

## Advanced Accelerator Physics Lecture 22

**PHY 564** 

## **Free Electron Lasers I: Introduction and FELs in Small Gain Regime**

Vladimir N. Litvinenko Yichao Jing I. Petrushina Gang Wang

CENTER for ACCELERATOR SCIENCE AND EDUCATION Department of Physics & Astronomy, Stony Brook University Collider-Accelerator Department, Brookhaven National Laboratory





# Outline

- Introduction
  - What is free electron laser (FEL)
  - Applications and some FEL facilities
  - Basic setup
  - Different types of FEL
- How FEL works
  - Electrons' trajectory and resonant condition
  - Analysis of FEL process at small gain regime (Oscillator)

# Introduction I: What is free electron lasers

- A free-electron laser (FEL), is a type of laser whose lasing medium consists of very-high-speed electrons moving freely through a magnetic structure, hence the term free electron.
- The free-electron laser was invented by John Madey in 1971 at Stanford University.
- Advantages:
  - ✓ Wide frequency range
  - ✓ Tunable frequency
  - ✓ May work without a mirror (SASE)
- Disadvantages: large, expensive

#### Introduction II: Applications and FEL facilities



LINAC COHERENT LIGHT SOLUCE

European X-Ray Free Electron Laser (XFEL



• Medical, Biology (small wavelength and short pulse are required for imaging proteins), Military (~Mwatts)...

#### • FEL Facilities (~33):

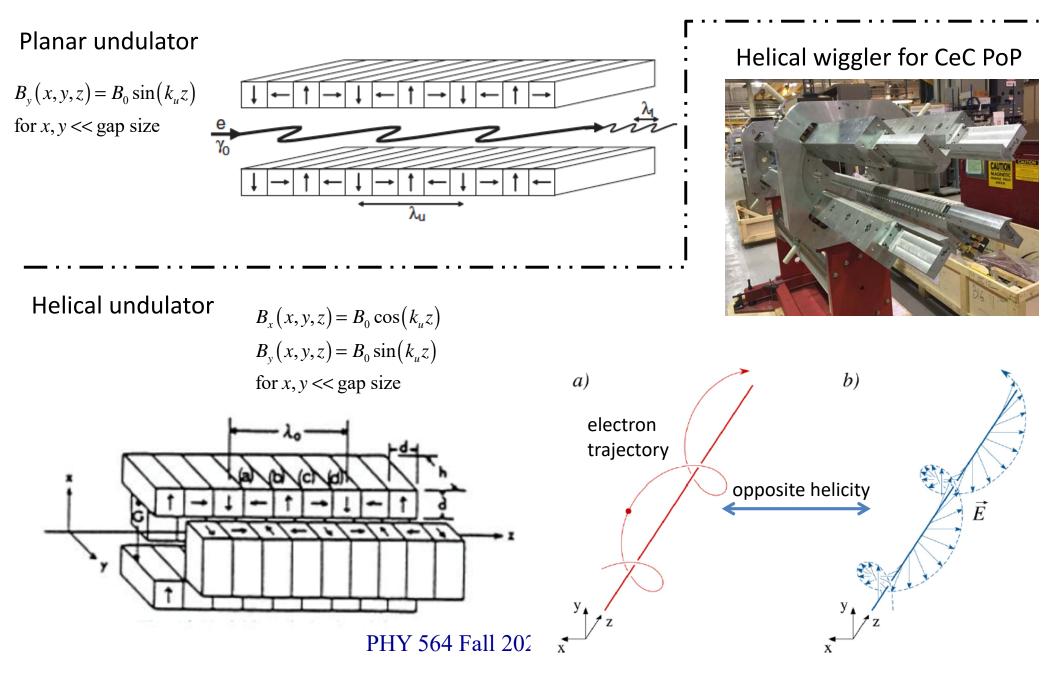
| FREE ELECTRON LASERS                   |                           |                                                                       |              |                            |  |  |  |
|----------------------------------------|---------------------------|-----------------------------------------------------------------------|--------------|----------------------------|--|--|--|
| LOCATION                               | NAME                      | WAVELENGTHS                                                           | TYPE         | STATUS                     |  |  |  |
| RIKEN<br>(Japan)                       | SACLA FEL                 | 0.63 - 3 Å                                                            | Linac        | operating<br>user facility |  |  |  |
| SLAC-SSRL<br>(USA)                     | LCLS FEL                  | 1.2 - 15 Å                                                            | Linac        | operating<br>user facility |  |  |  |
| DESY<br>(Germany)                      | FLASH FEL                 | 4.1 - 45 nm                                                           | SC Linac     | operating<br>user facility |  |  |  |
| ELETTRA<br>Trieste, Italy              | FERML                     | 4 - 100 nm                                                            | Linac        | operating<br>user facility |  |  |  |
| SDL(NSLS)<br>Brookhaven (USA)          | HGHG FEL                  | 193 nm                                                                | Linac        | operating<br>experiment    |  |  |  |
| Duke Univ.<br>NC (USA)                 | OK-4                      | 193 - 400 nm                                                          | storage ring | operating<br>user facility |  |  |  |
| <u>iFEL</u><br>(Japan)                 | 3<br>2<br>1<br>4<br>5     | 230 nm - 1.2 µm<br>1 - 6 µm<br>5 - 22 µm<br>20 - 60 µm<br>50 - 100 µm | linac        | operating<br>user facility |  |  |  |
| Univ. of Hawaii<br>(USA)               | MK-V                      | 1.7 - 9.1 µm                                                          | linac        | operating<br>experiment    |  |  |  |
| Vanderbilt<br>TN (USA)                 | MK-III                    | 2.1 - 9.8 µm                                                          | linac        | no longer<br>operating     |  |  |  |
| Radboud<br>University<br>(Netherlands) | FLARE<br>FELIX1<br>FELIX2 | 327 - 420 μm<br>3.1 - 35 μm<br>25 - 250 μm                            | linac        | operating<br>user facility |  |  |  |
| Stanford<br>CA (USA)                   | SCA-FEL<br>FIREFLY        | 3-10 μm<br>15-65 μm                                                   | SC-linac     | no longer<br>operating     |  |  |  |
| LURE - Orsay<br>(France)               |                           | 3 - 150 µm                                                            | linac        | operating<br>user facility |  |  |  |
| <u>Jefferson Lab</u><br>VA (USA)       |                           | 3.2 - 4.8 µm<br>363 - 438 nm                                          | SC-linac     | operating<br>user facility |  |  |  |
| Science Univ.<br>of Tokyo (Japan)      | FEL-SUT                   | 5 - 16 µm                                                             | linac        | operating<br>user facility |  |  |  |

