
Chapter 92407

Weak Focusing Synchrotron2408

Abstract This Chapter introduces to the weak focusing synchrotron, and to the the-2409

oretical material needed for the simulation exercises. It begins with a brief reminder2410

of the historical context, and continues with beam optics and acceleration techniques2411

which the weak synchrotron principle and methods lean on. Regarding the latter, it2412

relies on basic charged particle optics and acceleration concepts introduced in the2413

previous Chapters, and further addresses the following aspects:2414

- fixed closed orbit,2415

- periodic structure,2416

- periodic motion stability,2417

- optical functions,2418

- synchrotron motion,2419

- depolarizing resonances.2420

The simulation of weak synchrotrons only require a very limited number of optical2421

elements; actually two are enough: DIPOLE or BEND to simulate combined function2422

dipoles, and DRIFT to simulate straight section. A third one CAVITE, is required2423

for acceleration. Particle monitoring requires keywords introduced in the previous2424

Chapters, including FAISCEAU, FAISTORE, possibly PICKUPS, and some others.2425

Spin motion computation and monitoring resort to SPNTRK, SPNPRT, FAISTORE.2426

Optics matching and optimization use FIT[2]. SYSTEM again is used to shorten the2427

input data files.2428
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92 9 Weak Focusing Synchrotron

Notations used in the Text2429

�; B, �G,H,B field value; field vector, its components in the moving frame

�d = ?/@; �d0 particle rigidity; reference rigidity

C; C0 orbit length, C = 2c' +
[ straight
sections

; reference, C0 = C(? = ?0)
� particle energy

EFB Effective Field Boundary

5rev, 5rf revolution and accelerating voltage frequencies

ℎ RF harmonic number, ℎ = 5rf/ 5rev
<; <0; " mass, < = W<0; rest mass; in units of MeV/c2

= =
d

�
3�
3d

focusing index

p; ?; ?0 momentum vector; its modulus; reference

%8 , % 5 polarization, initial, final

@ particle charge

A, ' orbital radius ; average radius, ' = C/2c
B path variable

E particle velocity

+ (C); +̂ oscillating voltage; its peak value

x, x’, y, y’ horizontal and vertical coordinates in the moving frame

U momentum compaction, or trajectory deviation

V = E/2; V0; VB normalized particle velocity; reference; synchronous

VD betatron functions (D : G, H,. , /)

W = �/<0 Lorentz relativistic factor

X? momentum offset or Dirac distribution

Δ? momentum offset

Y wedge angle

YD Courant-Snyder invariant (D : G, A, H, ;, . , /, B, etc.)

n' strength of a depolarizing resonance

`u betatron phase advance, `u =
∫
period

3B/VD (B) (D : G, H,. , /)

au wave number or “tune”, radial, vertical, synchrotron (D : G, H,. , /, ;)

d, d0 curvature radius; reference

f beam matrix

q; qB particle phase at voltage gap; synchronous phase

qD betatron phase advance, qD =
∫
3B/VD (D : G, H,. , >A/)

i spin angle to the vertical axis

2430

Introduction2431

The synchrotron is an outcome of the mid-1940s longitudinal phase focusing syn-2432

chronous acceleration concept [1, 2]. In its early version, transverse beam stability2433

in the synchrotron during the thousands of turns that the acceleration lasts was based2434
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on the technique known at the time: weak focusing, as in the cyclotron and in the be-2435

tatron. An existing betatron was used to first demonstrate phase-stable synchronous2436

acceleration with slow variation of the magnetic field, on a fixed orbit, in 1946 [3],2437

- closely following the demonstration of the principle of phase focusing using a2438

fixed-field cyclotron [4].2439

Phase focusing states that stability of the longitudinal motion, longitudinal focus-2440

ing, is obtained if particles in a bunch, which have a natural energy spread, arrive2441

at the accelerating gap in the vicinity of a proper phase of the oscillating voltage,2442

the synchronous phase; if this condition is fulfilled the bunch stays together, in the2443

vicinity of the latter, during acceleration. Synchrotrons operate in general in a non-2444

isochronous regime: the revolution period changes with energy; as a consequence,2445

in order to maintain an accelerated bunch on the synchronous phase, the RF voltage2446

frequency, which satisfies 5rf = ℎ 5rev, has to change continuously from injection to2447

top energy. The reference orbit in a synchrotron is maintained at constant radius by2448

ramping the guiding field in the main dipoles in synchronism with the acceleration,2449

as in the betatron [5].2450

Fig. 9.1 Saturne I at Saclay [6], a 3 GeV, 4-

period, 68.9 m circumference, weak focusing

synchrotron, constructed in 1956-58. The injec-

tion line can be seen in the foreground, injection

is from a 3.6 MeV Van de Graaff (not visible)

Fig. 9.2 A slice of Saturne I dipole [7]. The

slight gap tapering is hardly visible (increasing

outward), it determines the weak index condition

0 < = < 1

The synchrotron concept allowed the highest energy reach by particle accelerators2451

at the time, it led to the construction of a series of proton rings with increasing2452

energy [8]: 1 GeV at Birmingham (1953), 3.3 GeV at the Cosmotron (Brookhaven2453

National Laboratory, 1953-1969), 6.2 GeV at the Bevatron (Berkeley, 1954-1993),2454

10 GeV at the Synchro-Phasotron (JINR, Dubna, 1957-2003), and a few additional2455

ones in the late 1950s well into the era of the concept which would essentially2456

dethrone the weak focusing method and its quite bulky rings of magnets which were2457
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a practical limit to further increase in energy1: the strong focusing synchrotron (the2458

object of Chapter 10). The general layout of these first weak focusing synchrotrons2459

included straight sections (often 4, Fig. 9.1), which allowed insertion of injection2460

(Fig. 9.1) and extraction systems, accelerating cavities, orbit correction and beam2461

monitoring equipment.2462

Fig. 9.3 Left: Loma Linda

University medical syn-

chrotron, during commis-

sioning in 1989 at the Fer-

milab National Laboratory

where it was designed and

constructed [9]

The next decades following the invention of the synchrotron saw applications in2463

many fields of science including fixed-target nuclear physics for particle discovery,2464

material science, medicine, industry. Its technological simplicity still makes it an2465

appropriate technology today in low energy beam application when relatively low2466

current is not a concern, as in the hadrontherapy application (Fig. 9.3) [10, 11]: it2467

essentially requires a single type of a simple dipole magnet, an accelerating gap, some2468

command-control instrumentation, whereas it procures greater beam manipulation2469

flexibilities compared to (synchro-)cyclotrons.2470

Polarized beams2471

The availability of polarized proton sources allowed the acceleration of polarized2472

beams to high energy. The possibility was considered from the early times at Argonne2473

ZGS (Zero-Gradient Synchrotron), a 12 GeV weak focusing synchrotron operated2474

over 1964-1979 [12] (Fig. 9.4). Up to 70% polarization transmission through the syn-2475

chrotron was achieved, for the first time in a synchrotron2 and reaching multi-GeV2476

energy in 1973, up to 17.5 GeV/c with appreciable polarizations [13]. Polariza-2477

tion preservation techniques included harmonic orbit correction and fast betatron2478

tune jump at strongest depolarizing resonances [14] (Fig. 9.16). Experiments were2479

performed to assess the possibility of polarization transmission in strong focusing2480

1 The story has it that it is possible to ride a bicycle in the vacuum chamber of Dubna’s Synchro-

Phasotron.

