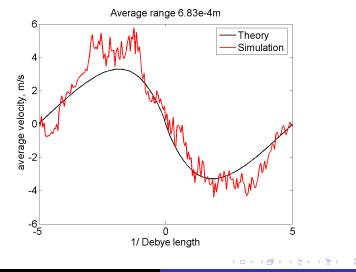
Comparison of Modulator Simulation with Theory

Jun Ma, Roman Samulyak, Kwangmin Yu

Department of Applied Mathematics and Statistics Stony Brook University

2016.4.28

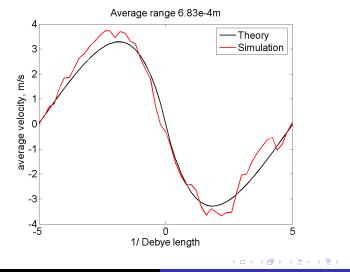

伺下 イラト イラ

Averaging range

- Velocity modulation changes when we measure it using different averaging range in transversal direction
- Theory uses $\sigma = 6.83e 4m$ as the averaging range

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Previous comparison



Previous comparison


- Previous comparison was incorrect due to insufficient precision because of post-processing of data.
- Rerun simulations using different domain size but keep the same averaging range, and gather original data with full precision.

・ 同 ト ・ ヨ ト ・ ヨ ト

Comparison with domain size -8e-4m to 8e-4m

Comparison with domain size -6.83e-4m to 6.83e-4m

Magnetic field of quadrupole

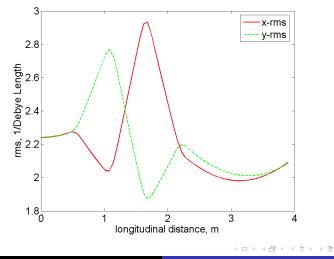
$$\begin{pmatrix} B_x \\ B_y \\ B_z \end{pmatrix} = -\frac{\mathsf{G}}{\mathsf{b}\mathsf{l}} \cdot \begin{pmatrix} B_{\mathsf{fiinge},x} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(z - \frac{1}{2}L \right) \right) + B_{\mathsf{fiinge},x} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(-z - \frac{1}{2}L \right) \right) \\ B_{\mathsf{fiinge},y} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(z - \frac{1}{2}L \right) \right) + B_{\mathsf{fiinge},y} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(-z - \frac{1}{2}L \right) \right) \\ B_{\mathsf{fiinge},z} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(z - \frac{1}{2}L \right) \right) - B_{\mathsf{fiinge},z} \left(\mathsf{b}\mathsf{l} x, \mathsf{b}\mathsf{l} y, \mathsf{b}\mathsf{l} \left(-z - \frac{1}{2}L \right) \right) \end{pmatrix}$$

▲ □ ▶ ▲ □ ▶ ▲

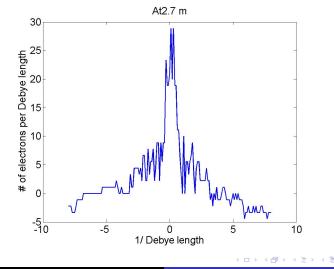
Magnetic field of quadrupole (continue)

$$\mathbf{B}_{\text{fringe}}(x, y, z) = \frac{1}{4} \begin{pmatrix} -y - 2\arctan\left(-\frac{\sin(y)}{e^{-z} + \cos(y)}\right) + \frac{y\sinh(z)}{\cos(x) + \cosh(z)} \\ -x - 2\arctan\left(-\frac{\sin(x)}{e^{-z} + \cos(x)}\right) + \frac{x\sinh(z)}{\cos(y) + \cosh(z)} \\ \frac{y\sin(x)}{\cos(x) + \cosh(z)} + \frac{x\sin(y)}{\cos(y) + \cosh(z)} \end{pmatrix}$$

Magnetic field of quadrupole (continue)

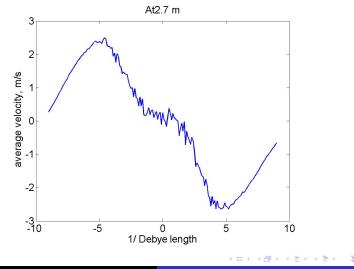

•
$$G = K = K_1 \cdot B\rho$$

•
$$b_1 = \pi/r_{bore}$$


•
$$r_{bore} = 3cm$$

・ 同 ト ・ ヨ ト ・ ヨ ト

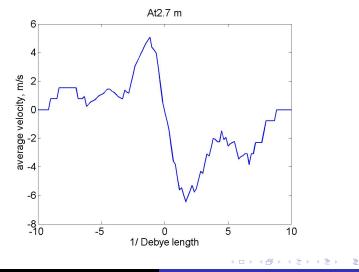
RMS change due to quadrupoles



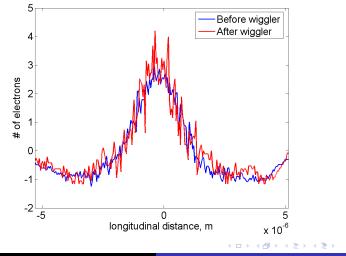
Modulator, longitudinal number distribution



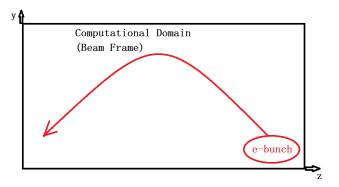
Jun Ma, Roman Samulyak, Kwangmin Yu Comparison of Modulator Simulation with Theory


Modulator, longitudinal velocity distribution

Modulator, transversal number distribution


Modulator, transversal velocity distribution

- Run modulator simulations using 1/10 of the previous electron number density
- Take the output of modulator as input of wiggler
- Increase wiggler magnetic field strength by 5 times (from 0.2T to 1.0T).


・ 同 ト ・ ヨ ト ・ ヨ ト

Wiggler simulation

Jun Ma, Roman Samulyak, Kwangmin Yu Comparison of Modulator Simulation with Theory

Motion of electron bunch

イロト イボト イヨト イヨト

Motion of electron bunch

• Stronger wiggler magnetic field makes electron bunch move further along negative z direction, which requires larger computational domain.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