

# High Power RF Engineering -Waveguide (2) 

Binping Xiao

Electrón-Ion Collider



## Cylindrical coordinate

$\nabla \times \boldsymbol{E}=-j \omega \mu \boldsymbol{H} \& \nabla \times \boldsymbol{H}=j \omega \varepsilon \boldsymbol{E}$
$\nabla \times \boldsymbol{E}=\boldsymbol{\rho}\left(\frac{1}{\rho} \frac{\partial E_{z}}{\partial \varphi}-\frac{\partial E_{\varphi}}{\partial z}\right)+\boldsymbol{\varphi}\left(\frac{\partial E_{\rho}}{\partial z}-\frac{\partial E_{z}}{\partial \rho}\right)+z \frac{1}{\rho}\left(\frac{\partial\left(\rho E_{\varphi}\right)}{\partial \rho}-\frac{\partial E_{\rho}}{\partial \varphi}\right)^{Z}$
$=\boldsymbol{\rho}\left(\frac{1}{\rho} \frac{\partial E_{z}}{\partial \varphi}+j \beta E_{\varphi}\right)+\boldsymbol{\varphi}\left(-j \beta E_{\rho}-\frac{\partial E_{z}}{\partial \rho}\right)+z \frac{1}{\rho}\left(\frac{\partial\left(\rho E_{\varphi}\right)}{\partial \rho}-\frac{\partial E_{\rho}}{\partial \varphi}\right)$
$=\boldsymbol{\rho}\left(-j \omega \mu H_{\rho}\right)+\boldsymbol{\varphi}\left(-j \omega \mu H_{\varphi}\right)+\boldsymbol{z}\left(-j \omega \mu H_{z}\right)$
Similarly
$\boldsymbol{\rho}\left(\frac{1}{\rho} \frac{\partial H_{z}}{\partial \varphi}+j \beta H_{\varphi}\right)+\boldsymbol{\varphi}\left(-j \beta H_{\rho}-\frac{\partial H_{z}}{\partial \rho}\right)+\boldsymbol{z} \frac{1}{\rho}\left(\frac{\partial\left(\rho H_{\varphi}\right)}{\partial \rho}-\frac{\partial H_{\rho}}{\partial \varphi}\right)$
$=\boldsymbol{\rho}\left(\mathrm{j} \omega \varepsilon E_{\rho}\right)+\boldsymbol{\varphi}\left(\mathrm{j} \omega \varepsilon E_{\varphi}\right)+\mathbf{z}\left(\mathrm{j} \omega \varepsilon E_{z}\right)$

## Field Distribution

$$
-j \beta H_{\rho}-\frac{\partial H_{z}}{\partial \rho}=j \omega \varepsilon E_{\varphi}
$$

$$
k_{c}^{2}=k^{2}-\beta^{2} \& k=\omega \sqrt{\mu \varepsilon}
$$

$$
\frac{1}{\rho}\left(\frac{\partial\left(\rho H_{\varphi}\right)}{\partial \rho}-\frac{\partial H_{\rho}}{\partial \varphi}\right)=j \omega \varepsilon E_{z}
$$

Note: there are two equations that have not been used yet.

