High Power RF Engineering -Waveguide (2)

Binping Xiao

$$\begin{aligned} \nabla \times \mathbf{E} &= -j\omega\mu\mathbf{H} \& \nabla \times \mathbf{H} = j\omega\varepsilon\mathbf{E} \\ \nabla \times \mathbf{E} &= -j(2)\mu\mathbf{H} \& \nabla \times \mathbf{H} = j\omega\varepsilon\mathbf{E} \\ \nabla \times \mathbf{E} &= \mathbf{\rho} \left(\frac{1}{\rho}\frac{\partial E_z}{\partial \varphi} - \frac{\partial E_\varphi}{\partial z}\right) + \mathbf{\varphi} \left(\frac{\partial E_\rho}{\partial z} - \frac{\partial E_z}{\partial \rho}\right) + \mathbf{z} \frac{1}{\rho} \left(\frac{\partial(\rho E_\varphi)}{\partial \rho} - \frac{\partial E_\rho}{\partial \varphi}\right)^T \\ &= \mathbf{\rho} \left(\frac{1}{\rho}\frac{\partial E_z}{\partial \varphi} + j\beta E_\varphi\right) + \mathbf{\varphi} \left(-j\beta E_\rho - \frac{\partial E_z}{\partial \rho}\right) + \mathbf{z} \frac{1}{\rho} \left(\frac{\partial(\rho E_\varphi)}{\partial \rho} - \frac{\partial E_\rho}{\partial \varphi}\right) \\ &= \mathbf{\rho} (-j\omega\mu H_\rho) + \mathbf{\varphi} (-j\omega\mu H_\varphi) + \mathbf{z} (-j\omega\mu H_z) \end{aligned}$$

Similarly
$$\mathbf{\rho} \left(\frac{1}{\rho}\frac{\partial H_z}{\partial \varphi} + j\beta H_\varphi\right) + \mathbf{\varphi} \left(-j\beta H_\rho - \frac{\partial H_z}{\partial \rho}\right) + \mathbf{z} \frac{1}{\rho} \left(\frac{\partial(\rho H_\varphi)}{\partial \rho} - \frac{\partial H_\rho}{\partial \varphi}\right) \\ &= \mathbf{\rho} (j\omega\varepsilon E_\rho) + \mathbf{\varphi} (j\omega\varepsilon E_\varphi) + \mathbf{z} (j\omega\varepsilon E_z) \end{aligned}$$

(1111)

aumine?

Field Distribution $\frac{1}{\rho}\frac{\partial E_z}{\partial \varphi} + j\beta E_{\varphi} = -j\omega\mu H_{\rho}$ $k_c^2 H_{\rho} = j \left(\frac{\omega \varepsilon}{\rho} \frac{\partial E_z}{\partial \omega} - \beta \frac{\partial H_z}{\partial \rho} \right)$ $-j\beta E_{\rho} - \frac{\partial E_z}{\partial \rho} = -j\omega\mu H_{\varphi}$ $k_c^2 H_{\varphi} = -j \left(\omega \varepsilon \frac{\partial E_z}{\partial \rho} + \frac{\beta}{\rho} \frac{\partial H_z}{\partial \rho} \right)$ $\frac{1}{\rho} \left(\frac{\partial (\rho E_{\varphi})}{\partial \rho} - \frac{\partial E_{\rho}}{\partial \varphi} \right) = -j\omega\mu H_{z}$ $k_c^2 E_{\rho} = -j \left(\beta \frac{\partial E_z}{\partial \rho} + \frac{\omega \mu}{\rho} \frac{\partial H_z}{\partial \varphi} \right)$ $k_c^2 E_{\varphi} = j \left(-\frac{\beta}{\rho} \frac{\partial E_z}{\partial \varphi} + \omega \mu \frac{\partial H_z}{\partial \rho} \right)$ $\frac{1}{\rho} \frac{\partial H_z}{\partial \varphi} + j\beta H_{\varphi} = j\omega \varepsilon E_{\rho}$ $-j\beta H_{\rho} - \frac{\partial H_z}{\partial \rho} = j\omega \varepsilon E_{\varphi}$ $k_c^2 = k^2 - \beta^2 \& k = \omega \sqrt{\mu \varepsilon}$ $\left(\frac{\partial(\rho H_{\varphi})}{\partial \rho} - \frac{\partial H_{\rho}}{\partial \varphi}\right) = j\omega \varepsilon E_z$ Note: there are two equations that have not been used yet.