PHY 564 Fall 2022 Lecture 22

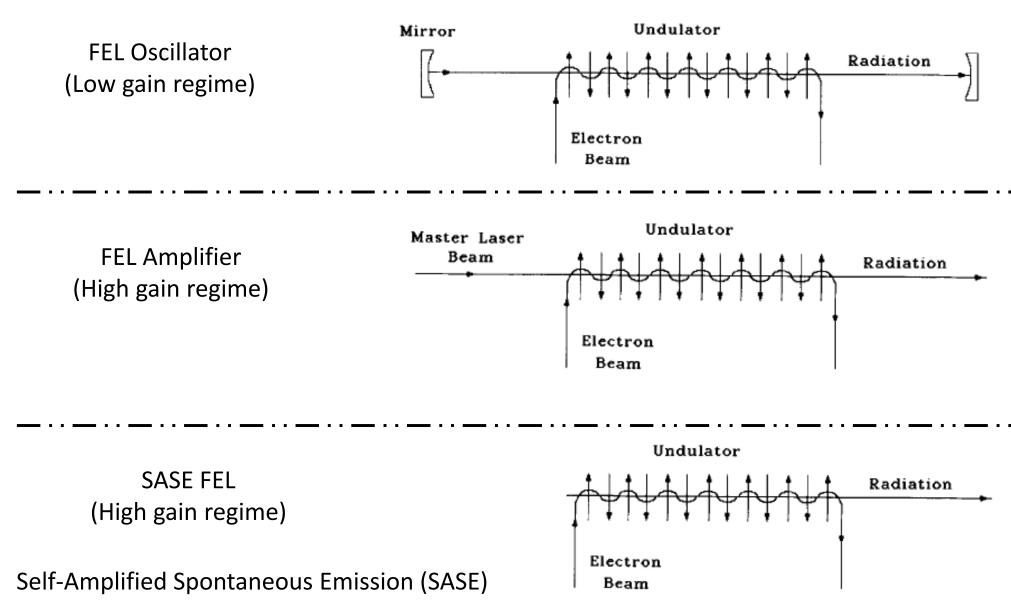
| FZ Rossendorf<br>(Germany)          |                               | 4-22 μm<br>18-250 μm                         |                             | operating<br>user facility |
|-------------------------------------|-------------------------------|----------------------------------------------|-----------------------------|----------------------------|
| UCSB<br>CA (USA)                    | FIR-FEL<br>MM-FEL<br>30 µ-FEL | 63 - 340 μm<br>340 μm - 2.5 mm<br>30 - 63 μm | electrostatic               | operating<br>user facility |
| ENEA - Frascati<br>(Italy)          |                               | 3.6 - 2.1mm                                  | microtron                   | operating<br>user facility |
| ETL - Tsukuba<br>(Japan)            | NIJI-IV                       | 228 nm                                       | storage ring                | operating<br>experiment    |
| IMS - Okazaki<br>(Japan)            | UVSOR                         | 239 nm                                       | storage ring                | operating<br>experiment    |
| Dortmund, Univ.<br>(Germany)        | Felicita 1                    | 470 nm                                       | storage ring                | operating<br>expriment     |
| LANL<br>NM (USA)                    | AFEL<br>RAFEL                 | 4 - 8 μm<br>16 μm                            | linac                       | operating<br>experiment    |
| Darmstadt Univ.<br>(Germany)        | IR-FEL                        | 6.6 - 7.8 µm                                 | SC-linac                    | operating<br>experiment    |
| IHEP<br>(China)                     | Beijing FEL                   | 5 - 25 µm                                    | linac                       | operating<br>experiment    |
| CEA - Bruyeres<br>(France)          | ELSA                          | 18-24 µm                                     | linac                       | operating<br>experiment    |
| <u>ISIR</u> - Osaka<br>(Japan)      |                               | 21-126 µm                                    | linac                       | operating<br>experiment    |
| JAERI<br>(Japan)                    |                               | 22 µm<br>6 mm                                | SC-linac<br>induction linac | operating<br>experiment    |
| Univ. of Tokyo<br>(Japan)           | UT-FEL                        | 43 µm                                        | linac                       | operating<br>experiment    |
| ILE - Osaka<br>(Japan)              |                               | 47 µm                                        | linac                       | operating<br>experiment    |
| LASTI<br>(Japan)                    | LEENA                         | 65 - 75 µm                                   | linac                       | operating<br>experiment    |
| KAERI<br>(Korea)                    |                               | 80 - 170 µm<br>10 mm                         | microtron<br>electrostatic  | operating<br>experiment    |
| Budker Inst.<br>Novosibirsk, Russia |                               | 110 - 240 µm                                 | linac                       | operating<br>experiment    |
| Univ. of Twente<br>(Netherlands)    | TEU-FEL                       | 200-500 µm                                   | linac                       | operating<br>experiment    |
| FOM<br>(Netherlands)                | Fusion<br>FEM                 |                                              |                             | no longer<br>operating     |
| Tel Aviv Univ.<br>(Israel)          |                               | 3 mm                                         | electrostatic               | operating<br>experiment    |