$$
\begin{aligned}
& \frac{1}{\rho} \frac{\partial E_{z}}{\partial \varphi}+j \beta E_{\varphi}=-j \omega \mu H_{\rho} \quad k_{c}^{2} H_{\rho}=j\left(\frac{\omega \varepsilon}{\rho} \frac{\partial E_{z}}{\partial \varphi}-\beta \frac{\partial H_{z}}{\partial \rho}\right) \\
& -j \beta E_{\rho}-\frac{\partial E_{z}}{\partial \rho}=-j \omega \mu H_{\varphi} \Longrightarrow k_{c}^{2} H_{\varphi}=-j\left(\omega \varepsilon \frac{\partial E_{z}}{\partial \rho}+\frac{\beta}{\rho} \frac{\partial H_{z}}{\partial \varphi}\right) \\
& \frac{1}{\rho}\left(\frac{\partial\left(\rho E_{\varphi}\right)}{\partial \rho}-\frac{\partial E_{\rho}}{\partial \varphi}\right)=-j \omega \mu H_{z} \quad k_{c}^{2} E_{\rho}=-j\left(\beta \frac{\partial E_{z}}{\partial \rho}+\frac{\omega \mu}{\rho} \frac{\partial H_{z}}{\partial \varphi}\right) \\
& \frac{1}{\rho} \frac{\partial H_{Z}}{\partial \varphi}+j \beta H_{\varphi}=j \omega \varepsilon E_{\rho}
\end{aligned}
$$

## Transverse Electric (TE)

- $E_{Z}=0 \& H_{z} \neq 0$.
- Wave impedance

$$
\underset{\substack{\mathrm{Z}_{\mathrm{TE}} \\
\mathrm{kn} / \beta}}{ } \quad\left[\begin{array}{l}
\rho \\
\hline
\end{array} H_{\varphi}=-E_{\varphi} / H_{\rho}=\omega \mu / \beta=\left\{\begin{array}{l}
E_{\rho}=\frac{-j \omega \mu}{\rho k_{c}^{2}} \frac{\partial H_{Z}}{\partial \varphi} \\
E_{\varphi}=\frac{j \omega \mu}{k_{c}^{2}} \frac{\partial H_{Z}}{\partial \rho} \\
\\
\frac{\partial\left(\rho H_{\varphi}\right)}{\partial \rho}=\frac{\partial\left(H_{\rho}\right)}{\partial \varphi}
\end{array}\right.\right.
$$

$$
\left[\begin{array}{l}
H_{\rho}=\frac{-j \beta}{k_{c}^{2}} \frac{\partial H_{z}}{\partial \rho} \\
H_{\varphi}=\frac{-j \beta}{\rho k_{c}^{2}} \frac{\partial H_{Z}}{\partial \varphi} \\
E_{\rho}=\frac{-j \omega \mu}{\rho k_{c}^{2}} \frac{\partial H_{z}}{\partial \varphi} \\
E_{\varphi}=\frac{j \omega \mu}{k_{c}^{2}} \frac{\partial H_{Z}}{\partial \rho} \\
\longrightarrow \frac{\partial\left(\rho H_{\varphi}\right)}{\partial \rho}=\frac{\partial\left(H_{\rho}\right)}{\partial \varphi}
\end{array}\right.
$$

## Transverse Magnetic (TM)

- $E_{z} \neq 0 \& H_{z}=0$.
- Wave impedance

$$
\mathrm{Z}_{\mathrm{TM}}=E_{\rho} / H_{\varphi}=-E_{\varphi} / H_{\rho}=\beta / \omega \varepsilon=\beta \eta / k
$$

$$
\begin{gathered}
H_{\rho}=\frac{j \omega \varepsilon}{\rho k_{c}^{2}} \frac{\partial E_{Z}}{\partial \varphi} \\
H_{\varphi}=\frac{-j \omega \varepsilon}{k_{c}^{2}} \frac{\partial E_{Z}}{\partial \rho} \\
\left\{\begin{array}{l}
E_{\rho}=\frac{-j \beta}{k_{c}^{2}} \frac{\partial E_{Z}}{\partial \rho} \\
E_{\varphi}=-\frac{j \beta}{\rho k_{c}^{2}} \frac{\partial E_{z}}{\partial \varphi} \\
\longrightarrow \\
\frac{\partial\left(\rho E_{\varphi}\right)}{\partial \rho}=\frac{\partial E_{\rho}}{\partial \varphi}
\end{array}\right.
\end{gathered}
$$

