Homework 8. Due October 5

Problem 1. 10 points. Sylvester formula - dipole/quadrupole
For an uncoupled transverse motion with constant energy and Hamiltonian of a bending magnet with quadrupole term (e.g. field gradient):

$$
\begin{gathered}
\tilde{h}_{n}=\frac{p_{x}^{2}+p_{y}^{2}}{2}+f \frac{x^{2}}{2}+g \frac{y^{2}}{2} \\
f=\left[K_{o}^{2}-K_{1}\right] ; g=-K_{1} ; K_{o}=-\frac{e}{p_{o} c} B_{y} ; K_{1}=-\frac{e}{p_{o} c} \frac{\partial B_{y}}{\partial x}
\end{gathered}
$$

(a) Define all cases for eigen values of D .
(b) Use Sylvester formula for one-dimensional motions (x and y) when $f \neq 0 ; g \neq 0$; (non-degenerated cases) and write explicit form of the 2×2 transport matrices.
(c) Consider a case of pure quadrupole: $K_{o}=0$, no bending
(d) Do the same as above using 4 x 4 matrix formulation (2D case) and show that results are identical

Problem 1. 10 points. Sylvester formula, SQ-quadrupole
For a coupled transverse motion with constant energy and Hamiltonian of a SQquadrupole:

$$
\tilde{h}_{n}=\frac{p_{x}^{2}+p_{y}^{2}}{2}+N x y ; \quad N=\frac{e}{p_{o} c} \frac{\partial B_{x}}{\partial x}
$$

(a) Use Sylvester formula and find matrix of SQ-quadrupole.
(b) Consider a "standard approach" - turn coordinates 45-degrees (use rotation matrix), to turn SQ-quad into a "normal". Then make the product of 45-degree turn, quad matrix, -45 degrees turn. Show that the matrix is the same as in case (a).