2 Polarized beam had been accelerated in cyclotrons, at earlier times.
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Fig. 9.4 The ZGS at Ar-

gonne during construction. A

12 GeV, 8-dipole, 4-period,

172 m circumference, wedge

focusing synchrotron. The two

persons inside and outside

the ring, in the background,

give an idea of the size of the

magnets

synchrotrons, and polarization lifetime in colliders [15]. Acceleration of polarized2481

deuteron was achieved in the late 1970s, when sources where made available [16].2482

9.1 Basic Concepts and Formulæ2483

The synchrotron is based on two key principles. On the one hand, a slowly varying2484

magnetic field to maintain a constant orbit during acceleration,2485

�(C) × d = ?(C)/@, d = 2>=BC0=C, (9.1)

with ?(C) the particle momentum and d the bending radius in the dipoles. On the other2486

hand, on synchronous acceleration for longitudinal phase stability. In a regime where2487

the velocity change with energy cannot be ignored (non-ultrarelativistic particles),2488

the latter requires a modulation of the accelerating voltage frequency so to satisfy2489

5rf (C) = ℎ 5rev (C) (9.2)

Synchronism between accelerating voltage oscillation and the revolution motion2490

keeps the bunch on the synchronous phase at traversal of the accelerating gaps.2491

Synchronous acceleration is technologically simpler in the case of electrons, as2492

frequency modulation is unnecessary beyond a few MeV; for instance, from E/2 =2493

0.9987 at 10 MeV to E/2 → 1 the relative change in revolution frequency amounts2494

to X 5rev/ 5rev = XV/V < 0.0013.2495

These are two major evolutions compared to the cyclotron, where, instead, the2496

magnetic field is fixed - the reference orbit spirals out, and, by virtue of the isochro-2497

nism of the orbits, the oscillating voltage frequency is fixed as well.2498

A fixed orbit reduces the radial extent of individual guiding magnets, allowing a2499

ring structure comprised of a circular string of dipoles. For the sake of comparison:2500

a synchrocyclotron instead uses a single, massive dipole; increased energy requires2501
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increased radial extent of the magnet to allow for the greater bending field integral2502

(i.e.,
∮
� 3; = 2c'<0G �̂ = ?<0G/@), thus a volume of iron increasing more than2503

quadratically with bunch rigidity.2504

One or the other of the weak index (−1 < : < 0, Sect. 4.2.2) and/or wedge2505

focusing (Sect. 18.3.1) are used in weak focusing synchrotrons. Transverse stability2506

was based on the latter at Argonne ZGS (Zero-Gradient Synchrotron: the main2507

magnet had no field index); ZGS accelerated polarized proton beams, weak focusing2508

resulted in weak depolarizing resonances, an advantage in that matter [15].2509

Due to the necessary ramping of the field, and of the RF frequency to follow,2510

in order to maintain a constant orbit, the synchrotron is a pulsed accelerator, the2511

acceleration is cycled, from injection to top energy, repeatedly. The repetition rate2512

of the acceleration cycle depends on the type of power supply. If the ramping uses a2513

constant electromotive force (E=V+Z I is constant), then2514

�(C) ∝ (1 − 4− C
g ) = 1 −

[
1 −

( C
g

)
+
( C
g

)2

− ...
]
≈ C

g
(9.3)

essentially linear; ¤� = 3�/3C does not exceed a few Tesla/second: the repetition rate2515

of the acceleration cycle if of the order of a Hertz. If instead the magnet winding2516

is part of a resonant circuit then the field oscillates from an injection threshold to a2517

maximum value, �(C) : �0 → �0 + �̂, as in the betatron; the repetition rate is up to2518

a few tens of Hertz. In both cases anyway B imposes its law and the other quantities2519

comprising the acceleration cycle (RF frequency in particular) will follow B(t).2520

For the sake of comparison: in a synchrocyclotron the field is constant, thus2521

acceleration can be cycled as fast as the swing of the voltage frequency allows2522

(hundreds of Hz are common practice); assume a conservative 10 kVolts per turn,2523

thus of the order of 10,000 turns to 100 MeV, with velocity 0.046 < E/2 < 0.432524

from 1 to 100 MeV, proton. Take E ≈ 0.52 to make it simple, an orbit circumference2525

below 30 meter, thus the acceleration takes of the order of 104 × C/0.52 ≈ms range,2526

potentially a repetition rate in kHz range, more than an order of magnitude beyond2527

the reach of a rapid-cycling pulsed synchrotron.2528

9.1.1 Periodic Stability2529

This section introduces the various components of the transverse focusing and the2530

conditions for periodic stability in a weak focusing synchrotron. It builds on material2531

introduced in Chap. 4, Classical Cyclotron, and on Ref. [17].2532

9.1.1.1 Closed orbit2533

The concept is found in the betatron, which accelerates particles on a constant orbit2534

(Chap. 7). The closed orbit is fixed, and maintained during acceleration by ensuring2535
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that the relationship Eq. 9.1 is satisfied. In a perfect ring, the closed orbit is along an2536

arc in the bending magnets and straight along the drifts, Fig. 9.5.2537

Particle motion is defined in a moving frame (O;s,x,y) whose origin coincides2538

with the location of an ideal particle following the reference orbit. The moving frame2539

B axis is tangent to the reference orbit, its transverse horizontal axis G is normal to2540

the B axis, its vertical axis H is normal to the (B, G) plane (Fig. 4.8, Sect. 4.2.2).2541

Fig. 9.5 A 2c/4 axially sym-

metric structure with four

drift spaces. Orbit length on

reference momentum ?0 is

C = 2cd0 + 8;. (O;s,x,y) is

the moving frame, along the

reference orbit. The orbit for

momentum ? = ?0 + Δ?

(Δ? < 0, here) is at constant

distance ΔG =
d0

1−=
Δ?

?0
=

'
(1+:) (1−=)

Δ?

?0
from the refer-

ence orbit
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ο
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9.1.1.2 Transverse Focusing2542

Radial motion stability around a reference closed orbit in an axially symmetric dipole2543

field requires a field index (Sect. 4.2.2),2544

= = − d0

�0

m�H

mG

����
x=0, y=0

(9.4)

a quantity evaluated on the reference arc in the dipoles, satisfying the weak focusing2545

condition (Eq. 4.11 with = = −:)2546

0 < = < 1 (9.5)

This condition can be obtained with a tapered gap (as in Saturne dipoles, Fig. 9.2)2547

causing the magnetic field to decrease slowly with radius, so resulting in both axial2548

and radial focusing (Figs. 9.6, 9.7). Note the sign convention here, the cyclotron uses2549

the opposite sign (Eq. 4.10). This condition holds regardless of the presence of drifts2550

or not. Adding drift spaces between the dipoles, the reference orbit is comprised of2551

arcs of radius d0 in the magnets, and straight segments along the drift spaces that2552

connect these arcs. This requires defining two radii, namely,2553
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n=0
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O"

∆x
p n=1

ρ

Fig. 9.6 Geometrical focusing: in a sector

dipole with focusing index = = 0, parallel in-

coming rays of equal momenta experience the

same curvature radius d, their trajectories con-

verge as outer trajectories have a longer path in

the field, inner ones shorter. An index value n=1

cancels that effect: parallel incoming rays exit

parallel

F
B=B y    
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Fig. 9.7 Axial motion stability requires proper

shaping of field lines: �H has to decrease with

radius. The Laplace force pulls a positive charge

with velocity pointing out of the page, at I,

toward the median plane. Increasing the field

gradient (= closer to 1, gap opening up faster)

increases the focusing

(i) the magnet curvature radius d0,2554

(ii) an average radius ' = C/2c = d0 + #;/c (with C the length of the reference2555

closed orbit and 2; the drift length) (Fig. 9.5) which also writes2556

' = d0 (1 + :), : =
#;

cd0

(9.6)