Transverse Electric (TE)

- $E_z = 0 \& H_z \neq 0.$
- Wave impedance

$$Z_{TE} = E_{
ho}/H_{arphi} = -E_{arphi}/H_{
ho} = \omega\mu/\beta = k\eta/\beta$$

$$H_{\rho} = \frac{-j\beta}{k_c^2} \frac{\partial H_z}{\partial \rho}$$
$$H_{\varphi} = \frac{-j\beta}{\rho k_c^2} \frac{\partial H_z}{\partial \varphi}$$
$$E_{\rho} = \frac{-j\omega\mu}{\rho k_c^2} \frac{\partial H_z}{\partial \varphi}$$
$$E_{\varphi} = \frac{j\omega\mu}{k_c^2} \frac{\partial H_z}{\partial \varphi}$$
$$\frac{\partial(\rho H_{\varphi})}{\partial \rho} = \frac{\partial(H_{\rho})}{\partial \varphi}$$

Transverse Magnetic (TM)

- $E_z \neq 0 \& H_z = 0$.
- Wave impedance

$$Z_{TM} = E_{\rho}/H_{\varphi} = -E_{\varphi}/H_{\rho} = \beta/\omega\varepsilon = \beta\eta/k$$

Circular Waveguide

TE (1)

 $\frac{1}{\rho} \left(\frac{\partial(\rho E_{\varphi})}{\partial \rho} - \frac{\partial E_{\rho}}{\partial \varphi} \right) = -j\omega\mu H_{z}$ & $E_{\varphi} = \frac{j\omega\mu}{k_{c}^{2}} \frac{\partial H_{z}}{\partial \rho} \& E_{\rho} = \frac{-j\omega\mu}{\rho k_{c}^{2}} \frac{\partial H_{z}}{\partial \varphi}$ $\rightarrow \left(\frac{\partial^2}{\partial\rho^2} + \frac{1}{\rho}\frac{\partial}{\partial\rho} + \frac{1}{\rho^2}\frac{\partial^2}{\partial\phi^2} + k_c^2\right)H_z = 0$ and then use "separation of variables" $H_z(\rho, \varphi) =$ $P(\rho)\Phi(\phi)e^{-j\beta z}$ $\rho^2 \frac{d^2 P}{d\rho^2} + \rho \frac{dP}{d\rho} + \left(k_c^2 \rho^2 - k_{\varphi}^2\right) P = 0 \& \frac{d^2 \Phi}{d\omega^2} + k_{\varphi}^2 \Phi = 0$ For $\frac{d^2 \phi}{d\varphi^2} + k_{\varphi}^2 \phi = 0$, $\phi(\varphi) = Asink_{\varphi}\varphi + Bcosk_{\varphi}\varphi$, and ϕ should be periodic every 2π , thus $k_{\varphi} = n = 0, 1, 2, 3...$

C

Bessel functions

Bessel's differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2)y = 0$, α can be a complex number, in our application $\alpha = 0, 1, 2, 3...$ Bessel functions of the 1st kind (left) and the 2nd kind (right)

From: Wikipedia https://en.wikipedia.org/wiki/Bessel_function

TE (2)

$$\rho^2 \frac{d^2 P}{d\rho^2} + \rho \frac{dP}{d\rho} + (k_c^2 \rho^2 - n^2)P = 0$$
 is Bessel equation

The solution is $P(\rho) = CJ_n(k_c\rho) + DY_n(k_c\rho)$, $J_n(x)$ and $Y_n(x)$ are Bessel functions of the 1st and 2nd kind. $Y_n(0) = -\infty$ is not acceptable since the field at $\rho=0$ cannot be infinite, thus D=0 and $P(\rho) = CJ_n(k_c\rho)$. We have

C

$$\begin{split} H_{z}(\rho,\varphi) &= k_{c}^{2}(Asinn\varphi + Bcosn\varphi)J_{n}(k_{c}\rho)e^{-j\beta z} \\ \text{and } E_{\varphi} &= \frac{j\omega\mu}{k_{c}^{2}}\frac{\partial H_{z}}{\partial \rho}, \text{ thus } \\ E_{\varphi} &= j\omega\mu k_{c}(Asinn\varphi + Bcosn\varphi)J_{n}'(k_{c}\rho)e^{-j\beta z} \end{split}$$

TE (3)

Boundary conditions: E field should be perpendicular to the metal walls, thus $E_{\varphi}|_{\rho=a} = 0$ $J'_n(k_c a) = 0$ We define P'_{nm} the mth root of J'_n , with m = 1,2,3...we have $k_{c_nm} = P'_{nm}/a$.

