Appendix F: Inhomogeneous solution

Even though calculations are tedious, they are also transparent and straightforward. General expression for the inhomogeneous equation of 2n ordinary linear differential equations is found by a standard trick of variable constants (method developed by Lagrange), i.e. assuming that $R = \mathbf{M}(s)A(s)$:

$$\frac{dR}{ds} = R' = \mathbf{D} \cdot R + \mathbf{C}; \quad \mathbf{M}' = \mathbf{D}\mathbf{M};$$

$$R = \mathbf{M}(s)A(s) \Rightarrow \mathbf{M}'A + \mathbf{M}A' = \mathbf{D}\mathbf{M}A + C$$

$$R(0) = 0 \Rightarrow A_o = 0$$

$$A' = \mathbf{M}^{-1}(s)C \Rightarrow A = \int_{0}^{s} \mathbf{M}^{-1}(z)Cdz = \left(\int_{0}^{s} e^{-\mathbf{D}z}dz\right)C$$
(F-1)

with well known result of:

$$R = e^{\mathbf{D}s} \left(\int_{0}^{s} e^{-\mathbf{D}z} dz \right) C.$$
 (F-2)

or

$$R = M_{4x4}(s) \left(\int_{0}^{s} M^{-1}_{4x4}(z) dz \right) C.$$
 (F-3)

If you use computer, eq. (F-3) is one to use. For analytical folks, you should go though a tedious job is combining all terms together into final form:

$$R(s) = \sum_{k=1}^{m} \left\{ \prod_{i \neq k} \left[\frac{\mathbf{D} - \lambda_i \mathbf{I}}{\lambda_k - \lambda_i} \right]_{j=0}^{n_k - 1} \left(\frac{\mathbf{D} - \lambda_k \mathbf{I}}{\lambda_i - \lambda_k} \right)^j \right\} \sum_{n=0}^{n_k - 1} (\mathbf{D} - \lambda_k \mathbf{I})^n \frac{s^n}{n!} \cdot \sum_{p=0}^{n_k - 1} (-1)^{p+1} (\mathbf{D} - \lambda_k \mathbf{I})^p \cdot \mathbf{C} \cdot \left[\sum_{q=0}^{p_1} \frac{s^{p-q}}{(p-q)! \lambda_k^{q+1}} - \frac{e^{\lambda_k}}{\lambda_k^{p+1}} \right]$$