100 
kV, h = 1, αc=0.04340, and φs = 30o 
at 45MeV proton kinetic energy. 
IUCF Cooler Ring has typical rf 
voltage at about 1–2 kV.

When the acceleration rate is high, tori of the synchrotron mapping equations are
not closed curves. The mapping equations for synchrotron phase-space coordinates 
(φ,ΔE). Figure below shows two tori in phase-space coordinates (φ, E/β2E) with 
parameters V=100 kV, h=1, αc=0.04340, φs = 30o at 45 MeV proton kinetic energy. 
Note that the actual attainable rf voltage V is about 200-1000 V in a low energy 
proton synchrotron. Since the separatrix is not a closed curve, the phase-space tori 
change from a fish-like to a golf-club-like shape. This is equivalent to the adiabatic 
damping of phase-space area. Since the acceleration rate for proton (ion) beams is 
normally low, the separatrix torus is a good approximation. When the acceleration 
rate is high, e.g. in many electron accelerators, the tori near the separatrix may 
resemble that of picture below.



During beam acceleration, the synchrotron Hamiltonian depends on 
time. However, if the acceleration rate is low, the Hamiltonian can 
be considered as quasistatic. This corresponds to adiabatic 
synchrotron motion, where parameters in the synchrotron 
Hamiltonian change slowly so that the particle orbit is a torus of 
constant Hamiltonian value. The condition for adiabatic 
synchrotron motion is

where ωs is the angular synchrotron frequency and αad is called the 
adiabaticity coefficient. Typically, when αad ≤ 0.05, the time 
variation of synchrotron period is small and the trajectories of 
particle motion can be approximately described by tori of constant 
Hamiltonian values.



The fixed points of the synchrotron Hamiltonian are at phase space 
points: (fs,0) and (π-fs,0). Small amplitude motion around the stable 
fixed point (fs,0) is elliptical with synchrotron tune Qs. Motion near 
the UFP is hyperbolical. 

Fixed points of a Hamiltonian are located at phase space points 
with zero velocity field:
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The Hamiltonian torus that passes through the unstable fixed point 
is called the separatrix. 
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The phase space area enclosed by 
the separatrix is called the bucket, 
where particle motion around the 
stable fixed point is elliptical. The 
motion around the unstable fixed 
point is hyperbolical. 

The separatrix has two turning points, φu and π − φs, where φu is

The bucket length is |(π − φs) − φu|.



Here αb is the moving bucket factor. 

The phase-space area enclosed by the separatrix orbit is called the 
bucket area. 
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The maximum momentum 
deviation of the separatrix orbit 
is called the bucket height. 
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The bucket area in phase space (f,∆E/ω0) is

The phase space area measures the time-width, and energy-spread of 
the bunch distribution. Thus the dimension of the phase space area 
is eV-sec. For example, a beam bunch with 100 ns bunch length and 
1 MeV energy spread have a bunch area of 0.1 eV-sec. A beam with 
1 MeV energy spread with 1 GeV energy has a fractional energy 
spread of 10–3. 
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