Values of P'_{nm}

n	P'_{n1}	P'_{n2}	P'_{n3}
0	3.832	7.016	10.174
1	1.841	5.331	8.536
2	3.054	6.706	9.970

TE (4)

$$E_{\rho} = \frac{-j\omega\mu n}{\rho} (Acosn\varphi - Bsinn\varphi) J_{n} \left(\frac{P'_{nm}}{a}\rho\right) e^{-j\beta z}$$

$$E_{\varphi} = j\omega\mu \frac{P'_{nm}}{a} (Asinn\varphi + Bcosn\varphi) J'_{n} \left(\frac{P'_{nm}}{a}\rho\right) e^{-j\beta z}$$

$$E_{z} = 0$$

$$\begin{split} H_{\rho} &= -j\beta \frac{P'_{nm}}{a} (Asinn\varphi + Bcosn\varphi) J'_{n} \left(\frac{P'_{nm}}{a} \rho \right) e^{-j\beta z} \\ H_{\varphi} &= \frac{-j\beta n}{\rho} (Acosn\varphi - Bsinn\varphi) J_{n} \left(\frac{P'_{nm}}{a} \rho \right) e^{-j\beta z} \\ H_{z} &= (\frac{P'_{nm}}{a})^{2} (Asinn\varphi + Bcosn\varphi) J_{n} \left(\frac{P'_{nm}}{a} \rho \right) e^{-j\beta z} \\ \text{with } k_{c_nm} &= P'_{nm} / \Box \end{split}$$

Terms containing A can be get by rotating terms containing B by 90° (orthogonal, while $n \neq 0$, polarization degeneracy). One can choose either the term that containing A or the term that containing B, for example:

$$E_{\rho} = \frac{j\omega\mu n}{\rho} Bsinn\varphi J_{n} \left(\frac{P'_{nm}}{a}\rho\right) e^{-j\beta z}$$

$$E_{\varphi} = j\omega\mu \frac{P'_{nm}}{a} Bcosn\varphi J'_{n} \left(\frac{P'_{nm}}{a}\rho\right) e^{-j\beta z}$$

$$E_{z} = 0$$

$$H_{\rho} = -j\beta \frac{P'_{nm}}{a} Bcosn\varphi J'_{n} \left(\frac{P'_{nm}}{a}\rho\right) e^{-j\beta z}$$

$$H_{\varphi} = \frac{j\beta n}{\rho} Bsinn\varphi J_{n} \left(\frac{P'_{nm}}{a}\rho\right) e^{-j\beta z}$$

$$H_{z} = \left(\frac{P'_{nm}}{a}\right)^{2} Bcosn\varphi J_{n} \left(\frac{P'_{nm}}{a}\rho\right) e^{-j\beta z}$$

Asinn φ + Bcosn φ and degeneracy

- Degenerate modes: modes that have the same cutoff frequency in a waveguide or have the same frequency in a cavity.
- Mathematically $Asinn\varphi + Bcosn\varphi \neq Bcosn\varphi$, we choose cos so that when n = 0, it is non-zero.
- For a cylindrical symmetric structure, however, If you rotate 90°/n of the field pattern that containing term A, you will get the field pattern that containing term B (while $n \neq 0$, polarization degeneracy). One can choose either the term that containing A or the term that containing B.
- The mode pattern inside is determined by the input signal.
- We will show an example about polarization degeneracy soon.

TE (5)

n = 0, 1, 2, 3... and m = 1, 2, 3...

 TE_{nm} with *n* for φ and *m* for ρ .

There is no TE_{n0} mode in a circular waveguide.

There are TE_{0m} modes in it.

The mode with lowest cutoff frequency for TE modes is TE_{11} , with $f_{c_TE_{11}} = \frac{1.841c}{2\pi a}$ Values of P'_{nm}

 $f_{c_TE_{21}} = \frac{3.054c}{2\pi a} \& f_{c_TE_{01}} = \frac{3.832c}{2\pi a}$ TE₁₁ is the dominant mode.

n	P'_{n1}	P'_{n2}	P'_{n3}
0	3.832	7.016	10.174
1	1.841	5.331	8.536
2	3.054	6.706	9.970

Meaning of n

•
$$E_{\varphi} = j\omega\mu \frac{P'_{nm}}{a}Bcosn\varphi J'_{n}\left(\frac{P'_{nm}}{a}\rho\right)e^{-j\beta z}$$

- n = 0 means the fields do not change along φ (recall that TEM mode in coax line do not change along φ as well), it is called monopole.
- n = 1 means the fields change 1 cycle ($cos\phi$) along ϕ , it is called dipole.
- n = 2 means the fields change 2 cycles ($cos2\phi$) along ϕ , it is called quadrupole.
- n = 3 sextupole/hexapole, n = 4 octupole...

