Appendix F: Inhomogeneous solution

Even though calculations are tedious, they are also transparent and straightforward. General expression for the inhomogeneous equation of 2 n ordinary linear differential equations is found by a standard trick of variable constants (method developed by Lagrange), i.e. assuming that $R=\mathbf{M}(s) A(s)$:

$$
\begin{align*}
& \frac{d R}{d s}=R^{\prime}=\mathbf{D} \cdot R+\mathbf{C} ; \quad \mathbf{M}^{\prime}=\mathbf{D M} \\
& R=\mathbf{M}(s) A(s) \Rightarrow \mathbf{M}^{\prime} A+\mathbf{M} A^{\prime}=\mathbf{D M} A+C \\
& R(0)=0 \Rightarrow A_{o}=0 \tag{F-1}\\
& A^{\prime}=\mathbf{M}^{-1}(s) C \Rightarrow A=\int_{0} \mathbf{M}^{-1}(z) C d z=\left(\int_{0} e^{-\mathbf{D} z} d z\right) \cdot C
\end{align*}
$$

with well known result of:

$$
\begin{equation*}
R=e^{\mathbf{D} s}\left(\int_{0} e^{-\mathbf{D} z} d z\right) \cdot C \tag{F-2}
\end{equation*}
$$

or

$$
\begin{equation*}
R=M_{4 x 4}(s)\left(\int_{0} M_{4 x 4}^{-1}(z) d z\right) C \tag{F-3}
\end{equation*}
$$

If you use computer, eq. (F-3) is one to use. For analytical folks, you should go though a tedious job is combining all terms together into final form:

$$
R(s)=\sum_{k=1}^{m}\left\{\prod_{i \neq k}\left[\frac{\mathbf{D}-\lambda_{i} \mathbf{I}}{\lambda_{k}-\lambda_{i}}\right]_{j=0}^{n_{k}-1} \sum_{i=0}\left(\frac{\mathbf{D}-\lambda_{k} \mathbf{I}}{\lambda_{i}-\lambda_{k}}\right)^{j} \int_{n=0}^{n_{k}-1}\left(\mathbf{D}-\lambda_{k} \mathbf{I}\right)^{n} \frac{s^{n}}{n!} \cdot \sum_{p=0}^{n_{k}-1}(-1)^{p+1}\left(\mathbf{D}-\lambda_{k} \mathbf{I}\right)^{p} \cdot \mathbf{C} \cdot\left[\sum_{q=0}^{p 1} \frac{s^{p-q}}{(p-q)!\lambda_{k}^{q+1}}-\frac{e^{\lambda_{k}}}{\lambda_{k}^{p+1}}\right]\right.
$$