Adding drift spaces decreases the average focusing around the ring.2557

Fig. 9.8 In a sector dipole

with radial index = ≠ 0,

closed orbits follow arcs

of constant field. A closed

orbit at ?0 + Δ? follows

an arc of radius d0 + Δd,

Δd = Δ?/(1 + =)@�0

90
o

α

o
90

θ

p

O

ρ
p’>p

ρ∆

0
0

p"<p

0

0

Geometrical focusing2558

The limit = → 1 of the transverse motion stability domain corresponds to a cancel-2559

lation of the geometrical focusing (Fig. 9.6): in a constant field dipole (radial field2560

index n=0) the longer (respectively shorter) path in the magnetic field for parallel2561

trajectories entering the magnet at greater (respectively smaller) radius result in2562

convergence. This effect is cancelled, i.e., the deviation is the same whatever the2563
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entrance radius, if the curvature center is made independent of the entrance radius:2564

$$ ′ = 0,$ ′′$ = 0. This occurs if trajectories at an outer (inner) radius experience a2565

smaller (greater) field such as to satisfy �! = �d U = �BC . Differentiating �d = �BC2566

gives Δ�
�

+ Δd

d
= 0, with Δd = ΔG, so yielding = = − d0

�0

Δ�
ΔG

= 1. The focal distance2567

associated with the curvature is (Eq. 4.12 with ' = d0) 5 =
d2

0

L . Optical drawbacks2568

of the weak focusing method include the weakness of the focusing and the absence2569

of independent radial and axial focusing.2570

Wedge Focusing2571

Entrance and exit wedge angles may be used to ensure transverse focusing, Fig. 9.9:2572

opening the magnetic sector increases the horizontal focusing (and decreases the2573

vertical focusing); closing the magnetic sector has the reverse effect (see Sect. 18.3.1).2574

ε<0

p

p

p

∆x
k=0

α

O

field is

field is
missing

added
p

p

p

O

α

n=0
∆x

field is
added

field is
missing

ε>0

Fig. 9.9 Left: a focusing wedge (Y < 0); opening the sector increases horizontal focusing and

decreases vertical focusing. Right: a defocusing wedge (Y > 0), closing the sector, has the reverse

effect. This is the origin of the focusing in the ZGS zero-gradient dipoles

In a point transform approximation, at the wedge the trajectory undergoes a local2575

deviation proportional to the distance to the optical axis, amounting to2576

ΔG ′ =
tan Y

d0

ΔG, ΔH′ = − tan(Y − k)
d0

ΔH (9.7)

The k angle component is a correction for the fringe field extent (Eq. 18.21); the2577

effect of the latter, of the first order on the vertical focusing, is of second order2578

horizontally.2579

Profiling the magnet gap in order to adjust the focal distance complicates the2580

magnet; a parallel gap, = = 0, makes it simpler, for that reason edge focusing may2581

be preferred. Wedge vertical focusing in the ZGS (Y > 0) was at the expense of2582

horizontal geometrical focusing (Fig. 9.6). This was an advantage though, for the2583

acceleration of polarized beams, as radial field components (which are responsible for2584

depolarization) were only met at the EFBs of the eight main dipoles, and weak [13].2585

Preserving beam polarization at high energy required tight control of the tunes, this2586
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was achieved by pole face windings added at the ends of the dipoles [18, 19], pulsed2587

to control the amplitude detuning, resulting in a control of the tunes at 0.01 level.2588

9.1.1.3 Periodic stability, betatron motion2589

The first order differential equations of motion in the moving frame (Fig. 9.5) derive2590

from the Lorentz equation2591

3<v

3C
= @v × B ⇒ <

3

3C





3B
3C

s
3G
3C

x
3H

3C
y




= @





(
3G
3C
�H − 3H

3C
�G

)
s

− 3B
3C
�Hx

3B
3C
�Gy





(9.8)

Motion in a weak index dipole field is solved in Sect. 4.2.2, Classical Cyclotron: in2592

the latter substitute d to ', = = − d0

�0

m�H

mG
to −: , evaluated on the reference orbit.2593

Taylor expansions of the transverse field components in the moving frame (Eq. 4.6)2594

lead to2595

�H (d) |y=0 = �0 (1 − = G
d0
) + O(G2)

�G (0 + H) = −= �0

d0
H + O(H3) (9.9)

Assume transverse stability: 0 < = < 1; in the approximation 3B ≈ E3C (Eq. 4.13)2596

Eqs. 9.8, 9.9 lead to the differential equations of motion2597

32G

3B2
+ 1 − =

d2
0

G = 0,
32H

3B2
+ =

d2
0

H = 0 (9.10)

It results that, in an S-periodic structure comprised of gradient dipoles, wedges2598

and drift spaces, the differential equation of motion takes the general form of Hill’s2599

equation, a second order differential equation with periodic coefficient, namely (with2600

D standing for G or H),2601




32D

3B2
+  D (B)D = 0

 D (B + () =  D (B)
with





in dipoles :

{
 G =

1−=
d2

0

 H =
=

d2
0

at a wedge at B = B0 :  G
H
=

± tan Y
d0

X(B − B0)
in drift spaces : 1

d0
= 0,  G =  H = 0

(9.11)

 D (B) is S-periodic, ( = 2c'/# (( = C/4 for instance in a 4-periodic ring,2602

Figs. 9.1, 9.5).2603

The solution of Eqs. 9.11 is not as straightforward as in the cyclotron where  D is2604

constant around the ring (Eq. 4.14), which results in a sinusoidal motion (Eq. 4.16)2605

- the latter is on the other hand a reasonable approximation, see below,Weak focusing2606

approximation. G. Floquet has established [20] that the two independent solutions2607

of Hill’s second order differential equation have the form [17]2608
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��������

D1 (B) =
√
VD (B) 4

8
∫ B
0

3B

VD (B)

3D1 (B)/3B =
8 − UD (B)
VD (B)

D1 (B)
and

����
D2 (B) = D∗1 (B)
3D2 (B)/3B = 3D∗1 (B)/3B

(9.12)

wherein VD (B) and UD (B) = −V′D (B)/2 are S-periodic functions, from what it results2609

that2610

D 1
2
(B + () = D 1

2
(B) 4±8`D (9.13)

wherein2611

`D =

∫ B

B0

3B

VD (B)
(9.14)

is the betatron phase advance at B, from the origin B0. A real solution of Hill’s2612

equation is the linear combination � D1 (B) + �∗ D∗
2
(B). With � =

1
2

√
YD/c48q2613

following conventional notations, with q the phase at the orign, the general solution2614

of Eq. 9.11 writes2615

��������

D(B) =
√
VD (B)YD/c cos

(∫ B
B0

3B

VD
+ q

)

D′(B) = −
√
YD/c
VD (B)

sin

(∫ B
B0

3B

VD
+ q

)
+ UD (B) cos

(∫ B
B0

3B

VD
+ q

) (9.15)

An invariant of the motion, known as the Courant-Snyder invariant, is2616

1

VD (B)
[
D2 + (UD (B)D + VD (B)D′)2

]
=
YD

c
(9.16)

At a given azimuth B of the periodic structure the observed turn-by-turn motion2617

lies on that ellipse (Fig. 9.10). The form and inclination of the ellipse depend on2618

the observation azimuth B via the respective local values of UD (B) and VD (B), but2619

its surface YD is invariant. Motion along the ellipse is clockwise, as can be figured2620

from Eq. 9.15 considering an observation azimuth B where the ellipse is upright,2621

UD (B) = 0. In an N-periodic ring, the phase advance over a turn (from one location2622

to the next on the ellipse in Fig. 9.10) is2623

∫ B0+#(

B0

3B

VD (B)
= #

∫

period

3B

VD (B)
= #`D (9.17)

Weak focusing approximation2624

In a cylindrically symmetric structure a sinusoidal motion is the exact solution of the2625

first order differential equations of motion (Eqs. 4.15, 4.16, Classical Cyclotron Chap-2626

ter), the coefficients  G = (1 − =)/'2
0

and  H = =/'2
0

are constant (s-independent).2627

Adding drift spaces results in Hill’s differential equation with periodic coefficient2628