## Circular Waveguide

## TE (1)

$\frac{1}{\rho}\left(\frac{\partial\left(\rho E_{\varphi}\right)}{\partial \rho}-\frac{\partial E_{\rho}}{\partial \varphi}\right)=-j \omega \mu H_{z}$
$\& E_{\varphi}=\frac{j \omega \mu}{k_{c}^{2}} \frac{\partial H_{z}}{\partial \rho} \& E_{\rho}=\frac{-j \omega \mu}{\rho k_{c}^{2}} \frac{\partial H_{z}}{\partial \varphi}$

$\rightarrow\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+k_{c}^{2}\right) H_{z}=0$
and then use " separation of variables" $H_{z}(\rho, \varphi)=$ $P(\rho) \Phi(\varphi) e^{-j \beta z}$
$\rho^{2} \frac{d^{2} P}{d \rho^{2}}+\rho \frac{d P}{d \rho}+\left(k_{c}^{2} \rho^{2}-k_{\varphi}^{2}\right) P=0 \& \frac{d^{2} \Phi}{d \varphi^{2}}+k_{\varphi}^{2} \Phi=0$
For $\frac{d^{2} \Phi}{d \varphi^{2}}+k_{\varphi}^{2} \Phi=0, \Phi(\varphi)=A \sin k_{\varphi} \varphi+B \operatorname{cosk}_{\varphi} \varphi$, and $\Phi$ should be periodic every $2 \pi$, thus $k_{\varphi}=n=0,1,2,3 \ldots$

## Bessel functions

Bessel's differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\alpha^{2}\right) y=0, \alpha$ can be a complex number, in our application $\alpha=0,1,2,3 \ldots$ Bessel functions of the $1^{\text {st }}$ kind (left) and the $2^{\text {nd }}$ kind (right)


From: Wikipedia https://en.wikipedia.org/wiki/Bessel_function

TE (2)
$\rho^{2} \frac{d^{2} P}{d \rho^{2}}+\rho \frac{d P}{d \rho}+\left(k_{c}^{2} \rho^{2}-n^{2}\right) P=0$ is Bessel equation


The solution is $P(\rho)=C J_{n}\left(k_{c} \rho\right)+D Y_{n}\left(k_{c} \rho\right), J_{n}(x)$ and $Y_{n}(x)$ are Bessel functions of the $1^{\text {st }}$ and $2^{\text {nd }}$ kind. $Y_{n}(0)=-\infty$ is not acceptable since the field at $\rho=0$ cannot be infinite, thus $\mathrm{D}=0$ and $P(\rho)=C J_{n}\left(k_{c} \rho\right)$. We have
$H_{z}(\rho, \varphi)=k_{c}^{2}(A \operatorname{sinn} \varphi+B \operatorname{cosn} \varphi) J_{n}\left(k_{c} \rho\right) e^{-j \beta z}$
and $E_{\varphi}=\frac{j \omega \mu}{k_{c}^{2}} \frac{\partial H_{Z}}{\partial \rho^{\prime}}$ thus-
$E_{\varphi}=j \omega \mu k_{c}^{c}(A \operatorname{sinn} \varphi+B \cos n \varphi) J_{n}^{\prime}\left(k_{c} \rho\right) e^{-j \beta z}$

TE (3)

Boundary conditions:
E field should be perpendicular to the metal walls, thus $\left.E_{\varphi}\right|_{\rho=\mathrm{a}}=0$


Values of $P_{n m}^{\prime}$
$J_{n}^{\prime}\left(k_{c} a\right)=0$
We define $P_{n m}^{\prime}$ the $\mathrm{m}^{\text {th }}$ root of $J_{n}^{\prime}$, with $m=1,2,3 \ldots$
we have $k_{c_{-} n m}=P_{n m}^{\prime} / \mathrm{a}$.