<sup>1</sup>So far only operating FEL oscillators with wavelength < 10 mm are included.</p>
<sup>2</sup>"user facility" means a dedicated scientific research facility open to outside researchers.
<sup>3</sup>Order is first by type of facility and second roughly by wavelength.

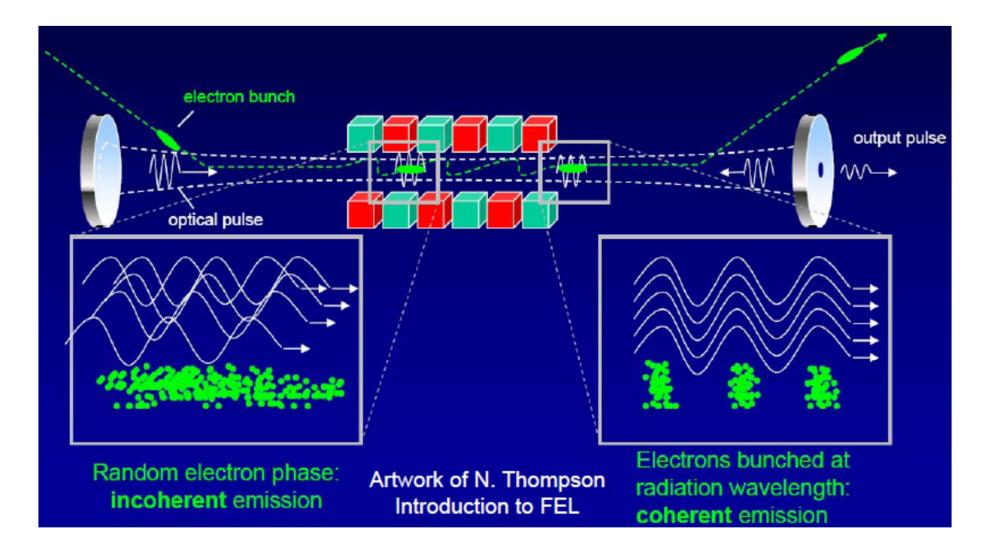
# Introduction III: Basic Setup



# Introduction IV: different types of FEL



# FEL Oscillator (Low Gain)



#### Unperturbed Electron motion in helical wiggler (in the absence of radiation field) $\vec{B}_{w}(x,y,z) = B_{w} \left[ \cos(k_{u}z)\hat{x} - \sin(k_{u}z)\hat{y} \right]$ $\vec{F}(x,y,z) = -e\vec{v} \times \vec{B} = -ev_z \hat{z} \times \vec{B} = -ev_z B_w \left[ \cos(k_u z) \hat{y} + \sin(k_u z) \hat{x} \right]$ $\frac{d(m\gamma v_y)}{dt} = m\gamma \frac{dv_y}{dt} = -ev_z B_w \cos(k_u z)$ $\frac{d(m\gamma v_x)}{dt} = m\gamma \frac{dv_x}{dt} = -ev_z B_w \sin(k_u z)$ $\gamma = \frac{1}{\sqrt{1 - v^2 / c^2}}$ $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$ $\tilde{v} \equiv v_x + iv_y!$ Undulator parameter, also called $a_{w}$ $m\gamma \frac{d\tilde{v}}{dt} = -iev_z B_w \left( \cos(k_u z) - i\sin(k_u z) \right) = -iev_z B_w e^{-ik_u z}$ $K \equiv \frac{eB_{w}\lambda_{w}}{k}$ Electron rotation angle $m\gamma \frac{d\tilde{v}}{dt} = m\gamma \frac{dz}{dt} \frac{d\tilde{v}}{dz} = -iev_z B_w e^{-ik_u z} \Longrightarrow m\gamma \frac{d\tilde{v}}{dz} = -ieB_w e^{-ik_u z}$ in undulator: $\theta_{s} = K / \gamma$ $\frac{\tilde{v}(z)}{c} = \frac{-ieB_{w}}{mc\gamma} \int e^{-ik_{u}z_{1}} dz_{1} = \frac{eB_{w}}{mc\gamma k_{u}} e^{-ik_{u}z} = \frac{K}{\gamma} e^{-ik_{u}z} * \text{Assume the initial velocity of the electron} \\ \text{make the integral constant vanishing.