Meaning of m

- The mth root for $J'_n\left(rac{P'_{nm}}{a}\rho\right)$
- There is no zeroth root thus m = 1,2,3...

$$\begin{aligned} \mathsf{TE}_{11} \\ E_{\rho} &= \frac{-j\omega\mu}{\rho} A\cos\varphi J_{1} \left(\frac{P_{11}'}{a}\rho\right) e^{-j\beta z} \\ E_{\varphi} &= j\omega\mu\frac{P_{11}'}{a} A\sin\varphi J_{1}' \left(\frac{P_{11}'}{a}\rho\right) e^{-j\beta z} \\ E_{z} &= 0 \\ H_{\rho} &= -j\beta\frac{P_{11}'}{a} A\sin\varphi J_{1}' \left(\frac{P_{11}'}{a}\rho\right) e^{-j\beta z} \\ H_{\varphi} &= \frac{-j\beta}{\rho} A\cos\varphi J_{1} \left(\frac{P_{11}'}{a}\rho\right) e^{-j\beta z} \\ H_{z} &= \left(\frac{P_{11}'}{a}\right)^{2} A\sin\varphi J_{1} \left(\frac{P_{11}'}{a}\rho\right) e^{-j\beta z} \\ \text{with } k_{c_{11}} &= \frac{P_{11}'}{a} = \frac{1.841}{a} \\ \text{and another } TE_{11} \text{ that is orthogonal to it.} \end{aligned}$$

Manue & Manue

$TE_{11} - Cutoff$

unne

• Loss of TE_{11} versus frequency (assuming 2m long waveguide with Cu wall).

Polarization Degeneracy in TE₁₁

n = 1, dipole, fields change 1 cycle along φ . Another mode that has the same field pattern but rotated 90°.

Polarization Degeneracy in TE₁₁

 Loss of TE₁₁ (degenerated) versus frequency (assuming 2m long cable with Cu walls).

 $\frac{52(1),1(1)}{52(2),1(1)} TE_{11} 30^{\circ} \text{ between 2 ports}$

The attenuation depends on the polarization of the port modes on the input and output ports, if they are not aligned, the attenuation will be higher, but it is not real, the total power going to two degenerated modes on the output should be ~100% (minus wall loss), 25% attenuation (-1.25dB) for the blue curve and 75% attenuation (-6dB) for the orange curve in the plot.

rotating

TE₁₁ E with a circular polarization input signal

TE₁₁ H with a circular polarization input signal

Circular Waveguide – TE₀₁

$$E_{\rho} = 0$$

$$E_{\varphi} = j\omega\mu \frac{P_{01}'}{a} AJ_0' \left(\frac{P_{01}'}{a}\rho\right) e^{-j\beta z}$$

$$E_z = 0$$

$$H_{\rho} = -j\beta \frac{P_{01}'}{a} AJ_0' \left(\frac{P_{01}'}{a}\rho\right) e^{-j\beta z}$$

$$H_{\varphi} = 0$$

$$H_z = \left(\frac{P_{01}'}{a}\right)^2 AJ_0 \left(\frac{P_{01}'}{a}\rho\right) e^{-j\beta z}$$
with $k_{c_01} = \frac{P_{01}'}{a} = \frac{3.832}{a}$

There is no orthogonal TE_{01} since it is not φ dependent.

E fields

on Collider

Electron-Ion Collider

anne

- 51

aunun 19

$\frac{\text{Circular Waveguide} - \frac{1}{\rho} \left(\frac{\partial(\rho H_{\varphi})}{\partial \rho} - \frac{\partial H_{\rho}}{\partial \varphi} \right) = j\omega \varepsilon E_{z}$ $\& H_{\rho} = \frac{j\omega\varepsilon}{\rho k_{c}^{2}} \frac{\partial E_{z}}{\partial \varphi} \& H_{\varphi} = \frac{-j\omega\varepsilon}{k_{c}^{2}} \frac{\partial E_{z}}{\partial \rho}$ $\rightarrow \left(\frac{\partial^{2}}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} + k_{c}^{2} \right) E_{z} = 0$	ΓM (1	a	p 0 Z	$E_z = 0$	
thus $E_z(\rho, \varphi) = k_c^2(Asinn\varphi + Bcosn\varphi)J_n(k_c\rho)e^{-j\beta z}$					
and boundary condition $E_z _{\rho=a} = 0$, so $J_n(k_c a) = 0$					
We define P_{nm} the m th root of $J_n(P_{nm})$, with $m = 1, 2, 3$ Values of P_{nm}					
we have $k_{c_nm} = P_{nm}/a$.	n	P_{n1}	P_{n2}	P_{n3}	
	0	2.405	5.520	8.654	
	1	3.832	7.016	10.174	
	2	5.135	8.417	11.620	
alline addunting		Ele	ectron-lon	Collider	

Bessel functions

Bessel functions of the 1st kind

We define P'_{nm} the mth root of $J'_n(P'_{nm})$, with m = 1,2,3...We define P_{nm} the mth root of $J_n(P_{nm})$, with m = 1, 2, 3... $P_{1m} = P'_{0m}$ In fact $J'_{0}(x) = -J_{1}(x)$ TM_{1n} & TE_{0n} have the same cutoff frequency, TE-TM degeneration.

