1. The explicit form of the electric field is (we can always choose the polar axis such that the trailing
particle locates at @ =0 and consequently X=1)
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Since Coulomb field is divergent at the location of the leading particle, we will not consider the field at
S=X=0, and therefore it follows
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Now we integrate eq. (5) from —oo to oo to get
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From eg. (5) and eq. (6), it follows that
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Eg. (7) and (8) coincide with the definition of Dirac Delta function and hence
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or equivalently
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Combining eq. (1), eq. (4) and eq. (10), we obtain
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2. The longitudinal impedance is defined as
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Taking the complex conjugate of eq. (12) and noticing that
w, (s)=w,(s),

it follows that
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The transverse impedance is defined as
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