Generalization of Sylvester formula

English mathematician James Joseph Sylvester derived his famous formula only for diagonal matrices. Another British mathematician, Arthur Buchheim, extended it for a general case of matrices reducible to Jordan form, e.g. those with some eigen values having multiplicity $l_{i}>1$:

$$
\operatorname{det}[\mathbf{M}-\lambda \mathbf{I}]=\prod_{i=1}^{m}\left(\lambda-\lambda_{i}\right)^{l_{i}}
$$

I did not find derivation of Arthur Buchheim https://en.wikipedia.org/wiki/Sylvester\'s_formula and below is my own derivation that I found in my notes when I attempted to have complete set of matrices for accelerator quite long time ago...

Matrix functions and Projection operators

An arbitrary matrix \mathbf{M} can be reduced to an unique matrix, which in general case has a Jordan form: for a matrix with arbitrary height of eigen values the set of eigen values $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ contains only unique eigen values, i.e. $\lambda_{k} \neq \lambda_{j} ; \forall k \neq j$:

$$
\begin{gather*}
\operatorname{size}[\mathbf{M}]=M ;\left\{\lambda_{1}, \ldots \ldots, \lambda_{m}\right\} ; m \leq M ; \operatorname{det}\left[\lambda_{k} \mathbf{I}-\mathbf{M}\right]=0 ; \\
\mathbf{M}=\mathbf{U G U}^{-1} ; \quad \mathbf{G}=\sum_{\oplus \mathbf{k}=1, \mathbf{m}} \mathbf{G}_{\mathbf{k}}=\mathbf{G}_{\mathbf{1}} \oplus \ldots \oplus \mathbf{G}_{\mathbf{m}} ; \quad \sum \operatorname{size}\left[\mathbf{G}_{\mathbf{k}}\right]=M \tag{E-1}
\end{gather*}
$$

where \oplus means direct sum of block-diagonal square matrixes $\mathbf{G}_{\mathbf{k}}$ which correspond to the eigen vector sub-space adjacent to the eigen value λ_{k}. Size of $\mathbf{G}_{\mathbf{k}}$, which we call l_{k}, is equal to the multiplicity of the root λ_{k} of the characteristic equation

$$
\operatorname{det}[\lambda \mathbf{I}-\mathbf{M}]=\prod_{k=1, m}\left(\lambda-\lambda_{k}\right)^{l_{k}} .
$$

In general case, $\mathbf{G}_{\mathbf{k}}$ is also a block diagonal matrix comprised of orthogonal sub-spaces belonging to the same eigen value

$$
\begin{equation*}
\mathbf{G}_{\mathbf{k}}=\sum_{\oplus j=1, p_{k}} \mathbf{G}_{\mathbf{k}}^{j}=\mathbf{G}_{1}^{1} \oplus \ldots \oplus \mathbf{G}_{\mathbf{m}}^{p_{k}} ; \quad \sum \operatorname{size}\left[\mathbf{G}_{\mathbf{k}}^{j}\right]=l_{k} \tag{E-2}
\end{equation*}
$$

where we assume that we sorted the matrixes by increasing size: $\operatorname{size}\left[\mathbf{G}_{\mathbf{k}}^{j+1}\right] \geq \operatorname{size}\left[\mathbf{G}_{\mathbf{k}}^{j}\right]$, i.e. the

$$
\begin{equation*}
n_{\mathbf{k}}=\operatorname{size} e\left[\mathbf{G}_{\mathbf{k}}^{p_{k}}\right] \leq l_{k} \tag{E-3}
\end{equation*}
$$

is the maximum size of the Jordan matrix belonging to the eigen value λ_{k}. General form of the Jordan matrix is:

$$
\left.\mathbf{G}_{\mathrm{k}}^{\mathrm{n}}=\left\lvert\, \begin{array}{cccc}
\lambda_{\mathrm{k}} & 1 & 0 & 0 \tag{E-4}\\
0 & \lambda_{\mathrm{k}} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{\mathrm{k}}
\end{array}\right.\right\rfloor
$$

