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Outline
• Introduction

– What is free electron laser (FEL)
– Applications and some FEL facilities
– Basic setup
– Different types of FEL

• How FEL works
– Electrons’ trajectory and resonant condition
– Analysis of FEL process at small gain regime 

(Oscillator)
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Introduction I: What is free electron lasers

• A free-electron laser (FEL), is a type of laser whose
lasing medium consists of very-high-speed electrons
moving freely through a magnetic structure, hence the
term free electron.

• The free-electron laser was invented by John Madey
in 1971 at Stanford University.

• Advantages:
Wide frequency range
Tunable frequency
May work without a mirror (SASE)

• Disadvantages: large, expensive
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Introduction II: Applications and FEL facilities

• Medical, Biology (small wavelength and short pulse are 
required for imaging proteins), Military (~Mwatts)…

• FEL Facilities (~33):

Spring-8 Angstrom Compact 
Free Electron Laser
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Introduction III: Basic Setup
Planar undulator

Helical undulator

Helical wiggler for CeC PoP
By x, y, z( ) = B0 sin kuz( )
for x, y << gap size

Bx x, y, z( ) = B0 cos kuz( )
By x, y, z( ) = B0 sin kuz( )
for x, y << gap size

opposite helicity

electron 
trajectory
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Introduction IV: different types of FEL
FEL Oscillator

(Low gain regime)

FEL Amplifier
(High gain regime)

SASE FEL 
(High gain regime)

Self-Amplified Spontaneous Emission (SASE)
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FEL Oscillator (Low Gain)
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Unperturbed Electron motion in helical wiggler 
(in the absence of radiation field)

d mγ vx( )
dt

= mγ dvx

dt
= −evzBw sin kuz( )

d mγ vy( )
dt

= mγ
dvy

dt
= −evzBw cos kuz( )

γ = 1
1− v2 / c2 v = vx

2 + vy
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K ≡ eBwλw

2πmc

Undulator parameter, 
also called aw

θs = K /γ

Electron rotation angle 
in undulator:

*Assume the initial velocity of the electron 
make the integral constant vanishing.

vz = const.
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Energy change of electrons due to radiation field

Consider a circularly polarized electromagnetic wave (plane wave is an assumption for 1D 
analysis, which is usually valid for near axis analysis) propogating along z direction

Energy change of an electron is given by

Ez = 0

ω = kc

To the leading order, electrons move with constant velocity and hence z = vz t − t0( )
ψ = kuz + k z − ct( )
Pondermotive phase:
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Resonant Radiation Wavelength

We define the resonant radiation wavelength such that

kw + k0 − k0
c
vz

= 0  λ0 = λw
c
vz

−1






≈ λw

2γ z
2

γ z
−2 ≡ 1− vz

2 / c2 = 1− vz
2 + v⊥

2( ) / c2 + v⊥
2 / c2 = γ −2 +θs

2 = γ −2 1+ K 2( )

λ0 ≈
λw 1+ K 2( )

2γ 2
K ≡ eBwλw

2πmcFEL resonant frequency:

At resonant frequency, the rotation of the electron and the radiation field is
synchronized in the x-y plane and hence the energy exchange between them is most
efficient.

0 0kctψ = −

0
0

2k π
λ

=

2
w

w

k π
λ
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Helicity of radiation at synchronization

t0 < t1 < t2 < t3

Electrons move slower than radiation
and hence see the radiation wave
slipping ahead. As a result, the
rotation direction of the radiation
field seen by an electron is the same
as its own rotation direction.

t
t

Radiation field observed by 
electrons

Electrons’ trajectories

The synchronization requires opposite helicity of radiation with respect to the electrons’ 
trajectories.
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Longitudinal equation of motion
In the presence of the radiation field, the longitudinal equation of motion of an 
electron read

ψ = kwz + k z − ct( )

γ z
2 = γ 2

1+ K 2( )
dγ z

dγ
= γ

γ z 1+ K 2( )
d

dγ z

1
βz

= − 1
2βz

3
d

dγ z

1− 1
γ z

2







= − 1

βz
3γ z

3

Detuning parameter:

Energy deviation:
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Low Gain Regime: Pendulum Equation

We assume that the change of the amplitude of the radiation field, E, is negligible 
and treat it as a constant over the whole interaction.

d 2

dẑ2 ψ + û cos ψ( ) = 0 ẑ = z
lw

Pendulum equation: d 2

dẑ2 ψ + π
2





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+ û sin ψ + π
2





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= 0
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RF phase,

Low Gain Regime: Similarity to Synchrotron Oscillation

d 2φrf

ds2 = urf sinφrf

φrf = k0hrfτurf = η 1
C

eVRFk0hrf

p0c

φrf
En
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Pondermotive phase,
− 3π

2
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
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
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= 0

ψ = kuz + k z − ct( )

is the angle between the transverse velocity 
vector and the radiation field vector and hence 
there is no energy kick for 

ψ

ψ = π / 2

Synchrotron OscillationFEL 

0−π π
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Low Gain Regime: Qualitative Observation

*Plots are taken from talk slides by Peter Schmuser.

( ) ππψ /2/− ( ) ππψ /2/−
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The average energy of the electrons 
is right at resonant energy:

λ0 ≈
λw 1+ K 2( )

2γ 2

( )
0

2

0 2
1

λ
λγγ Kw +==

The average energy of the electrons 
is slightly above the resonant energy:

γγγ Δ+= 0

With positive detuning, there is 
net energy loss by electrons.



Low Gain Regime: Derivation of FEL Gain
Change in radiation power density (energy gain per seconds per unit area):

( ) EEcEcEEc extextextr Δ≈−Δ+=ΔΠ 0
2

0
2

0 2 εεε

Average change rate in electrons’ energy per unit beam area:

e
Pj

e
0=ΔΠ

Assuming radiation has the same cross section area as the electron beam, we 
obtain the change in electric field amplitude: 

eEc
Pj

E
ext0

0

2 ε
−=Δ=ΔΠ+ΔΠ 0er

*The average, <…>, is over all 
electrons in the beam.
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Energy deviation at entrance

Pondermotive phase at entrance

ẑ = z
lw

Assuming that all electrons have the same energy and uniformly distributed in the 
Pondermotive phase at the entrance of FEL: ( ) ( )0 0 0

1,
2
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Low Gain Regime: Derivation of FEL Gain
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( ) Ĉ0' =ψ

Inserting the zeroth order solution back into eq. (1) yields the 1st order solution:  

(1)

The zeroth order solution for phase evolution is given by ignoring the effects from 
FEL interaction: 
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Low Gain Regime: Derivation of FEL Gain
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Low Energy Regime: Derivation of FEL Gain
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The gain is defined as the relative growth in radiation power:

Growth in the amplitude of radiation field:

Cubic in FEL length

As observed earlier, there is no gain if 
the electrons has resonant energy.
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What we learned today
• What is a free electron laser? What are its advantages and 

disadvantages?
• We derived the trajectories of electrons inside a helical 

undulator of a free electron laser.
• We derived the resonant condition for a free electron laser 

to work, which determines the resonant wavelength of the 
free electron laser;

• We derived the gain of a free electron laser working in the 
low gain regime. 
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