}$ $\vec{v}_{\perp}(z) = \frac{cK}{v} \Big[ \cos(k_u z) \hat{x} - \sin(k_u z) \hat{y} \Big] \quad v_z = const. \qquad \vec{x}(z) = \int_{0}^{z} \vec{v}(t_1) dt_1 + \vec{x}(z=0)$ PHY 564 Fall 2022 Lecture 22

#### Energy change of electrons due to radiation field

$$\vec{v}_{\perp}(z) = \frac{cK}{\gamma} \Big[ \cos(k_u z) \hat{x} - \sin(k_u z) \hat{y} \Big]$$

Consider a circularly polarized electromagnetic wave (plane wave is an assumption for 1D analysis, which is usually valid for near axis analysis) propogating along z direction

$$\vec{E}_{\perp}(z,t) = E\left[\cos(kz - \omega t)\hat{x} + \sin(kz - \omega t)\hat{y}\right] \qquad E_{z} = 0$$
$$= E\left[\cos(k(z - ct))\hat{x} + \sin(k(z - ct))\hat{y}\right] \qquad \omega = kc$$

Energy change of an electron is given by

$$\frac{d\mathcal{E}}{dt} = \vec{F} \cdot \vec{v} = -e\vec{v}_{\perp} \cdot \vec{E}_{\perp}$$
$$\frac{d\mathcal{E}}{dz} = -eE\theta_s \frac{c}{v_z} \cos(\psi) \approx -eE\theta_s \cos(\psi)$$

Pondermotive phase:

$$\Psi = k_u z + k (z - ct)$$

To the leading order, electrons move with constant velocity and hence

 $z = v_z \left( t - t_0 \right)$ 

# **Resonant Radiation Wavelength** $\Psi_{0} = -kct_{0}$ Detuning parameter: $C \equiv k_{w} + k - \frac{kc}{v_{z}(\mathcal{E}_{0})}$ $\frac{d\mathcal{E}}{dz} = -eE\theta_s \cos\left|\left(k_w + k - k\frac{c}{v_s}\right)z + \psi_0\right|$ We define the resonant radiation wavelength such that $k_{w} + k_{0} - k_{0} \frac{c}{v_{z}} = 0 \Longrightarrow \lambda_{0} = \lambda_{w} \left(\frac{c}{v_{z}} - 1\right) \approx \frac{\lambda_{w}}{2\gamma_{z}^{2}} \qquad k_{0} = \frac{2\pi}{\lambda_{0}} \\ k_{w} = \frac{2\pi}{\lambda}$ $\gamma_z^{-2} \equiv 1 - v_z^2 / c^2 = 1 - \left(v_z^2 + v_\perp^2\right) / c^2 + v_\perp^2 / c^2 = \gamma^{-2} + \theta_s^2 = \gamma^{-2} \left(1 + K^2\right)$