 (B+() =  (B) (Eq. 9.11), and in a pseudo harmonic solution (Eq. 9.15). Due to the2629
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Fig. 9.10 Courant-Snyder

invariant and turn-by-turn

harmonic motion along the

invariant, observed at some

azimuth B. The form of

the ellipse depends on the

observation azimuth B but its

surface YD is invariant

T

dx/ds

x

ε/π=constant

CS invariant

1

2

5

63

4

7

weak focusing the beam envelope is only weakly modulated (see below), thus so is2630

VD (B). In a practical manner, the modulation of VD (B) does not exceed a few percent,2631

this justifies introducing the average value VD to approximate the phase advance by2632

∫ B

0

3B

VD (B)
≈ B

VD
= aD

B

'
(9.18)

The right equality is obtained by applying this approximation to the phase advance2633

per period, namely (Eq. 9.14) `D =
∫ B0+(
B0

3B

VD (B)
≈ (/VD , and introducing the wave2634

number of the N-period optical structure aD =
# `D
2c

=
phase advance over a turn

2c
so that2635

VD =
'

aD
(9.19)

the wavelength of the betatron oscillation around the ring. With : ≪ 1 and using2636

Eq. 9.23,2637

VG =
d0 (1 + :/2)
√

1 − =
, VH =

d0 (1 + :/2)
√
=

(9.20)

Substituting aD
B
'

to
∫

3B
VD (B) in Eq. 9.15 yields the approximate solution2638

�������

D(B) ≈
√
VD (B)YD/c cos

(
aD
B

'
+ q

)

D′(B) ≈ −
√
YD/c
VD (B)

sin
(
aD
B

'
+ q

)
+ UD (B) cos

(
aD
B

'
+ q

) (9.21)

Beam envelopes2639

The beam envelope D̂(B) (with D standing for G or H) is determined by the particle of2640

maximum invariant YD/c, it is given at all B by2641
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±D̂(B) = ±
√
VD (B)YD/c (9.22)

As VD (B) is S-periodic, so is the envelope, D̂(B+() = D̂(B). In a cell with symmetries,

Fig. 9.11 Multi-turn particle

excursion along the ZGS 2-

dipole 43 m cell. The motion

extrema (Eq. 9.22) tangent

the envelops, respectively

horizontal (red), and vertical

(blue). Envelops have the

symmetry of the cell 0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
Zgoubi|Zpop                                                                     
07-10-2020                                                                      

          UPSTREAM           DOWNSTREAM                       
           DIPOLE              DIPOLE                

   x,  y  ( m)  vs.  s  (m)                                                       

2642

beam envelops feature the same symmetries, as in Fig. 9.11 for instance: a symmetry2643

with respect to the center of the cell; envelop extrema are at azimuth B of VD (B)2644

extrema, i.e. where 3D̂(B)/3B ∝ V′D (B) = 0 or UD = 0 as V′D = −2UD .2645

Working point2646

The “working point” of the synchrotron is the wave number couple (aG , aH) at which2647

the accelerator is operated, it fully characterizes the focusing. In a structure with2648

cylindrical symmetry (such as the Classical Cyclotron) aG =
√

1 − = and aH =
√
=2649

(Eq. 4.17) so that a2
G + a2

H = 1: when the radial field index = is changed the working2650

point stays on a circle of radius 1 in the stability diagram (or “tune diagram”,2651

Fig. 9.12). If drift spaces are added, from Eqs. 9.19, 9.20, with 1 + :
2
≈

√
'/d02652

(Eq. 9.6), it comes2653

aG =

√

(1 − =) '
d0

, aH =

√

=
'

d0

, a2
G + a2

H =
'

d0

(9.23)

thus the working point is located on the circle of radius
√
'/d0 > 1 (Fig. 9.12).

Tunes can not exceed the limits

0 < ax, y <
√
'/d0

Horizontal and vertical focusing are not independent (Eq. 9.11): if aG increases then2654

aH decreases and reciprocally. This is a lack of flexibility which the advent of strong2655

focusing will overcome by providing two knobs allowing separate adjustment of the2656

tunes.2657
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Fig. 9.12 Location of the

working point in the tune

diagram, in case of (A) field

with revolution symmetry,

on a circle of radius 1; (B)

sector field with index + drift

spaces, on a circle of radius

(
√
'/d0). Case (C) is for

strong focusing, ( |= | ≫ 1),

aG and aH are large  0.0 0.5 1. 1.5 2.
  0

  1

  2.

  ν                                                    

  ν                                                    

  y                                                    

  x                                                    

       (B) Saturne I           
          synchrotron                 

           (A) Cylindrical                                  

            field                                   

            (C) Strong                

                            focusing              

Off-momentum orbits; periodic dispersion2658

In the linear approximation in Δ?/?0, a momentum offset Δ? = ? − ?0 changes2659

<E to <E(1 + Δ?/?0) in Eq. 9.8; this changes the horizontal equation of motion2660

(Eq. 9.10) to2661

32G

3B2
+  GG =

1

d0

Δ?

?0

, or
32G

3B2
+  G

(
G − 1

d0 G

Δ?

?0

)
= 0 (9.24)

A change of variable G − 1
 Gd0

Δ?

?0
→ G (with 1/ d0 G = d0/(1 − =)) restores the2662

unpertrubed equation of motion; thus orbits of different momenta ? = ?0 + Δ? are2663

distant2664

ΔG =
d0

1 − =
Δ?

?0

(9.25)

from the reference orbit (Fig. 9.8). Introduce the geometrical radius ' = (1 + :)d02665

(Eq. 9.6) to account for the added drifts; this yields the dispersion function2666

�G =
ΔG

Δ?/?0

≡ Δ'

Δ?/?0

=
'

(1 − =) (1 + :) =
d0

1 − = , constant (9.26)

�G is the chromatic dispersion of the orbits, an s-independent quantity: in a structure2667

with axial symmetry, comprising drift sections (Fig. 9.5) or not (classical and AVF2668

cyclotrons for instance), the ratio ΔG
d0 Δ?/?0

is independent of the azimuth B, the2669

distance of a chromatic orbit to the reference orbit is constant around the ring.2670

Given that = < 1,2671

- higher momentum orbits, ? > ?0, have a greater radius,2672

- lower momentum orbits, ? < ?0, have a smaller radius.2673
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The horizontal harmonic motion of an off-momentum particle thus writes2674

G(B) =
√
VD (B)YD/c cos

(
aD
B

'
+ q

)
+ d0

1 − =
Δ?

?0

(9.27)

Chromatic orbit length2675

In an axially symmetric structure the difference in closed orbit length ΔC = 2cΔ'2676

resulting from the difference in momentum arises in the dipoles, as all orbits are2677

parallel in the drifts (Fig. 9.5). Hence, from Eq. 9.26, the relative closed orbit2678

lengthening factor, or momentum compaction2679

U =
ΔC
C

/
Δ?

?0

≡ Δ'

'

/
Δ?

?0

=
1

(1 − =) (1 + :) ≈ 1

a2
G

(9.28)

with : = #;/cd0 (Eq. 9.6). Note that the relationship U ≈ 1/a2
G between momentum2680

compaction and horizontal wave number established for a revolution symmetry2681

structure (Eq. 4.21) still holds when adding drifts.2682

9.1.1.4 Longitudinal Motion2683

In a synchrotron, the field � is varied during acceleration (a function performed2684

by the power supply) concurrently with the variation of the bunch momentum ? (a2685

function performed by the accelerating cavity) in such a way that at any time2686

Δ, = � × 2c' = 2c@'d ¤��(C)d = ?(C)/@ (9.29)

so that the beam is maintained on the design orbit. Given the energies involved, the

magnet supply imposes its law and the cavity follows �(C) (Fig. 9.13), the best it

can. The accelerating voltage +̂ (C) = sinlrfC is maintained in synchronism with the

revolution motion, its angular frequency satisfying

lrf = ℎlrev = ℎ
2

'

�(C)
√(

<0

@d

)2

+ �2 (C)

Energy gain2687

The variation of the particle energy over a turn amounts to the work of the force2688

� = 3?/3C on the charge at the cavity, namely2689

Δ, = � × 2c' = 2c@'d ¤� (9.30)
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Fig. 9.13 Cycling � (C) in a pulsed synchrotron. Ignoring saturation, � (C) is proportional to the

magnet power supply current � (C) . Beam injection occurs at low field, in the region of A, extraction

occurs at top energy, on the high field plateau. (AB): field ramp up (acceleration); (BC): flat top;

(CD): field ramp down; (DA’): thermal relaxation. (AA’): repetition period; (1/AA’): repetition rate;

slope: ramp velocity ¤� = 3�/3C (Tesla/s).