| $\mathbf{n}$ | $P_{n 1}^{\prime}$ | $P_{n 2}^{\prime}$ | $P_{n 3}^{\prime}$ |
| :---: | :---: | :---: | :---: |
| 0 | 3.832 | 7.016 | 10.174 |
| 1 | 1.841 | 5.331 | 8.536 |
| 2 | 3.054 | 6.706 | 9.970 |

## TE (4)

$$
\begin{aligned}
& E_{\rho}=\frac{-j \omega \mu n}{\rho}(A \operatorname{cosn} \varphi-B \operatorname{sinn} \varphi) J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z} \\
& E_{\varphi}=j \omega \mu \frac{P_{n m}^{\prime}}{a}(A \sin n \varphi+B \cos n \varphi) J_{n}^{\prime}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z} \\
& E_{z}=0 \\
& H_{\rho}=-j \beta \frac{P_{n m}^{\prime}}{a}(A \operatorname{sinn} \varphi+B \cos n \varphi) J_{n}^{\prime}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z} \\
& H_{\varphi}=\frac{-j \beta n}{\rho}(A \operatorname{cosn} \varphi-B \operatorname{sinn} \varphi) J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z} \\
& H_{z}=\left(\frac{P_{n m}^{\prime}}{a}\right)^{2}(A \operatorname{sinn} \varphi+B \operatorname{cosn} \varphi) J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z} \\
& \text { with } k_{C_{-} n m}=P_{n m}^{\prime} / a
\end{aligned}
$$

Terms containing A can be get by rotating terms containing B by $90^{\circ}$ (orthogonal, while $n \neq 0$, polarization' degeneracy). Oné can choose either the term that containing $A$ or the term that containing $B$, for example:
$E_{\rho}=\frac{j \omega \mu n}{\rho} B \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z}$
$E_{\varphi}=j \omega \mu \frac{P_{n m}^{\prime}}{a} B \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z}$
$E_{z}=0$
$H_{\rho}=-j \beta \frac{P_{n m}^{\prime}}{a} B \operatorname{cosn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z}$
$H_{\varphi}=\frac{j \beta n}{\rho} B \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z}$
$H_{z}=\left(\frac{P_{n m}^{\prime}}{a}\right)^{2} B \operatorname{cosn} \varphi J_{n}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z}$

## $A \operatorname{sinn} \varphi+B \operatorname{cosn} \varphi$ and degeneracy

- Degenerate modes: modes that have the same cutoff frequency in a waveguide or have the same frequency in a cavity.
- Mathematically $A \operatorname{sinn} \varphi+B \operatorname{cosn} \varphi \neq B \operatorname{cosn} \varphi$, we choose $\cos$ so that when $n=0$, it is non-zero.
- For a cylindrical symmetric structure, however, If you rotate $90 \% / \mathrm{n}$ of the field pattern that containing term $A$, you will get the field pattern that containing term $B$ (while $n \neq 0$, polarization degeneracy). One can choose either the term that containing $A$ or the term that containing $B$.
- The mode pattern inside is determined by the input signal.
- We will show an example about polarization degeneracy soon.

TE (5)

$$
n=0,1,2,3 \ldots \text { and } m=1,2,3 \ldots
$$

$T E_{n m}$ with $n$ for $\varphi$ and $m$ for $\rho$.
There is no $T E_{n 0}$ mode in a circular waveguide.
There are $T E_{0 m}$ modes in it.
The mode with lowest cutoff frequency for $T E$ modes is $T E_{11}$,
with $f_{c_{-} T E_{11}}=\frac{1.841 c}{2 \pi a} \quad$ Values of $P_{n m}^{\prime}$
$f_{c_{-} T E_{21}}=\frac{3.054 c}{2 \pi a} \& f_{C_{-} T E_{01}}=\frac{3.832 c}{2 \pi a}$

| $\mathbf{n}$ | $P_{n 1}^{\prime}$ | $P_{n 2}^{\prime}$ | $P_{n 3}^{\prime}$ |
| :---: | :---: | :---: | :---: |
| 0 | 3.832 | 7.016 | 10.174 |
| 1 | 1.841 | 5.331 | 8.536 |
| 2 | 3.054 | 6.706 | 9.970 |

