Transverse (Betatron) Motion

Linear betatron motion

Dispersion function of off momentum particle
Simple Lattice design considerations
Nonlinearities



Particle Position

What we learned: Frenet-Serret coordinates (x,y,s)

<_

Hill’s equations (derivatives w.r.t. s) E
AB
Bp \ Reference Orbit
Bp

Higher order magnet,
usually field errors 0=

Natural focusing from Focusing from
dipoles (curvature) quadrupoles

Solution of Hill’s equations X(s), X'(s) form a coordinate set and can be transformed thru
matrix representation

2(5) = M(s,s,) *(5) X can be x ory
X'(s) X'(s0)
‘M (S,SO)‘ =1 Trace(M (S,SO))‘ <2

Stable solution conditions



Courant-Snyder parameterization
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Floquet Theorem

We consider the linear Hill’s equation of motion X" + K(s)X = 0,where X(s) and X'(s)
are conjugate coordinates, K(s) is the focusing function, and the prime is the
derivative with respect to the independent variable s. In many accelerator
applications, K(s) is a periodic function of s with period L, i.e. K(s+L)=K(s). Floquet
theorem states we can express the solution in amplitude and phase functions
which satisfy a periodic boundary condition similar to that of the potential

function K(s), i.e.
X(s)=aw(s)e’”, w(s)=w(s+L), w(s+L)-y(s)=2ru

where the phase advance p in one period is independent of s. Using the Floquet
transformation on Hill’s equation, we get the differential equation

2wy +wy" =0, W +K(s)w-wyp'” =0

, 1 ds ) 1
z/j_ya z/j_t!(;ya W+K(S)W_$_O



Floquet transformation: X"+K(s)X =0

. 1 1
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X (s) = aw(s)e (5) W3 v=3
What is the transfer matrix M(s,,s,)? (X (s,) ) - M(s, Sl)(X (1) )
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=2 cosy — w,w, siny W, W, Singy

W

M(s,,s,) =
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wW,
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The transfer matrix from s, to s, in any beam transport line becomes
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Floquet theorem: Many accelerator components obey the periodic
condition: K(s+L)=K(s). The solution of Hill’s equation is periodic.
In matrix representation, we obtain

M(s;+L|s))=M,M, M, ,...M;M=M(s))
M(s;tLIs)=M MM, M, ... M;=M(s,)=M,M(s,)M;!

Each matrix 1s a product of 1identical number of matrices. They are
related by similarity transformation. The eigen-values of the periodic
matrix M(s) are identical.

M(s,)=M(s, |s)M(s)[M(s, | 51)]_1



With the similarity transformation of the transfer matrix,
-1
M(s,)=M(s,|s)M(s)M(s,|s,)]

the values of the Courant-Snyder parameters a,, B,, v, at s, are related to a,, B,, y, at s, by

a
M(s2)=1c0s(I)+( 2 P

sin®P = /cos®P +.J,sind
—V, — &

a b : :
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Jy =M(s, |s)J,[M(s, |S1)]_1
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M;; is the ij-th component of the matrix M(s,,s;)



/3) M121 _2M11M12 M122 /3)

a| = _M11M21 M11M22+M12M21 _M12M22 o
2 2
V), M;, -2M, M,, My, V)
1. The evolution of the betatron amplitude function in a drift space is
1 a . (s-5)
ﬁ2__+y1(S__12=/)) * ’
| | p
(s=5) 1
a, =0, -Y),S=- s V2=V T

Note that y is constant in a drift space, and s*=a, /y, is the location for an extremum of
the betatron amplitude function with a(s*) = 0.

2. Passing through a thin-lens quadrupole, the evolution of betatron function is

p 200 P
b, =P, 0{2=051+71, Vo=V f1+f12

where f is the focal length of the quadrupole. Thus a thin-lens quadrupole gives rise to
an angular kick to the betatron amplitude function without changing its magnitude.




X"+K(s)X =0
Since  X(s)= aw//))(S)COS(l,U(S)+1/JO) with y(s) = f

/3 ﬁ(S)
Thu X' =-—(tany — —
S /),( ny
1 X' 5 a
2/5[ ‘+(BX +aX)] = ﬁsec Y = 5 =J
26J] cosy, X'=- %(sim/) + QL COSY)

Define: PX = /)’X’+0£X = —1/2ﬂ] SlIl’l/J

(X,P,) form a normalized phase space coordinates with
X?+P,?=28J, here Jis called action.



Courant-Snyder Invariant

WX +20XX + BX = %[X2 F(aX + pX) =27 = ¢

Centroid

Questions:

1) When we have two particles with different action J, and J, = 2J,, what will
their ellipses look like?

2) Will the ellipses intersect with each other?



(X (s,)

ol
X'(80))

X'(SO))n

The horizontal and vertical betatron ellipses
for a particle with actions J,=J =0.5 mm-
mrad at the end of the first dipole (left
plots) and the end of the fourth dipole of
the AGS lattice. The scale for the ordinate x
or y is in mm, and that for the coordinate x’
or y'isin mrad. Left plots: B,=17.0 m,
a,=2.02, B,=14.7 m, and o, =-1.84. Right
plots: $,=21.7 m, a,=-0.33, ,=10.9 m, and
a,=0.29.
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