Over most of the acceleration cycle in a slow-cycling synchrotron ¤� is usually

constant (Eq. 9.3), thus so isΔ, . At Saturne I for instance (the object of Exercise 9.1,

parameters in Tab. 9.1)

Δ,

@
= 2c'd ¤� = 68.9 × 8.42 × 1.8 = 1044 volts

The field ramp lasts

ΔC = (�max − �min)/ ¤� ≈ �max/ ¤� = 0.8 s

The number of turns to the top energy (,max ≈ 3 GeV) is

# =
,max

Δ,
=

3 109 eV

1044 eV/turn
≈ 3 106turns

The dependence of particle mass on field writes

<(C) = W(C)<0 =
@d

2

√(
<0

@2d

)2

+ �(C)2

Adiabatic damping of the betatron oscillations2690

The focusing index (Eq. 9.4) does not change during acceleration, thus the tunes aG
and aH do not change either. As a result of the longitudinal acceleration at the cavity

though, the longitudinal energy of the particles is modified. This results in a decrease

of the amplitude of betatron oscillations (an increase if the cavity is decelerating).
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The mechanism is sketched in Fig. 9.14: the slope, respectively before and after

(index 2) the cavity is

3G

3B
=
< 3G
3C

< 3B
3C

=
?G

?B
,

3G

3B

����
2

=
< 3G
3C

< 3B
3C

�����
2

=
?G,2

?B,2

Particle mass and velocity are modified at the traversal of the cavity but, as the

trajectory
w/o cavity

with cavity
trajectory

p +  ps ∆

p +  pp

p ss

∆

p +  pp s
s

x
p

cavity

x

cavity

x

A

B

R dx A : cavity entrance
B : cavity exit

is reduced

amplitude

phase
advance

ν ds

Fig. 9.14 Adiabatic damping of betatron oscillations, here from G′ = ?G/?B before the cavity,

to G′
2
= ?G/(?B + Δ?B) after the cavity. In the horizontal phase space, to the right, decrease of

Δ

(
3G
3B

)
if 3G

3B
> 0, increase of Δ

(
3G
3B

)
if 3G

3B
< 0

force is longitudinal, 3?G/3C = 0 thus ?′G = ?G , the increase in momentum is purely

longitudinal, ?′B = ?B + Δ?. Thus

3G

3B

����
2

=
?G

?B + Δ?
≈ ?G

?B
(1 − Δ?

?B
)

and as a consequence the slope 3G/3B varies across the cavity,

Δ

(
3G

3B

)
=
3G

3B

����
2

− 3G

3B
= −3G

3B

Δ?B

?B

The variation of the slope is proportional to the slope, with opposite sign ifΔ?/? > 02691

(acceleration) thus a decrease of the slope. This variation has two consequences on2692

the betatron oscillation (Fig. 9.14):2693

- a change of the betatron phase,2694

- a modification of the betatron amplitude.2695
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Coordinate transport2696

at the cavity writes

{
G2 = G

G ′
2
≈ ?G

?B
(1 − 3?

?
) = G ′(1 − 3?

?
) . In matrix form,

(
G2

G ′
2

)
=2697

[�]
(
G

G ′

)
with2698

[�] =
[
1 0

0 1 − 3?

?

]
(9.31)

and 34C [�] = 1 − 3?

?
≠ 1: the system is non-conservative, the surface of the beam2699

ellipse in phase space is not conserved. Assume one cavity in the ring and note2700

[)] × [�] the one-turn coordinate transport matrix with origin at entrance of the2701

cavity. Its determinant is 34C [)] × 34C [�] = 34C [�] = 1 − 3?

?
; the variation of2702

the transverse ellipse surface satisfies YD = (1 − 3?

?0
)Y0 or, with 3YD = YD − Y0,2703

3YD
YD

= − 3?
?0

, the solution of which is2704

? YD = 2>=BC0=C, >A VWYD = 2>=BC0=C (9.32)

Over # turns the coordinate transport matrix is [)# ] = ([)] [�])# , its determinant2705

is (1 − 3?

?
)# ≈ 1 − # 3?

?
: the ellipse surface changes by that factor.2706

Synchrotron motion; phase stability2707

“Synchrotron motion” designates the mechanism of phase stability, or longitudinal2708

focusing (Fig. 9.15), that stabilizes the longitudinal motion of a particle in the vicinity2709

of a synchronous phase, qB , in virtue of2710

(i) the presence of an accelerating cavity with its frequency indexed on the2711

revolution time,2712

(ii) with the bunch centroid positioned either on the rising slope of the oscillating2713

voltage (low energy regime), or on the falling slope (high energy regime).2714

The synchronous (or “ideal”) particle follows the equilibrium trajectory around

the ring (the reference closed orbit, about which all other particles will undergo a

betatron oscillation), its velocity satisfies E(C) = @�d(C)
<

; at each turn it reaches the

accelerating gap when the oscillating voltage is at the synchronous phase qB , and

undergoes an energy gain

Δ, = @+̂ sin qB

The condition | sin qB | < 1 imposes a lower limit to the cavity voltage for acceleration

to happen, namely, after Eq. 9.30,

+̂ > 2c'd ¤�

Referring to Fig. 9.15, the synchronous phase can be placed on the left (A A’ A”...2715

series in the Figure, or on the right (B B’ B”... series) of the oscillating voltage crest.2716
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Fig. 9.15 A sketch of the mechanism of phase stability, ℎ = 3 in this example. Below transition

phase stability occurs for a synchronous phase taken at either one of A, A’, A” arrival times at

the gap: a particle with higher energy goes around the ring more rapidly than the synchronous

particle; if both are launched together, the former arrives earlier at the voltage gap (at q < qB,�) so

experiencing weaker acceleration; at lower energy the particle is slower, it arrives at the gap later,

q > qB,�, so experiencing a greater voltage; this results in an overall stable oscillatory motion

around the synchronous phase. Beyond transition the stable phase is at either one of B, B’, B’

locations: a particle which is less energetic than the synchronous particle arrives earlier, q < qB,� ,

so experiencing a greater voltage, and inversely, resulting in overall stable synchrotron motion.

One and only one of these two possibilities, and which one depending upon the optical2717

lattice and on particle energy, ensures that particles in a bunch remain grouped in2718

the vicinity of the synchronous particle. The transition is between two time-of-flight2719

regimes: a particle which gains momentum compared to the synchronous particle2720

has a greater velocity, while2721

- in the high bunch energy regime the increase in path length around the ring2722

is faster than the increase in velocity (velocity essentially does not even change2723

in ultrarelativistic regime), a revolution around the ring takes more time (this is the2724

classical cyclotron and synchrocyclotron regime, and as well the high energy electron2725

synchrotron regime); consider such a particle, arriving at the accelerating gap late2726

(q(C) > qB), in order for it to be pulled toward bunch center (i.e., take less time2727

around the ring) it has to undergo deceleration; this is the B series, above transition;2728

- in the low bunch energy regime velocity increase is faster than path length2729

increase, thus a revolution around the ring is faster; consider such a particle, arriving2730

at the accelerating gap early (q(C) < qB), in order for it to be pulled toward bunch2731

center (i.e., take more time around the ring) it has to be slowed down, it has to2732

undergo deceleration; this is the A series, below transition.2733

Transition energy2734

The transition between the two time-of-flight regimes occurs at
3)rev

)rev

= 0. With2735

) = 2c/l = C/E, this can be written
3lrev

lrev

= −3)rev

)rev

=
3E

E
− 3CC . With 3E

E
=

1
W2

3?