This is obviously including non-degenerate case when matrix \mathbf{M} has M independent eigen values and all is just perfectly simple: matrix is reducible to a diagonal one

$$
\begin{gather*}
\operatorname{size}[\mathbf{M}]=M ;\left\{\lambda_{1}, \ldots ., \lambda_{M}\right\} ; \operatorname{det}\left[\lambda_{k} \mathbf{I}-\mathbf{M}\right]=0 ; \\
\mathbf{M}=\mathbf{U G U}^{-1} ; \quad \mathbf{G}=\left[\begin{array}{lll}
\lambda_{1} & 0 \\
0 & \ldots & \\
& & \lambda_{M}
\end{array}\right] ; \mathbf{U}=\left[\mathbf{Y}_{1}, \mathbf{Y}_{2}, \ldots . \mathbf{Y}_{M}\right] ; \mathbf{M} \cdot \mathbf{Y}_{\mathbf{k}}=\lambda_{k} \mathbf{Y}_{\mathbf{k}} ; k=1, \ldots M \tag{E-5}
\end{gather*}
$$

An arbitrary analytical matrix function of \mathbf{M} can be expended into Taylor series and reduced to the function of its Jordan matrix \mathbf{G} :

$$
\begin{equation*}
f(\mathbf{M})=\sum_{i=1}^{\infty} f_{i} \mathbf{M}^{i}=\sum_{i=1}^{\infty} f_{i}\left(\mathbf{U} \mathbf{G} \mathbf{U}^{-1}\right)^{i} \equiv\left(\sum_{i=1}^{\infty} f_{i} \mathbf{U}(\mathbf{G})^{i} \mathbf{U}^{-\mathbf{1}}\right)=\mathbf{U}\left(\sum_{i=1}^{\infty} f(\mathbf{G})^{i}\right) \mathbf{U}^{-\mathbf{1}}=\mathbf{U} f(\mathbf{G}) \mathbf{U}^{-1} \tag{E-6}
\end{equation*}
$$

Before embracing complicated things, let's look at trivial case, when Jordan matrix is diagonal:

$$
\begin{gathered}
f(\mathbf{G})=\sum_{i=1}^{\infty} f_{i} \mathbf{G}^{i}=\sum_{i=1}^{\infty} f_{i}\left[\begin{array}{lll}
\lambda_{1} & 0 & \\
0 & \ldots & \\
& & \lambda_{M}
\end{array}\right]^{i}\left[\begin{array}{lll}
\sum_{i=1}^{\infty} f_{i} \lambda_{1}^{i} & 0 & \\
0 & \ldots & \\
& & \\
& \sum_{i=1}^{\infty} f_{i} \lambda_{M}{ }^{i}
\end{array}\right]=\left[\begin{array}{lll}
f\left(\lambda_{1}\right) & 0 & \\
0 & \cdots & \\
& & f\left(\lambda_{M}\right)
\end{array}\right]_{(\mathrm{E}-7)} \\
f(\mathbf{M})=\mathbf{U}\left[\begin{array}{ccc}
f\left(\lambda_{1}\right) & 0 & \\
0 & \cdots & \\
& & f\left(\lambda_{M}\right)
\end{array}\right] \mathbf{U}^{-1}
\end{gathered}
$$

The last expression can be rewritten as a sum of a product of matrix U containing only specific eigen vector (other columns are zero!) with matrix \mathbf{U}^{-1} :

$$
f(\mathbf{M})=\left[\mathbf{Y}_{1} \ldots \mathbf{Y}_{\mathbf{k}} \ldots \mathbf{Y}_{M}\right] \cdot\left\lfloor\begin{array}{ccc}
f\left(\lambda_{1}\right) & 0 & \tag{E-8}\\
0 & \ldots & \\
& & f\left(\lambda_{M}\right)
\end{array}\right\rfloor \mathbf{U}^{-\mathbf{1}}=\sum_{k=1}^{M} f\left(\lambda_{k}\right)\left[0 \ldots . \mathbf{Y}_{\mathbf{k}} \ldots 0\right] \mathbf{U}^{-\mathbf{1}}
$$

Still both eigen vector and \mathbf{U}^{-1} in is very complicated (and generally unknown) functions of $\mathbf{M} \ldots$ Hmmmmm! We only need to find a matrix operator, which makes projection onto individual eigen vector. Because all eigen values are different, we have a very clever and simple way of designing projection operators. Operator

$$
\begin{equation*}
\mathbf{P}_{k}^{i}=\frac{\mathbf{M}-\lambda_{k} \mathbf{I}}{\lambda_{i}-\lambda_{k}} \tag{E-9}
\end{equation*}
$$

has two important properties: it is unit operator for $\mathbf{Y}_{\mathbf{i}}$, it is zero operator for $\mathbf{Y}_{\mathbf{k}}$ and multiply the rest of them by a constant:

$$
\begin{align*}
& \mathbf{P}_{k}^{i} \mathbf{Y}_{k}=\frac{\mathbf{M} \cdot \mathbf{Y}_{k}-\lambda_{k} \mathbf{I} \cdot \mathbf{Y}_{k}}{\lambda_{i}-\lambda_{k}}=\frac{\lambda_{k}-\lambda_{k}}{\lambda_{i}-\lambda_{k}} \mathbf{Y}_{k} \equiv 0 ; \\
& \mathbf{P}_{k}^{i} \mathbf{Y}_{i}=\frac{\mathbf{M} \cdot \mathbf{Y}_{i}-\lambda_{k} \mathbf{I} \cdot \mathbf{Y}_{i}}{\lambda_{i}-\lambda_{k}}=\frac{\lambda_{i}-\lambda_{k}}{\lambda_{i}-\lambda_{k}} \mathbf{Y}_{i} \equiv \mathbf{Y}_{i} ; \tag{E-10}\\
& \mathbf{P}_{k}^{i} \mathbf{Y}_{j}=\frac{\mathbf{M} \cdot \mathbf{Y}_{j}-\lambda_{k} \mathbf{I} \cdot \mathbf{Y}_{j}}{\lambda_{i}-\lambda_{k}}=\frac{\lambda_{j}-\lambda_{k}}{\lambda_{i}-\lambda_{k}} \mathbf{Y}_{j}
\end{align*}
$$

I.e. it project U into a subspace orthogonal to $\mathbf{Y}_{\mathbf{k}}$. We should note the most important quality of this operator: it comprises of known matrixes: \mathbf{M} and unit one. Also, zero operators for two eigen vectors commute with each other - being combination of \mathbf{M} and \mathbf{I} makes it obvious. Constructing unit projection operator $\mathbf{Y}_{\mathbf{i}}$ which is also zero for remaining eigen vectors is straight forward from here: it is a product of all $\mathrm{M}-1$ projection operators

$$
\begin{align*}
& \mathbf{P}_{u n i t}^{i}=\prod_{k \neq i} \mathbf{P}_{k}^{i}=\prod_{k \neq i}\left(\frac{\mathbf{M}-\lambda_{k} \mathbf{I}}{\lambda_{i}-\lambda_{k}}\right) ; \\
& \mathbf{P}_{\text {unit }}^{i} \mathbf{Y}_{j}=\delta_{j}^{i} \mathbf{Y}_{j}=\left\{\begin{array}{c}
\mathbf{Y}_{i}, j=i \\
\mathbf{O}, j \neq i
\end{array}\right\} \tag{E-11}
\end{align*}
$$

Observation that

$$
\begin{equation*}
\mathbf{P}_{u n i t}^{k} \mathbf{U}=\mathbf{P}_{u n i t}^{k}\left[\mathbf{Y}_{1} \ldots \mathbf{Y}_{\mathbf{k}} \ldots \mathbf{Y}_{M}\right]=\left[0 \ldots \mathbf{Y}_{\mathbf{k}} \ldots 0\right] \tag{E-12}
\end{equation*}
$$

allows us to rewrite eq. (E-8) in the form which is easy to use:

$$
\begin{equation*}
f(\mathbf{M})=\sum_{k=1}^{M} f\left(\lambda_{k}\right)\left[0 \ldots . . \mathbf{Y}_{\mathbf{k}} \ldots 0\right] \mathbf{U}^{-1}=\sum_{k=1}^{M} f\left(\lambda_{k}\right) \mathbf{P}_{u n i t}^{k} \mathbf{U} \cdot \mathbf{U}^{-1}=\sum_{k=1}^{M} f\left(\lambda_{k}\right) \mathbf{P}_{u n i t}^{k} ; \tag{E-13}
\end{equation*}
$$

which with (E-11) give final form of Sylvester formula (E-for non-degenerated matrixes):

$$
\begin{equation*}
f(\mathbf{M})=\sum_{k=1}^{M} f\left(\lambda_{k}\right) \prod_{i \neq k}\left(\frac{\mathbf{M}-\lambda_{i} \mathbf{I}}{\lambda_{k}-\lambda_{i}}\right) \tag{E-14}
\end{equation*}
$$

One can see that this is a polynomial of power M-1 of matrix M , as we expected from the theorem of Jordan and Kelly that matrix is a root of its characteristic equation:

$$
\begin{equation*}
g(\lambda)=\operatorname{det}[\mathbf{M}-\lambda \mathbf{I}] ; g(\mathbf{M}) \equiv 0 \tag{E-15}
\end{equation*}
$$

which is polynomial of power M. It means that any polynomial of higher order of matrix \mathbf{M} can reduced to $\mathrm{M}-1$ order. Equation (E-14) gives specific answer how it can be done for the arbitrary series.