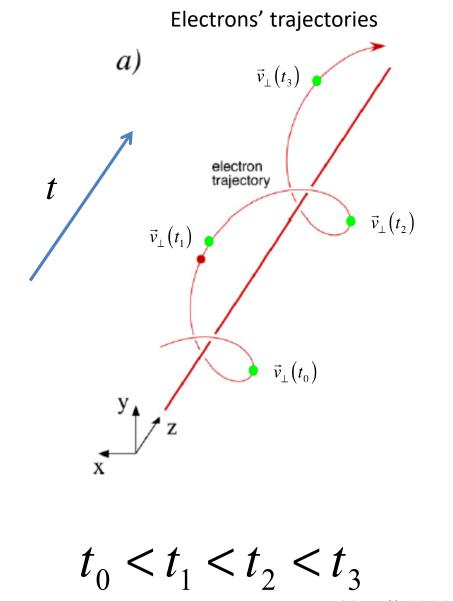
FEL resonant frequency:

$$\lambda_0 \approx \frac{\lambda_w \left( 1 + K^2 \right)}{2\gamma^2} \qquad \qquad K \equiv \frac{eB_w \lambda_w}{2\pi mc}$$

At resonant frequency, the rotation of the electron and the radiation field is synchronized in the x-y plane and hence the energy exchange between them is most efficient. PHY 564 Fall 2022 Lecture 22

## Helicity of radiation at synchronization

The synchronization requires opposite helicity of radiation with respect to the electrons' trajectories.



electrons b)  $\vec{v}_{\perp}(t_0)$  $\vec{v}_{\perp}(t_1)$ Ē  $\vec{v}_{\perp}(t_2)$  $\vec{v}_{\perp}(t_3)$ Electrons move slower than radiation х and hence see the radiation wave slipping ahead. As a result, the rotation direction of the radiation field seen by an electron is the same as its own rotation direction. PHY 564 Fall 2022 Lecture 22

Radiation field observed by

# Longitudinal equation of motion

In the presence of the radiation field, the longitudinal equation of motion of an electron read

- -

$$\frac{d\mathcal{E}}{dz} = -e\mathcal{E}\Theta_{s}\cos(\psi) \qquad \psi = k_{w}z + k(z-ct) \qquad \mathcal{E}_{0} \text{ is the average energy of the beam.}$$

$$\frac{d}{dz}\psi = k_{w} + k - \frac{\omega}{v_{z}(\mathcal{E})} \qquad \qquad \mathcal{E}_{0} \text{ is the average energy of the beam.}$$

$$\frac{d}{dz}\psi = k_{w} + k - \frac{\omega}{v_{z}(\mathcal{E})} \qquad \qquad \mathcal{E}_{0} \text{ is the average energy of the beam.}$$

$$\frac{d}{dz}\psi = k_{w} + k - \frac{\omega}{v_{z}(\mathcal{E})} + \left(\mathcal{E}-\mathcal{E}_{0}\right)\frac{d}{d\mathcal{E}}\frac{1}{v_{z}}\right] \swarrow \qquad \qquad \mathcal{E}_{0} \qquad \qquad \mathcal{E}_{0} \text{ is the average energy of the beam.}$$

$$\frac{d}{dz}\psi = k_{w} + k - \frac{\omega}{v_{z}(\mathcal{E}_{0})} + \left(\mathcal{E}-\mathcal{E}_{0}\right)\frac{d}{d\mathcal{E}}\frac{1}{v_{z}}\right] \swarrow \qquad \qquad \mathcal{E}_{0} \qquad \qquad$$

## Low Gain Regime: Pendulum Equation

$$\frac{dP}{dz} = -eE\theta_s \cos(\psi)$$
  
$$\frac{d}{dz}\psi = C + \frac{\omega}{\gamma_z^2 c\mathcal{E}_0}P$$
$$\Rightarrow \qquad \frac{d^2}{dz^2}\psi + \frac{eE\theta_s\omega}{\gamma_z^2 c\mathcal{E}_0}\cos(\psi) = 0$$

We assume that the change of the amplitude of the radiation field, E, is negligible and treat it as a constant over the whole interaction.

$$\frac{d^2}{d\hat{z}^2}\psi + \hat{u}\cos(\psi) = 0 \qquad \hat{u} = \frac{l_w^2 e E \theta_s \omega}{\gamma_z^2 c \mathcal{E}_0} \qquad \hat{z} = \frac{z}{l_w}$$