?
2736
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and momentum compaction U =
3C
C / 3?

?
, (Eq. 9.28), this can be written2737

3lrev

lrev

= −3)rev

)rev

=

(
1

W2
− U

)
3?

?
= [

3?

?
(9.33)

wherein the phase-slip factor has been introduced,2738

[ =

kinematics
︷︸︸︷

1

W2
− U︸︷︷︸

lattice

=
1

W2
− 1

W2
tr

(9.34)

The transition W appears to be a property of the lattice.2739

In a weak focusing lattice Wtr = 1/
√
U ≈ aG (Eqs. 4.21, 9.28), thus the phase2740

stability regime is2741

below transition, i.e. qB < c/2, if W < aG

above transition, i.e.qB > c/2, if W > aG (9.35)

In a weak focusing synchrotron the horizontal tune aG =
√
(1 − =)'/d0 (Eq. 9.23)2742

may be >< 1, and subsequently Wtr > 1 is a possibility. There is no transition-gamma2743

if aG < 1. Acceleration to 3 GeV in Saturne I for instance, from 50 MeV at injection,2744

and with aG ≈ 0.7 (Tab. 9.1) did not require transition-gamma crossing3.2745

9.1.2 Spin Motion, Depolarizing Resonances2746

The field index is essentially zero in the ZGS, transverse focusing is ensured by2747

wedge angles at the ends of the height dipoles, which is thus the only location where2748

non-zero horizontal field components are found. As a consequence depolarizing2749

resonances are weak: “As we can see from the table, the transition probability [ from2750

spin state k1/2 to spin state k−1/2] is reasonably small up to W = 7.1” [13], i.e.2751

�W = 12.73, ? = 6.6 GeV/c; the table referred to stipulates a transition probability2752

% 1
2
,− 1

2

< 0.042, whereas resonances beyond that energy range feature % 1
2
,− 1

2

> 0.36.2753

Beam depolarization up to 6 GeV/c, under the effect of these resonances, is illustrated2754

in Fig. 9.16.2755

In a synchrotron using gradient dipoles, particles experience radial fields all along2756

the latter as they undergo vertical betatron oscillations, as an effect of the radial field2757

index [13, 21, 22]. However these radial field components are weak, and so is there2758

3 Transition-gamma crossing, or “gamma jump”, is a common beam manipulation during acceler-

ation in strong focusing synchrotrons, it requires an RF phase jump, the technique is addressed in

Chapter 10.
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effect on spin motion as long as the particle energy is low enough (an effect of the W2759

factor in the spin precession Eq. 4.29, Chap. 4).2760

Assuming a defect-free ring, the vertical betatron motion excites “intrinsic” spin

resonances, located at

�W' = : % ± aH
with k an integer and P the period of the ring. In the ZGS for instance, aH ≈ 0.8

(Tab. 9.2), the ring is P=4-periodic, thus �W' = 4: ± 0.8. Strongest resonances are

located at

�W' = <: % ± aH
with m the number of cells per superperiod [23, Sec. 3.II]. In the ZGS, m=2 thus2761

strongest resonances occur at �W' = 2 × 4: ± 0.8 = 7.2 (? = 3.65 GeV/c), 8.82762

(4.51 GeV/c), 15.2 (7.9 GeV/c), ... (Fig. 9.16).

Fig. 9.16 Depolarizing intrin-

sic resonance landscape up

to 9 GeV/c at the ZGS (solid

circles) [24]. Systematic reso-

nances are located at �W' =

4× integer± aH , stronger ones

at �W' = 8 × integer ± aH .

A tune jump was applied to

preserve polarization when

crossing strong resonances

(empty circles)

2763

In the presence of vertical orbit defects, non-zero periodic transverse fields are ex-

perienced along the closed orbit, they excite “imperfection” depolarizing resonances,

located at

�W' = :

with k an integer. In the case of systematic defects the periodicity of the orbit is

that of the lattice, P, imperfection resonances are located at �W' = :%. Strongest

imperfection resonances are located at [23, Sec. 3.II]

�W' = <: %

Crossing a depolarizing resonance of strength n' causes a loss of polarization2764

given by (Froissart-Stora formula [25])2765

% 5

%8
= 24

− c
2

|n' |2
U − 1 (9.36)
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from a value %8 upstream to an asymptotic value % 5 downstream of the resonance.2766

This assumes an isolated resonance, crossed at an energy gain Δ� per turn, with a2767

crossing speed2768

U = �
3W

3\
=

1

2c

Δ�

"
(9.37)

Spin precession axis. Resonance width2769

Consider the spin vector S(\) = (([ , (b , (H) of a particle in the laboratory frame,2770

with \ the orbital angle around the accelerator. Introduce the projection B(\) of S in2771

the median plane2772

B(\) = ([ (\) + 9(b (\) (and (2
H = 1 − B2) (9.38)

Fig. 9.17 Modulus of the

horizontal spin component.

B = 1/2 at distance Δ =

±
√

3n' from �W'
-3 -2 -1  0  1  2  3

1

0.5

s(∆/εR)

∆/εR

-√3 √3

2773

It can be shown that in the case of a stationary solution of the spin motion, viz.2774

the spin precession axis, B satisfies [22] (Fig. 9.17)2775

B2 =
1

1 + Δ2

|n' |2

(9.39)

with Δ = �W−�W' the distance to the resonance. The resonance width is a measure2776

of its strength (Fig. 9.18). The quantity of interest is the angle, q, of the spin2777

precession direction to the vertical axis, given by (Fig. 9.18)2778

cos q(Δ) ≡ (H (Δ) =
√

1 − B2 =
Δ/|n' |√

1 + Δ2/|n' |2
(9.40)

On the resonance, Δ = 0, the spin precession axis lies in the bend plane: q = ±c/2.2779

(H = 0.99 (1% depolarization) corresponds to a distance to the resonance Δ = 7|n' |,2780

spin precession axis at an angle q = acos(0.99) = 8> from the vertical.2781

Conversely, given (H ,2782

Δ2

|n' |2
=

(2
H

1 − (2
H

(9.41)
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Fig. 9.18 Dependence of

polarization on the distance

to the resonance. For instance

(H = 0.99, 1% depolarization,

corresponds to Δ = 7 |n' |. On

the resonance, Δ = 0, the

precession axis lies in the

median plane, (H = 0
-6 -4 -2  0  2  4  6

7-7

 0.99  0.99

1

0.5

Sy(∆/εR)

∆/εR

The precession axis is common to all spins, (H is a measure of the polarization along

the vertical axis,

(H =
#+ − #−

#+ + #−

wherein #+ and #− denote the number of particles in spin states 1
2

and − 1
2

respec-2783

tively.2784

Spin motion through weak resonances2785

Depolarizing resonances are weak up to several GeV in a weak focusing synchrotron,

as the radial and/or longitudinal fields, which stem from a small radial field index and

from dipole fringe fields, are weak. Spin motion (H (\) through a resonance in that

case can be assumed to satisfy (H, 5 ≈ (H,8 , with (H, 5 and (H,8 the asymptotic vertical

spin component values respectively upstream and downstream of the resonance). As

a consequence it can be calculated in terms of the Fresnel integrals [21, 22]

� (G) =
∫ G

0

cos
( c
2
C2
)
3C, ((G) =

∫ G

0

sin
( c
2
C2
)
3C

namely, with the origin of the orbital angle is taken at the resonance (Fig. 9.19),2786

8 5 \ < 0 :