If matrix \mathbf{M} is reducible to diagonal form, where some eigen values have multiplicity, we need to sum only by independent eigen values:

$$
\begin{equation*}
f(\mathbf{M})=\sum_{k=1}^{m} f\left(\lambda_{k}\right) \prod_{\lambda_{i} \neq \lambda_{k}}\left(\frac{\mathbf{M}-\lambda_{i} \mathbf{I}}{\lambda_{k}-\lambda_{i}}\right) \tag{E-14-red}
\end{equation*}
$$

and it has maximum power of \mathbf{M} of $\mathrm{m}-1$. Prove it trivial using the above.
Let's return to most general case of Jordan blocks, i.e. a degenerated case when eigen values have non-unit multiplicity. For a general form of the Jordan matrix we can only say that it is direct sum of the function of the Jordan blocks:

$$
\begin{align*}
f(\mathbf{G}) & =\sum_{i=0}^{\infty} f_{i} \mathbf{G}^{i}=\sum_{i=0}^{\infty} f_{i}\left[\begin{array}{cccc}
\mathbf{G}_{1}^{\mathbf{1}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \ldots . & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{G}_{\mathbf{m}}^{\mathbf{p}_{\mathbf{m}}}
\end{array}\right]^{i}=\left[\begin{array}{ccc}
\sum_{i=0}^{\infty} f_{i}\left(\mathbf{G}_{\mathbf{1}}^{\mathbf{1}}\right)^{i} & 0 \\
0 & \ldots & \\
& & \sum_{i=0}^{\infty} f_{i}\left(\mathbf{G}_{\mathbf{m}}^{\mathbf{p}_{\mathbf{m}}}\right)^{i}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
f\left(\mathbf{G}_{\mathbf{1}}^{\mathbf{1}}\right) & 0 \\
0 & \ldots & \\
& f\left(\mathbf{G}_{\mathbf{m}}^{\mathbf{p}_{\mathbf{m}}}\right)
\end{array}\right]=\underset{\oplus k=1, m,}{ } \underset{j=1, p_{k}}{ } f\left(\mathbf{G}_{\mathbf{k}}^{j}\right)=f\left(\mathbf{G}_{\mathbf{1}}^{1}\right) \oplus \ldots . \oplus f\left(\mathbf{G}_{\mathbf{m}}^{p_{m}}\right) ; \tag{E-16}
\end{align*}
$$

Function of a Jordan block of size n contains not only the function of corresponding eigen value λ, but also its derivatives to $(\mathrm{n}-1)^{\text {th }}$ order:

$$
\mathbf{G}=\left[\begin{array}{cccc}
\lambda & 1 & \ldots & 0 \tag{E-17}\\
0 & \lambda & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1 \\
0 & 0 & \ldots & \lambda
\end{array}\right] ; f(\mathbf{G})=\left[\begin{array}{cccc}
f(\lambda) & f^{\prime}(\lambda) / 1! & \ldots f^{(k)}(\lambda) / k! & f^{(n-1)}(\lambda) /(n-1)! \\
0 & f(\lambda) & \ldots & f^{(n-2)}(\lambda) /(n-2)! \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & f^{\prime}(\lambda) / 1! \\
0 & 0 & \ldots & f(\lambda)
\end{array}\right]
$$

The prove is attached in Appendix Eq. 17. We are half-way through.
There is sub-space of eigen vectors \mathcal{V}^{n} which corresponds to to the eigen value λ_{k} and the block $\mathbf{G}_{\mathbf{k}}^{\mathbf{n}}$:

$$
\begin{align*}
& \mathcal{K}_{n}^{n} \in\left\{\mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, \mathbf{1}}, \ldots, \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, \mathbf{q}}\right\} ; q=\operatorname{size}\left(\mathbf{G}_{\mathbf{k}}^{\mathbf{n}}\right) \tag{E-18}\\
& \mathbf{M} \cdot \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, \mathbf{l}}=\lambda_{k} \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, 1} ; \mathbf{M} \cdot \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, l}=\lambda_{k} \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, l}+\mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, l-1} ; 1<l \leq q \tag{E-19}
\end{align*}
$$