Pendulum equation:

$$\frac{d^2}{d\hat{z}^2}\left(\psi + \frac{\pi}{2}\right) + \hat{u}\sin\left(\psi + \frac{\pi}{2}\right) = 0$$

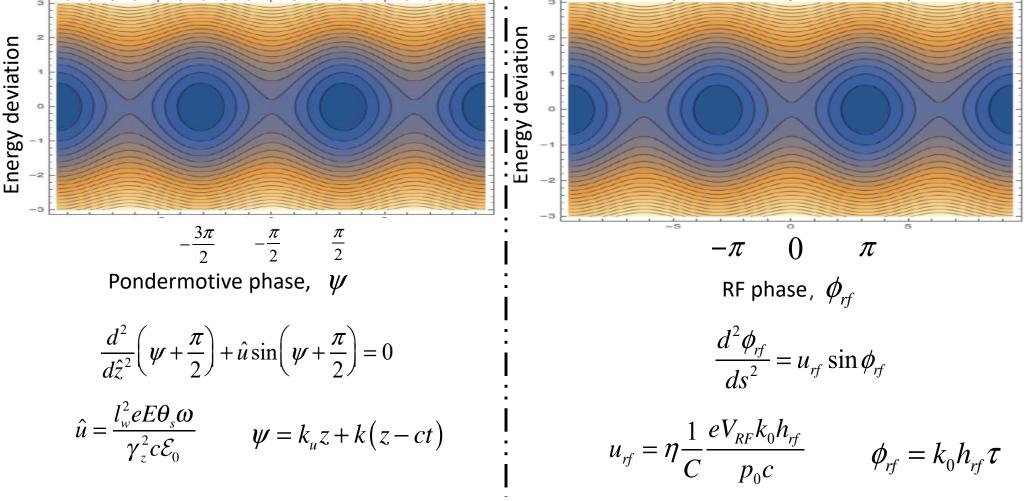
#### Low Gain Regime: Similarity to Synchrotron Oscillation

FEL

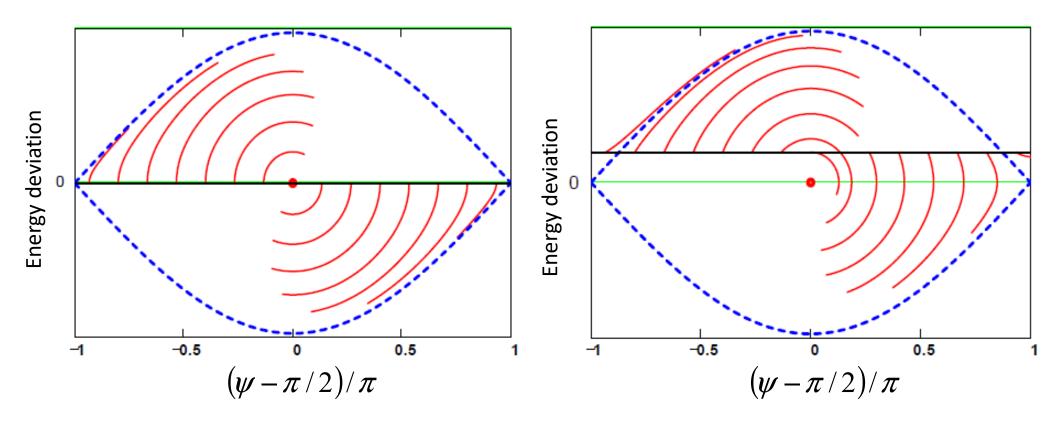
 $\psi$  is the angle between the transverse velocity vector and the radiation field vector and hence there is no energy kick for  $\psi = \pi / 2$ 

Synchrotron Oscillation

$$\frac{d\tau}{ds} = \eta_{\tau} \pi_{\tau}; \ \frac{d\pi_{\tau}}{ds} = \frac{1}{C} \frac{eV_{RF}}{p_o c} \sin\left(k_o h_{rf} \tau\right);$$



#### Low Gain Regime: Qualitative Observation



The average energy of the electrons is right at resonant energy:

$$\lambda_0 \approx \frac{\lambda_w (1+K^2)}{2\gamma^2} \implies \gamma = \gamma_0 = \sqrt{\frac{\lambda_w (1+K^2)}{2\lambda_0}}$$

\*Plots are taken from talk slides by Peter Schmuser.