## Meaning of $n$

- $E_{\varphi}=j \omega \mu \frac{P_{n m}^{\prime}}{a} B \cos n \varphi J_{n}^{\prime}\left(\frac{P_{n m}^{\prime}}{a} \rho\right) e^{-j \beta z}$
- $n=0$ means the fields do not change along $\varphi$ (recall that TEM mode in coax line do not change along $\varphi$ as well), it is called monopole.
- $n=1$ means the fields change 1 cycle $(\cos \varphi)$ along $\varphi$, it is called dipole.
- $n=2$ means the fields change 2 cycles $(\cos 2 \varphi)$ along $\varphi$, it is called quadrupole.
- $n=3$ sextupole/hexapole, $n=4$ octupole...


## Meaning of $m$

- The $\mathrm{m}^{\text {th }}$ root for $J_{n}^{\prime}\left(\frac{P_{n m}^{\prime}}{a} \rho\right)$
- There is no zeroth root thus $m=1,2,3 \ldots$


## $T E_{11}$

$E_{\rho}=\frac{-j \omega \mu}{\rho} A \cos \varphi J_{1}\left(\frac{P_{11}^{\prime}}{a} \rho\right) e^{-j \beta z}$
$E_{\varphi}=j \omega \mu \frac{P_{11}^{\prime}}{a} \operatorname{Asin} \varphi J_{1}^{\prime}\left(\frac{P_{11}^{\prime}}{a} \rho\right) e^{-j \beta z}$
$E_{z}=0$
$H_{\rho}=-j \beta \frac{P_{11}^{\prime}}{a} A \sin \varphi J_{1}^{\prime}\left(\frac{P_{11}^{\prime}}{a} \rho\right) e^{-j \beta z}$
$H_{\varphi}=\frac{-j \beta}{\rho_{1}} A \cos \varphi J_{1}\left(\frac{P_{1}^{\prime}}{a} \rho\right) e^{-j \beta z}$
$H_{z}=\left(\frac{P_{11}^{\prime}}{a}\right)^{2} A \sin \varphi J_{1}\left(\frac{P_{11}^{\prime}}{a} \rho\right) e^{-j \beta z}$
4
and another $T E_{11}$ that is orthogonal to it.


## $\mathrm{TE}_{11} \mathrm{E}$



## $\mathrm{TE}_{11} \mathrm{H}$


(rccule $=$ "(c(cellicu)


## $\mathrm{TE}_{11}$ - Cutoff

- Loss of $T E_{11}$ versus frequency (assuming $2 m$ long waveguide with Cu wall).



## Polarization Degeneracy in $\mathrm{TE}_{11}$

$n=1$, dipole, fields change 1 cycle along $\varphi$. Another mode that has the same field pattern but rotated $90^{\circ}$.


## Polarization Degeneracy in $\mathrm{TE}_{11}$

- Loss of $\mathrm{TE}_{11}$ (degenerated) versus frequency (assuming 2 m long cable with Cu walls).

- ${ }_{22(1), 1(1)} T E_{11} 30^{\circ}$ between 2 ports - ${ }^{s 2(2), 1(1)} \mathrm{TE}_{11} 60^{\circ}$ between 2 ports

The attenuation depends on the polarization of the port modes on the input and output ports, if they are not aligned, the attenuation will be higher, but it is not real, the total power going to two degenerated modes on the output should be ~100\% (minus wall loss), $25 \%$ attenuation ( -1.25 dB ) for the blue curve and $75 \%$ attenuation ( -6 dB ) for the orange curve in the plot.