(
(H (\)
(H,8

)2

= 1 − c

U
|n' |2

{[
0.5 − �

(
−\

√
U

c

)]2

+
[
0.5 − (

(
−\

√
U

c

)]2
}

8 5 \ > 0 :

(
(H (\)
(H,8

)2

= 1 − c

U
|n' |2

{[
0.5 + �

(
\

√
U

c

)]2

+
[
0.5 + (

(
\

√
U

c

)]2
}

(9.42)

In the asymptotic limit,2787

(H (\)
(H,8

\→∞−→ 1 − c

U
|n' |2 (9.43)
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Fig. 9.19 Vertical component

of spin motion (H (\) through

a weak depolarizing resonance

(after Eq. 9.42). The vertical

bar is at the location of the

resonance, which coincides

with the origin of the orbital

angle
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 θ

which identifies with the development of Froissart-Stora formula % 5 /%8 =2788

2 exp(− c
2

|n' |2
U

) − 1 to the first order in |n' |2/U. This approximation holds in the2789

limit that higher order terms can be neglected: |n' |2/U ≪ 1.2790

9.2 Exercises2791

9.1 Construct Saturne I (weak index) synchrotron. Spin Resonances2792

Solution: page 3502793

In this exercise, Saturne I weak focusing 3 GeV synchrotron is modeled. Spin2794

resonances in a weak dipole gradient lattice are studied.2795

Fig. 9.20 A schematic layout

of Saturne I, a 2c/4 axial sym-

metry structure, comprised of

4 radial field index 90 deg

dipoles and 4 drift spaces. The

cell in the simulation exercises

is taken as a c/4 quadrant:

l-drift/90>-dipole/l-drift

ρ
ο

    

2l
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Table 9.1 Parameters of Saturne 1 weak focusing synchrotron [26]. d0 denotes the reference

bending radius in the dipole; the reference orbit, field index, wave numbers, etc., are taken along

that radius

Orbit length, C cm 6890

Average radius, ' = C/2c cm 1096.58

Straight section length. 2; cm 400

Magnetic radius, d0 cm 841.93

'/d0 1.30246

Field index =, nominal value 0.6

Wave numbers, aG ; aH 0.724; 0.889 **** verif wrt. simuls

Stability limit 0.5 < = < 0.757

Injection energy MeV 3.6

Field at injection kG 0.326

Top energy GeV 2.94
¤� T/s 1.8

Field at top energy, �max kG 14.9

�maxd T m 13

Field ramp at injection kG/s 20

Synchronous energy gain keV/turn 1.160

RF harmonic 2

(a) Construct a model of Saturne I 90> cell dipole in the hard-edge model, using2796

DIPOLE. Use the parameters given in Tab. 9.1, and Fig. 9.20 as a guidance. In order2797

to allow beam monitoring, split the dipole in two 45>deg halves. It is judicious to2798

take RM=841.93 cm in DIPOLE, as this is the reference radius for the definition of2799

the radial index. Take an integration step size in centimeter range - small enough to2800

ensure numerical convergence, as large as doable for fast multiturn raytracing.2801

Validate the model by producing the 6 × 6 transport matrix of the cell dipole2802

(MATRIX[IFOC=0] can be used for that, with OBJET[KOBJ=5] to define a proper2803

set of paraxial initial coordinates) and checking against theory (Sect. 18.2, Eq. 18.6).2804

(b) Construct a model of Saturne I cell, with origin at the center of the drift.2805

Find the closed orbit, that particular trajectory which has all its coordinates zero in2806

the drifts: use DIPOLE[KPOS] to cancel the closed orbit coordinates at DIPOLE2807

ends. While there, check the expected value of the dispersion (Eq. 9.26) and of2808

the momentum compaction (Eq. 9.28), from the raytracing of a chromatic closed2809

orbit - i.e., the orbit of an off-momentum particle. Plot these two orbits (on- and2810

off-momentum), over a complete turn around the ring, on a common graph.2811

Compute the cell periodic optical functions and tunes, using either MA-2812

TRIX[IFOC=11] or TWISS; check their values against theory. Check consistency2813

with previous dipersion function and momentum commpaction outcomes.2814

Move the origin of the lattice at a different azimuth B along the cell: verify that,2815

while the transport matrix depends on the origin, its trace does not.2816

Produce a graph of the optical functions (betatron functions and dispersion) along2817

the cell. Check the expected average values of the betatron functions (Eq. 9.20).2818

Produce a scan of the tunes over the field index range 0.5 ≤ = ≤ 0.757. RE-2819

BELOTE can be used to repeatedly change = over that range. Superimpose the2820

theoretical curves aG (=), aH (=).2821
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(c) Justify considering the betatron oscillation as sinusoidal, namely,

H(\) = � cos(aH\ + q)

wherein \ = B/', ' =
∮
3B/2c.2822

Find the value of the horizontal and vertical betatron functions, resulting from2823

that approximation. Compare with the betatron functions obtained in (b).2824

(d) Launch a few particles evenly distributed on a common paraxial horizontal2825

Courant-Snyder invariant (vertical motion is taken null), for a single pass through2826

the cell. Store particle data along the cell in zgoubi.plt, using DIPOLE[IL=2] and2827

DRIFT[split,N=20,IL=2]. Use these to generate a graph of the beam envelopes.2828

Using Eq. 9.22 compare with the results obtained in (b). Find the minimum2829

and maximum values of the betatron functions, and their azimuth B(<8=[VG]),2830

B(<0G [VG]). Check the latter against theory.2831

Repeat for the vertical motion, taking YG = 0, YH paraxial.2832

Repeat, using, instead of several particles on a common invariant, a single particle2833

traced over a few tens of turns.2834

(e) Produce an acceleration cycle from 3.6 MeV to 3 GeV, for a few particles2835

launched on a common 10−4 cm initial invariant in each plane. Ignore synchrotron2836

motion (CAVITE[IOPT=3] can be used in that case). Take a peak voltage +̂ = 200 kV2837

(unrealistic though, as it would result in a nonphysical ¤� (Eq. 9.30)) and synchronous2838

phase qB = 150 deg (justify qB > c/2).2839

Check the betatron damping over the acceleration range: compare with theory2840

(Eq. 9.32).2841

How close to symplectic the numerical integration is (it is by definition not2842

symplectic, being a truncated Taylor series method [27, Eq. 1.2.4]), depends on the2843

integration step size, and on the size of the flying mesh in the DIPOLE method [27,2844

Fig. 20]; check a possible departure of the betatron damping from theory as a function2845

of these parameters.2846

Produce a graph of the horizontal and vertical wave number values over the2847

acceleration cycle.2848

(f) Some spin motion, now. Adding SPNTRK at the beginning of the sequence2849

will ensure spin tracking.2850

Based on the file worked out for question (d), simulate the acceleration of a single2851

particle, through the intrinsic resonance �W' = 4 − a/ , from a few thousand turns2852

upstream to a few thousand turns downstream. On a common graph, plot (H (CDA=)2853

for a few different values of the vertical betatron invariant (the horizontal invariant2854

value does not matter - explain that statement, it can be taken zero).2855

(g) Produce a graph of the average value of (/ over a 200 particle set, as a function2856

of �W, across the �W' = 4 − a/ resonance. Indicate on that graph the location of2857

the resonant �W' values.2858

Perform this resonance crossing for five different values of the particle invariant:2859

Y//c = 2, 10, 20, 40, 200 `m. Compute % 5 /%8 in each case, check the dependence2860

on Y/ against theory.2861

Compute the resonance strength, Y/ , from these trackings.2862
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Re-do this crossing simulation for a different crossing speed (take for instance2863

+̂ = 10 kV) and a couple of vertical invariant values, compute % 5 /%8 so obtained.2864