The average energy of the electrons is slightly above the resonant energy:

$$\gamma = \gamma_0 + \Delta \gamma$$

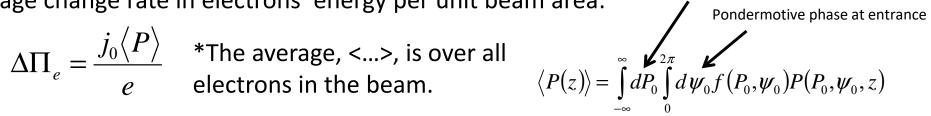
With positive detuning, there is net energy loss by electrons.

## Low Gain Regime: Derivation of FEL Gain

Change in radiation power density (energy gain per seconds per unit area):

$$\Delta \Pi_r = c \varepsilon_0 (E_{ext} + \Delta E)^2 - c \varepsilon_0 E_{ext}^2 \approx 2c \varepsilon_0 E_{ext} \Delta E$$

Average change rate in electrons' energy per unit beam area:



Energy deviation at entrance

Assuming radiation has the same cross section area as the electron beam, we obtain the change in electric field amplitude:

$$\Delta \Pi_r + \Delta \Pi_e = 0 \Longrightarrow \qquad \Delta E = -\frac{j_0 \langle P \rangle}{2c \varepsilon_0 E_{ext} e}$$

Assuming that all electrons have the same energy and uniformly distributed in the Pondermotive phase at the entrance of FEL:  $f(\psi_0, P_0) = \frac{1}{2} \delta(P_0)$ 

$$\frac{dP}{dz} = -eE\theta_s \cos(\psi)$$

$$\frac{d}{dz}\psi = C + \frac{\omega}{\gamma_z^2 c\mathcal{E}_0}P$$

$$\Rightarrow \qquad \langle P \rangle = -eEl_w \theta_s \left\langle \int_0^1 \cos[\psi(\hat{z})] d\hat{z} \right\rangle$$

$$\hat{z} = \frac{z}{l_w}$$

#### Low Gain Regime: Derivation of FEL Gain

$$\frac{d^{2}}{d\hat{z}^{2}}\psi + \hat{u}\cos\psi = 0$$
  
$$\psi(\hat{z}) = \psi(0) + \psi'(0)\hat{z} - \hat{u}\int_{0}^{\hat{z}} d\hat{z}_{1}\int_{0}^{\hat{z}_{1}} \cos\psi(\hat{z}_{2})d\hat{z}_{2}$$
(1)

The zeroth order solution for phase evolution is given by ignoring the effects from FEL interaction:

$$\frac{dP}{dz} = -eE\theta_{s}\cos(\psi)$$

$$\frac{d}{dz}\psi = C + \frac{\omega}{\gamma_{z}^{2}c\mathcal{E}_{0}}P$$

$$\Rightarrow \frac{d}{d\hat{z}}\psi = \hat{C} \Rightarrow \begin{cases} \psi(\hat{z}) = \psi_{0} + \hat{C}\hat{z} \\ \psi'(0) = \hat{C} \end{cases}$$

$$\hat{C} \equiv Cl_{w}$$

Inserting the zeroth order solution back into eq. (1) yields the 1<sup>st</sup> order solution:

$$\boldsymbol{\psi}(\hat{z}) = \boldsymbol{\psi}_0 + \hat{C}\hat{z} + \Delta \boldsymbol{\psi}(\boldsymbol{\psi}_0, \hat{z}) \qquad \Delta \boldsymbol{\psi}(\boldsymbol{\psi}_0, \hat{z}) \equiv -\hat{u} \int_0^z d\hat{z}_1 \int_0^{z_1} \cos[\boldsymbol{\psi}_0 + \hat{C}\hat{z}_2] d\hat{z}_2$$

â Â

## Low Gain Regime: Derivation of FEL Gain

$$\Delta \psi(\psi_0, \hat{z}) \equiv -\hat{u} \int_0^{\hat{z}} d\hat{z}_1 \int_0^{\hat{z}_1} \cos[\psi_0 + \hat{C}\hat{z}_2] d\hat{z}_2$$
  
=  $-\frac{\hat{u}}{\hat{C}^2} \left\{ \int_0^{\hat{C}\hat{z}} \sin(\psi_0 + x_1) dx_1 - \hat{C}\hat{z}\sin\psi_0 \right\} = \frac{\hat{u}}{\hat{C}^2} \left[ \cos(\psi_0 + \hat{C}\hat{z}) - \cos\psi_0 + \hat{C}\hat{z}\sin\psi_0 \right]$ 

$$\langle P \rangle = -eEl_{w}\theta_{s} \left\langle \int_{0}^{1} \cos\left[\psi_{0} + \hat{C}\hat{z} + \Delta\psi(\psi_{0}, \hat{z})\right]d\hat{z} \right\rangle$$
 Average energy loss of electrons  