## $\mathrm{TE}_{11}$ E with a circular polarization input signal

## rotating






# $\mathrm{TE}_{11} \mathrm{H}$ with a circular polarization input signal 

## rotating



## Circular Waveguide - $\mathrm{TE}_{01}$

$E_{\rho}=0$
$E_{\varphi}=j \omega \mu \frac{P_{01}^{\prime}}{a} A J_{0}^{\prime}\left(\frac{P_{01}^{\prime}}{a} \rho\right) e^{-j \beta z}$
$E_{Z}=0$
$H_{\rho}=-j \beta \frac{P_{01}^{\prime}}{a} A J_{0}^{\prime}\left(\frac{P_{01}^{\prime}}{a} \rho\right) e^{-j \beta z}$
$H_{\varphi}=0$
$H_{z}=\left(\frac{P_{O 1}^{\prime}}{a}\right)^{2} A J_{0}\left(\frac{P_{P_{1}^{\prime}}^{\prime}}{a} \rho\right) e^{-\mathrm{j} \beta z}$
with $_{c_{-} 01}=\frac{P_{01}^{\prime}}{a}=\frac{3.832}{a}$


There is no orthogonal $T E_{01}$, since it is not $\varphi$ dependent.

E fields
$T E_{n 1}$
$T E_{01} n=0$
monopole

$T E_{11} n=1$
dipole

$T E_{21} n=2$
quadrupole

$T E_{31} n=3$
sextupole/hexapole


## Circular Waveguide - TM (1)

$\frac{1}{\rho}\left(\frac{\partial\left(\rho H_{\varphi}\right)}{\partial \rho}-\frac{\partial H_{\rho}}{\partial \varphi}\right)=j \omega \varepsilon E_{Z}$
$\& H_{\rho}=\frac{j \omega \varepsilon}{\rho k_{c}^{2}} \frac{\partial E_{Z}}{\partial \varphi} \& H_{\varphi}=\frac{-j \omega \varepsilon}{k_{c}^{2}} \frac{\partial E_{Z}}{\partial \rho}$
$\rightarrow\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+k_{C}^{2}\right) E_{Z}=0$

thus $E_{z}(\rho, \varphi)=k_{c}^{2}(A \operatorname{sinn} \varphi+B \operatorname{cosn} \varphi) J_{n}\left(k_{c} \rho\right) e^{-j \beta z}$
and boundary condition $\left.E_{z}\right|_{\rho=\mathrm{a}}=0$, so $J_{n}\left(k_{c} a\right)=0$
We define $P_{n m}$ the $\mathrm{m}^{\text {th }}$ root of $J_{n}\left(P_{n m}\right)$, with $m=1,2,3 \ldots$... Values of $P_{n m}$ we have $k_{c_{-} n m}=P_{n m} /$ a.

| $\mathbf{n}$ | $P_{n 1}$ | $P_{n 2}$ | $P_{n 3}$ |
| :---: | :---: | :---: | :---: |
| 0 | 2.405 | 5.520 | 8.654 |
| 1 | 3.832 | 7.016 | 10.174 |
| 2 | 5.135 | 8.417 | 11.620 |

## Bessel functions

Bessel functions of the $1^{\text {st }}$ kind
We define $P_{n m}^{\prime}$ the $\mathrm{m}^{\text {th }}$ root of
$J_{n}^{\prime}\left(P_{n m}^{\prime}\right)$, with $m=1,2,3 \ldots$
We define $P_{n m}$ the $\mathrm{m}^{\text {th }}$ root of $J_{n}\left(P_{n m}\right)$, with $m=1,2,3 \ldots$
$P_{1 m}=P_{0 m}^{\prime}$
In fact $J_{0}^{\prime}(x)=-J_{1}(x)$
$T M_{\text {ln }}$ \& $T E_{0 n}$ have the same cutoff frequency, degeneration.