From: Wikipedia https://en.wikipedia.org/wiki/Bessel_function

Circular Waveguide – TM (2)

$$\begin{split} E_{\rho} &= -j\beta \frac{P_{nm}}{a} (Asinn\varphi + Bcosn\varphi) J'_{n} \left(\frac{P_{nm}}{a}\rho\right) e^{-j\beta z} \\ E_{\varphi} &= \frac{-j\beta n}{\rho} (Acosn\varphi - Bsinn\varphi) J_{n} \left(\frac{P_{nm}}{a}\rho\right) e^{-j\beta z} \\ E_{z} &= \left(\frac{P_{nm}}{a}\right)^{2} (Asinn\varphi + Bcosn\varphi) J_{n} \left(\frac{P_{nm}}{a}\rho\right) e^{-j\beta z} \\ H_{\rho} &= \frac{j\omega \varepsilon n}{\rho} (Acosn\varphi - Bsinn\varphi) J_{n} \left(\frac{P_{nm}}{a}\rho\right) e^{-j\beta z} \\ H_{\varphi} &= -j\omega \varepsilon \frac{P_{nm}}{a} (Asinn\varphi + Bcosn\varphi) J'_{n} \left(\frac{P_{nm}}{a}\rho\right) e^{-j\beta z} \\ H_{z} &= 0 \end{split}$$

Terms containing A can be get by rotating terms containing B by 90° (orthogonal, while n \neq 0). One can choose either the term that containing A or the term that containing B, for example:

$$E_{\rho} = -j\beta \frac{P_{nm}}{a} Asinn\varphi J'_{n} \left(\frac{P_{nm}}{a}\rho\right) e^{-j\beta z}$$

$$E_{\varphi} = \frac{-j\beta n}{\rho} Acosn\varphi J_{n} \left(\frac{P_{nm}}{a}\rho\right) e^{-j\beta z}$$

$$E_{z} = \left(\frac{P_{nm}}{a}\right)^{2} Asinn\varphi J_{n} \left(\frac{P_{nm}}{a}\rho\right) e^{-j\beta z}$$

$$H_{\rho} = \frac{j\omega \varepsilon n}{\rho} Acosn\varphi J_{n} \left(\frac{P_{nm}}{a}\rho\right) e^{-j\beta z}$$

$$H_{\varphi} = -j\omega \varepsilon \frac{P_{nm}}{a} Asinn\varphi J'_{n} \left(\frac{P_{nm}}{a}\rho\right) e^{-j\beta z}$$

$$H_{z} = 0$$

Circular Waveguide – TM (3)

n = 0, 1, 2, 3... and m = 1, 2, 3...

There is no TM_{n0} mode in a circular waveguide.

There are TM_{0m} modes in it.

n	P_{n1}	P_{n2}	P_{n3}
0	2.405	5.520	8.654
1	3.832	7.016	10.174
2	5.135	8.417	11.620

Circular Waveguide – TM₀₁

$$\begin{split} E_{\rho} &= -j\beta \frac{P_{01}}{a} A J_0' \left(\frac{P_{01}}{a} \rho \right) e^{-j\beta z} \\ E_{\varphi} &= 0 \\ E_z(\rho, \varphi) &= \left(\frac{P_{01}}{a} \right)^2 A J_0 \left(\frac{P_{01}}{a} \rho \right) e^{-j\beta z} \\ H_{\rho} &= 0 \\ H_{\varphi} &= -j \omega \varepsilon \frac{P_{01}}{a} A J_0' \left(\frac{P_{01}}{a} \rho \right) e^{-j\beta z} \\ H_z &= 0 \end{split}$$

Circular Waveguide – TM₁₁

unne

TE₀₁ & TM₁₁ degeneracy

• Two modes with the same cutoff, with $k_c b = 3.832 \rightarrow \text{TE-TM}$ degeneracy. BTW, it is also possible to have TE-TE or TM-TM

degeneracy.

der

Electron-Ion Collider

(IIIIIII)

- 51

aunun 19