$$= eE\theta_{s}l_{w} \left\langle \int_{0}^{1} \sin\left[\psi_{0} + \hat{C}\hat{z}\right]\sin(\Delta\psi(\psi_{0}, \hat{z}))d\hat{z} \right\rangle - eE\theta_{s}l_{w} \left\langle \int_{0}^{1} \cos\left[\psi_{0} + \hat{C}\hat{z}\right]\cos(\Delta\psi(\psi_{0}, \hat{z}))d\hat{z} \right\rangle$$

$$\approx eE\theta_{s}l_{w} \left\langle \int_{0}^{1} \Delta\psi(\psi_{0}, \hat{z})\sin\left[\psi_{0} + \hat{C}\hat{z}\right]d\hat{z} \right\rangle - \frac{eE\theta_{s}l_{w}}{2\pi} \int_{0}^{1} d\hat{z} \int_{0}^{2\pi} \cos\left[\psi_{0} + \hat{C}\hat{z}\right]d\tilde{\psi}_{0}$$

$$= \frac{eE\theta_{s}l_{w}}{2\pi} \frac{\hat{u}}{\hat{C}^{2}} \int_{0}^{1} d\hat{z} \left\{ \hat{C}\hat{z}\cos\left(\hat{C}\hat{z}\right) \int_{0}^{2\pi} \sin^{2}\psi_{0}d\psi_{0} - \sin\left(\hat{C}\hat{z}\right) \int_{0}^{2\pi} \cos^{2}\psi_{0}d\psi_{0} \right\}$$

$$= -eE\theta_{s}l_{w} \frac{\hat{u}}{\hat{C}^{3}} \left\{ 1 - \frac{\hat{C}}{2}\sin\hat{C} - \cos\hat{C} \right\}$$

## Low Energy Regime: Derivation of FEL Gain

Growth in the amplitude of radiation field:

$$\Delta E = -\frac{j_0 \langle P \rangle}{2c\varepsilon_0 E_{ext} e} = \frac{\pi j_0 \theta_s^2 \omega}{c\gamma_z^2 \gamma} \frac{l_w^3 E_{ext}}{I_A} \frac{2}{\hat{C}^3} \left( 1 - \frac{\hat{C}}{2} \sin \hat{C} - \cos \hat{C} \right)$$

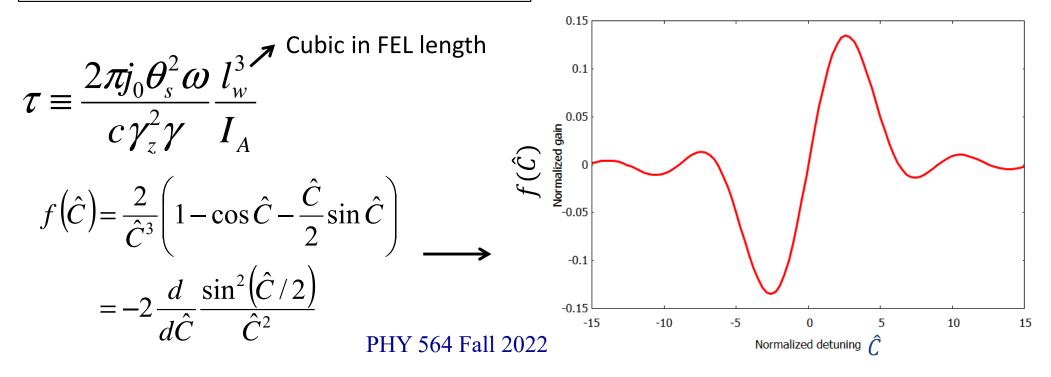
$$\hat{u} = \frac{l_w^2 e E_{ext} \theta_s \omega}{\gamma_z^2 c \, \gamma m c^2}$$

$$I_A = \frac{4\pi\varepsilon_0 mc^3}{e}$$

The gain is defined as the relative growth in radiation power:

$$g_{s} = \frac{\left(E_{ext} + \Delta E\right)^{2} - E_{ext}^{2}}{E_{ext}^{2}} \approx \frac{2\Delta E}{E_{ext}} = \tau \cdot f(\hat{C})$$

As observed earlier, there is no gain if the electrons has resonant energy.



## References:

[1] 'The Physics of Free Electron Lasers' by E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov;[2] 'Laser Handbook', VOL 6 by W.B. Colson, C. Pellegrini and A. Renieri;

# What we learned today

- What is a free electron laser? What are its advantages and disadvantages?
- We derived the trajectories of electrons inside a helical undulator of a free electron laser.
- We derived the resonant condition for a free electron laser to work, which determines the resonant wavelength of the free electron laser;
- We derived the gain of a free electron laser working in the low gain regime.