Check the crossing speed dependence of % 5 /%8 against theory.2865

(h) Show that the previous weak resonance crossings (% 5 /%8 ≈ 1) satisfies2866

Eq. 9.42. Match the tracking data to the latter to get the vertical betatron tune aH , the2867

location of the resonance �WR, and its strength.2868

(i) Track a few particles at fixed energy, at distances from the resonance �W' =2869

4 − aH of up to a 7 × n' (this distance corresponds to 1% depolarization).2870

Produce on a common graph the spin motion (/ (CDA=) for all these particles, as2871

observed at some azimuth along the ring.2872

Produce a graph of
〈
(H

〉
|turn (Δ) (as in Fig. 9.18).2873

Produce the vertical betatron tune aH , the location of the resonance �WR, and its

strength, obtained from a match of these tracking trials to (Eq. 9.40)

〈
(H

〉
(Δ) = Δ

√
|n' |2 + Δ2

9.2 Construct the ZGS (zero-gradient) synchrotron. Spin Resonances2874

Solution: page 3742875

In this exercise, the ZGS 12 GeV synchrotron is modeled in zgoubi. Spin reso-2876

nances in ZGS wedge focusing zero-gradient synchrotron are studied.2877

(a) Construct a model of ZGS 45> cell dipole in the hard-edge model, using2878

DIPOLE. Use the parameters given in Tab. 9.2, and Figs. 9.21, 9.22 as a guidance.2879

In order to allow beam monitoring, split the dipole in two 22.5>deg halves. Take the2880

closed orbit radius as the reference RM=2076 cm in DIPOLE: it will be assumed2881

that the orbit is the same at all energies4. Take an integration step size in centimeter2882

range - small enough to ensure numerical convergence, as large as doable for fast2883

multiturn raytracing.2884

Validate the model by producing the 6 × 6 transport matrices of both dipole2885

(MATRIX[IFOC=0] can be used for that, with OBJET[KOBJ=5] to define a proper2886

set of paraxial initial coordinates) and checking against theory (Sect. 18.2, Eq. 18.6).2887

Add fringe fields in DIPOLE[_,�0 − �5], the rest if the exercise will use that2888

model. Take fringe field extent and coefficient values2889

_ = 60 cm �0 = 0.1455, �1 = 2.2670, �2 = −0.6395, �3 = 1.1558, �4 = �5 = 0

(9.44)

(�0 − �5 determine the shape of the field fall-off, they have been computed from a2890

typical measured field profile �(B)).2891

(b) Construct a model of ZGS cell accounting for dipole fringe fields, with origin2892

at the center of the long drift. In doing so, use DIPOLE[KPOS] to cancel the closed2893

orbit coordinates at DIPOLE ends.2894

Compute the periodic optical functions at cell ends, and cell tunes, using MA-2895

TRIX[IFOC=11]; check their values against theory.2896

4 Note that in reality the reference orbit in ZGS moved outward during acceleration [28].
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Move the origin at the location (azimuth B along the cell) of the betatron functions2897

extrema: verify that, while the transport matrix depends on the origin, its trace does2898

not. Verify that the local betatron function extrema, and the dispersion function, have2899

the expected values.2900

Produce a graph of the optical functions (betatron functions and dispersion) along2901

the cell.2902

Fig. 9.21 A schematic layout of the ZGS [24], a c/2-periodic structure, comprised of 8 zero-index

dipoles, 4 long and 4 short straight sections

Fig. 9.22 A sketch of ZGS

cell layout. In defining the

entrance and exit faces (EFBs)

of the magnet, beam goes from

left to right. Wedge angles at

the long straight sections

(Y1) and at the short straight

sections (Y2) are different

ε > 0

   

   

2ε > 0
     

1

ε > 02

ε > 0
1

α α

ρρ

(c) Additional verifications regarding the model.2903
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Table 9.2 Parameters of the ZGS weak focusing synchrotron after Refs. [28, 29] [24, pp. 288-

294,p. 716] (2nd column, when they are known) and in the present simplified model and numerical

simulations (3rd column). Note that the actual orbit moves during ZGS acceleration cycle, tunes

change as well - this is not taken into account in the present modeling, for simplicity

From Simplified
Refs. [28, 29] model

Injection energy MeV 50

Top energy GeV 12.5

�W span 1.888387 - 25.67781

Length of central orbit m 171.8 170.90457

Length of straight sections, total m 41.45 40.44

Lattice

Wave numbers aG ; aH 0.82; 0.79 0.849; 0.771

Max. VG ; VH m 32.5; 37.1

Magnet

Length m 16.3 16.30486
(magnetic)

Magnetic radius m 21.716 20.76

Field min.; max. kG 0.482; 21.5 0.4986; 21.54

Field index 0

Yoke angular extent deg 43.02590 45

Wedge angle deg ≈10 13 and 8

RF

Rev. frequency MHz 0.55 - 1.75 0.551 - 1.751

RF harmonic h=lrf/lrev 8

Peak voltage kV 20 200

B-dot, nominal/max. T/s 2.15/2.6

Energy gain, nominal/max. keV/turn 8.3/10 100

Synchronous phase, nominal deg 150

Beam

YG ; YH (at injection) c`m 25; 150

Momentum spread, rms 3 × 10−4

Polarization at injection % >75 100

Radial width of beam (90%), at inj. inch 2.5
√
VG YG/c = 1.1

Produce a graph of the field B(s)2904

- along the on-momentum closed orbit, and along off-momentum chromatic closed2905

orbits, across a cell;2906

- along orbits at large horizontal excursion;2907

- along orbits at large vertical excursion.2908

For all these cases, verify qualitatively, from the graphs, that �(B) appears as2909

expected.2910

(d) Justify considering the betatron oscillation as sinusoidal, namely,

H(\) = � cos(aH\ + q)

wherein \ = B/', ' =
∮
3B/2c.2911
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Find the value of the horizontal and vertical betatron functions, resulting from2912

that approximation. Compare with the betatron functions obtained in (b).2913

(e) Produce an acceleration cycle from 50 MeV to 17 GeV about, for a few particles2914

launched on a common 10−5 cm vertical initial invariant, with small horizontal2915

invariant. Ignore synchrotron motion (CAVITE[IOPT=3] can be used in that case).2916

Take a peak voltage +̂ = 200 kV (this is unrealistic but yields 10 times faster2917

computing than the actual +̂ = 20 kV, Tab. 9.2) and synchronous phase qB = 150 deg2918

(justify qB > c/2). Add spin, using SPNTRK, in view of the next question, (f).2919

Check the accuracy of the betatron damping over the acceleration range, compared2920

to theory. How close to symplectic the numerical integration is (it is by definition2921

not symplectic), depends on the integration step size, and on the size of the flying2922

mesh in the DIPOLE method [27, Fig. 20]; check a possible departure of the betatron2923

damping from theory as a function of these parameters.2924

Produce a graph of the evolution of the horizontal and vertical wave numbers2925

during the acceleration cycle.2926

(f) Using the raytracing material developed in (e): produce a graph of the vertical2927

spin component of the particles, and the average value over that 200 particle set, as2928

a function of �W. Indicate on that graph the location of the resonant �W' values.2929
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(g) Based on the simulation file used in (f), simulate the acceleration of a sin-2930

gle particle, through one particular intrinsic resonance, from a few thousand turns2931

upstream to a few thousand turns downstream.2932

Perform this resonance crossing for different values of the particle invariant.2933

Determine the dependence of final/initial vertical spin component value, on the2934

invariant value; check against theory.2935

Re-do this crossing simulation for a different crossing speed. Check the crossing2936

speed dependence of final/initial vertical spin component so obtained, against theory.2937

(h) Introduce a vertical orbit defect in the ZGS ring.2938

Find the closed orbit.2939

Accelerate a particle launched on that closed orbit, from 50 MeV to 17 GeV about,2940

produce a graph of the vertical spin component.2941

Select one particular resonance, reproduce the two methods of (g) to check the2942

location of the resonance at �W' =integer, and to find its strength.2943
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