From: Wikipedia https://en.wikipedia.org/wiki/Bessel_function

## Circular Waveguide - TM (2)

Terms containing A can be get by rotating terms containing B

$$
\begin{aligned}
& E_{\rho}=-j \beta \frac{P_{n m}}{a}(A \operatorname{sinn} \varphi+B \operatorname{cosn} \varphi) J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z} \\
& E_{\varphi}=\frac{-j \beta n}{\rho}(A \operatorname{cosn} \varphi-B \operatorname{sinn} \varphi) J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}
\end{aligned}
$$

$$
E_{z}=\left(\frac{P_{n m}}{a}\right)^{2}(A \operatorname{sinn} \varphi+B \operatorname{cosn} \varphi) J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}
$$

$$
H_{\rho}=\frac{j \omega \varepsilon n}{\rho}(A \cos n \varphi-B \operatorname{sinn} \varphi) J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}
$$

$$
H_{\varphi}=-j \omega \varepsilon \frac{P_{n m}}{a}(A \operatorname{sinn} \varphi+B \operatorname{cosn} \varphi) J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}
$$

$H_{z}=0$
by $90^{\circ}$ (orthogonal, while $n \neq$ $0)$. One can choose either the term that containing $A$ or the term that containing $B$, for example:
$E_{\rho}=-j \beta \frac{P_{n m}}{a} A \operatorname{sinn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}$
$E_{\varphi}=\frac{-j \beta n}{\rho} A \operatorname{cosn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}$
$E_{z}=\left(\frac{P_{n m}}{a}\right)^{2} A \operatorname{sinn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}$
$H_{\rho}=\frac{j \omega \varepsilon n}{\rho} A \operatorname{cosn} \varphi J_{n}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}$
$H_{\varphi}=$
$-j \omega \varepsilon \frac{P_{n m}}{a} A \operatorname{sinn} \varphi J_{n}^{\prime}\left(\frac{P_{n m}}{a} \rho\right) e^{-j \beta z}$
$H_{z}=0$

## Circular Waveguide - TM (3)

$n=0,1,2,3 \ldots$ and $m=1,2,3 \ldots$
There is no $T M_{n 0}$ mode in a circular waveguide.
There are $T M_{0 m}$ modes in it.
The mode with lowest cutoff frequency for TM modes is
$T M_{01}$, with $f_{c_{-} T M_{01}}=\frac{2.405 c}{2 \pi a}$
Values of $P_{n m}$
$f_{c_{-} T M_{01}}$ is between $f_{c_{-} T E_{11}} \& f_{c_{-} T E_{21}}$

| $\mathbf{n}$ | $P_{n 1}$ | $P_{n 2}$ | $P_{n 3}$ |
| :---: | :---: | :---: | :---: |
| 0 | 2.405 | 5.520 | 8.654 |
| 1 | 3.832 | 7.016 | 10.174 |
| 2 | 5.135 | 8.417 | 11.620 |

## Circular Waveguide - TM $\mathrm{M}_{01}$

$$
\begin{aligned}
& E_{\rho}=-j \beta \frac{P_{01}}{a} A J_{0}^{\prime}\left(\frac{P_{01}}{a} \rho\right) e^{-j \beta z} \\
& E_{\varphi}=0 \\
& E_{z}(\rho, \varphi)=\left(\frac{P_{01}}{a}\right)^{2} A J_{0}\left(\frac{P_{01}}{a} \rho\right) e^{-j \beta z} \\
& H_{\rho}=0 \\
& H_{\varphi}=-j \omega \varepsilon \frac{P_{01}}{a} A J_{0}^{\prime}\left(\frac{P_{01}}{a} \rho\right) e^{-j \beta z} \\
& H_{z}=0
\end{aligned}
$$



Electron-Ion Collider

## Circular Waveguide - TM 11



## $\mathrm{TE}_{01} \& \mathrm{TM}_{11}$ degeneracy

- Two modes with the same cutoff, with $k_{c} b=3.832 \rightarrow$ TE-TM degeneracy. BTW, it is also possible to have TE-TE or TM-TM degeneracy.


