

RF cavities

- Cavities need to be under vacuum since beam cannot go far in the air, need to add a beampipe to let beam go across the cavity.
- FPC, PU, frequency tuner, cooling channel, HOM damper, fundamental mode damper, vacuum pumping port, if needed.
- Iterative RF-BeamDynamics-Thermal-Mechanical coupled optimization.

RF cavity types

Note: by definition, TE and TEM cannot accelerate beam if the wave propagating direction aligns with beam direction.

- Working mode:
 - TM-type RF cavities are widely used.
 - TEM-type RF cavities are also common.
 - -type means it is not strictly TM or TEM
 - Sometimes a cavity can be between TM-type and TEM-type
 - In some rare cases TE-type RF cavities are used.
- Lorentz force:
 - RF cavity that providing longitudinal (along the beam) kick is accelerating cavity
 - low-β cavity
 - high-β cavity
 - RF cavity that providing transverse kick is crab cavity (sometimes called deflecting cavity).

TM-type cavities

- Usually use TM_{010} —type mode in a cylindrical cavity (for example: a cylindrical cavity to accelerate the beam right after Tandem).
- It can be deformed to elliptical (for multipacting suppression, which will be introduced later), reentrant (higher Q, between TM-type and TEM-type), Quarter Wave Resonator (QWR, reduce the cavity size by bending the pillbox in radius, TEM-type).

TEM type cavities

- Rectangular or circular waveguides/cavities do not support TEM. It needs to be Coaxial type.
- A natural choice is use HWR or QWR (accelerated by E_{ρ}), or QWR/DQW using E_{z} (virtual current along the broken inner conductor).
- The outer jacket of HWR can also be changed to form a Spoke cavity, which is easier to form multicell while comparing with HWR.

Accelerating cavities

- Will show high-β cavity in detail later.
- Lorentz force in longitudinal direction (E).
- Accelerating cavity can be used to accelerate/decelerate beam, and sometimes provides counter-force on head and tail of the beam, with no effect to the center.
 - A majority of RF cavities are used to accelerate beam.
 - There are some RF cavities that are used in non-accelerating mode
 - in Energy Recovery Linac (ERL), accelerate and decelerate.
 - Can be used to enhance the beam energy uniformity.
 - Can be used to split a bunch or merge bunches.

- Lorentz force in transverse direction (E and M).
- Crab/deflecting cavity can be used to tilt the head and tail of the beam, it can also be used to kick bunches to different angles (deflecting).

Crabbing and uncrabbing

• KEK-B & ANL APS crab cavities, TM_{110} mode, different FPC and HOM damping designs

K.Hosoyama et, al. https://accelconf.web.cern.ch/e08/talks/thxm02 talk.pdf

H. Wang et, al. https://accelconf.web.cern.ch/IPAC10/papers/wepec079.pdf

• BNL Double Quarter Wave (DQW) crab cavity for CERN LHC Hi-

Lumi upgrade, TEM/TE/TM-like mode

DQW is NOT HWR

A liquid helium vessel for the

• RF dipole (RFD) crab cavities for LHC & EIC

4-rod deflecting cavity at JLab to separate the beam

Multipacting

- Second electrons resonating/avalanching in the cavity that take power away and cause thermal quench.
- It was a major obstacle during the early age of SRF development, and it is still an issue that needs to be addressed now for a new design (cavity, especially low-β; coupler; RF window; transmission lines etc.)

Traveling wave accelerator

http://spiff.rit.edu/classes/phys
283/lectures/travel/travel.html

- Beam follows a peak of the wave → beam velocity equals to phase velocity.
- Phase velocity of rectangular/circular waveguides is higher than c, that of coax equals to c, they are not suitable.
- One needs to "slow down" the phase velocity. –
 One way is to put periodic disk on circular waveguide (disk loaded traveling wave cavity)

Some examples of TM₀₁₀ cavities

LEReC 704MHz cavity

704 MHz cavity cross section view.

- (A) Toshiba RF window;
- (B) WR1150 waveguide to coaxial transition piece;
- (C) FPC port;
- (D) FPC tuner;
- (E) cavity water cooling channel;
- (F) vacuum pump;
- (G) cavity body;
- (H) main frequency tuner.

Cavity design: pillbox with nose cone

- Beampipe size is determined by the size of the beam (10 σ)
- Cavity is half wavelength long
- For different h, Rd is optimized so that cavity frequency is 704MHz

Cavity design: other shapes

Cavity design: cavity shape

For 430 kV:

Peak electric field 8.1 MV/m, Peak magnetic field 9.4 mT

FPC

- TEM in coax to TE₁₀ in rectangular waveguide
- Slot coupling to the cavity, with two knobs to adjust the coupling coefficient
- FPC over-coupled, with FPC Qext at 14,000 and cavity Q0 at 34,000
- 65kW amplifier
- Designed to provide 430 kV, with 35.5 kW power dissipation on cavity walls
- Operates at 250kV, with 9.5kW power dissipation on cavity walls

Tuner

- Folded coaxial design
- Fundamental mode matches to TE₁₁ but not TEM
- Cutoff of TE₁₁ much higher than 704MHz.

With Lt changes from -6mm to 12mm:

- R/Q decreases 1%
- Qo decreases 3.5%
- Frequency changes 2MHz

Cooling

LEReC 2.1GHz cavity

- 2.1 GHz cavity cross section view.
- (A) waveguide adaptor from JLab530 to WR430;
- (B) bolt with a non-concentric knob;
- (C) JLab C100 RF window;
- (D) vacuum pump near the RF window;
- (E) view port; (L) cavity body;
- (F) FPC waveguide; (M) fixed tuner;
- (G) FPC port; (N) main frequency tuner;
- (H) FPC tuner; (O) vacuum pump at the
- I) nose cone; main tuner;
- (J) pickup coupler; (P) driver for the main tuner;
- (K) cavity water (Q) main tuner water
- cooling channel; cooling channel.

Tuner failure in 2.1GHz

Misaligned Ideal case 2.1GHz Aligned

LEReC 704MHz SRF cavity

To minimize the damping to TM_{010} , $d\sim\lambda_{010}/4$, $L\sim m/2*\lambda_{010}$. To maximize the damping to TM_{020} ,

 $d\sim\lambda_{020}/2$, L~ $(n/2+1/4)\lambda_{020}$.

Booster cavity with new HOM assembly: (A) Nb cavity; (B) helium vessel; (C) two FPCs, with the other one opposite to the one shown in figure; (D) 5 K cold anchor; (E) 25 K cold anchor 1.3 cm width ring; (F) Cu tube for HOM damper, with L its length from the tip to the electric short on the right side; (G) HOM absorber assembly; (H) HOM RF window assembly, with d the distance between its centre and the electric short of Cu tube; Insertion on the top right corner: ERL photocathode gun with old HOM assembly.

• There are still a lot (scientifical/engineering/technical) that are not covered: amplifier, control, vibration, surface treatment, quality control during fabrication and assembly, installation/alignment, and (specifically for SRF) microphonics, Lorentz force detuning, cryogenics, ...