It is obvious from equation (E-17) that projection operator (E-11) will not be zero operator for \mathcal{Y}^{n}, and it also will not be unit operator for \mathcal{V}_{i}^{n}. Now, let's look on how we can project on individual sub-spaces, eigen vectors, including zero-operator for specific sub-spaces. Just step by step (from eq. (E-6) and (E-17):

$$
\begin{align*}
& f(\mathbf{M})=\mathbf{U} f(\mathbf{G}) \mathbf{U}^{\mathbf{- 1}} \tag{E-20}
\end{align*}
$$

$$
\begin{align*}
& A_{k}^{i}=\lfloor\underbrace{B_{1}^{i k}}_{\lambda_{k}} \quad \ldots . B_{p_{k}}^{i}{ }_{k}{ }^{k} ; B_{n}^{i{ }^{k}}=\left[\begin{array}{lll}
\underbrace{0 \ldots \ldots .0}_{i \text { columns }} & Y_{k}^{n, 1} & Y_{k}^{n, q_{n}-1}
\end{array}\right] \tag{E-21}
\end{align*}
$$

i.e.

From (E-19) we get:

$$
\begin{align*}
& {\left[\mathbf{M}-\lambda_{k} \mathbf{I}\right] \cdot \mathbf{Y}_{\mathbf{k}}^{\mathbf{k}, q}=0 ; \quad\left[\mathbf{M}-\lambda_{k} \mathbf{I}\right] \cdot \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, k}=\mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, k-1} ; \quad 1<k \leq q} \\
& U_{1}^{\mathbf{n}}{ }^{\mathbf{k}}=\left[\mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, 1} \ldots \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, l} \cdots \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, q}\right] ; \\
& {\left[\mathbf{M}-\lambda_{k} \mathbf{I}\right] \cdot U_{1}^{\mathbf{n} \mathbf{k}}=U_{2}^{\mathbf{n} \mathbf{k}}=\left[0, \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, 1} \ldots \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, l} \ldots \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, q-1}\right]} \tag{E-23}\\
& {\left[\mathbf{M}-\lambda_{k} \mathbf{I}\right]^{j} \cdot U_{1}^{\mathbf{n} \mathbf{k}}=U_{j}^{\mathbf{n}} \mathbf{k}=[\underbrace{0}_{j} \underbrace{0.0}_{\text {zeros }}, \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, 1} \ldots \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, l} \ldots \mathbf{Y}_{\mathbf{k}}^{\mathbf{n}, q-j}]} \\
& {\left[\mathbf{M}-\lambda_{k} \mathbf{I}\right]^{q} \cdot U_{1}^{\mathbf{n}}{ }^{\mathbf{k}}=0}
\end{align*}
$$

i.e. we collected all eigen vectors belonging to the eigen value λ_{k}. Now we need a projection non-distorting operator on the sub-space of λ_{k}. First, let's find zero operator for sunspace of λ_{i} :

$$
\begin{align*}
& O_{i}=\left[\mathbf{M}-\lambda_{i} \mathbf{I}\right]^{n_{i}} \Rightarrow\left[\mathbf{M}-\lambda_{i} \mathbf{I}\right]^{n_{i}} U_{1}^{r i}=\left[\mathbf{M}-\lambda_{i} \mathbf{I}\right]^{n_{i}}\left[\mathbf{Y}_{\mathbf{k}}^{r, 1} \ldots \mathbf{Y}_{\mathbf{k}}^{r, l} \ldots \mathbf{Y}_{\mathbf{k}}^{r, q}\right]=0 \\
& T_{k}=\prod_{i \neq k} \frac{O_{i}}{\left(\lambda_{k}-\lambda_{i}\right)^{n_{i}}}=\prod_{i \neq k}\left(\frac{\mathbf{M}-\lambda_{i} \mathbf{I}}{\lambda_{k}-\lambda_{i}}\right)^{n_{i}} \tag{E-25}
\end{align*}
$$

T_{k} is projection operator of sub-space of λ_{k}, but it is not unit one! To correct that we need an operator which we crate as follows:

$$
\begin{array}{ll}
R=\frac{\mathbf{M}-\lambda_{i} \mathbf{I}}{\lambda_{k}-\lambda_{i}} ; \quad T=\mathbf{M}-\lambda_{k} \mathbf{I} ; & \alpha=\alpha_{k, i}=1 /\left(\lambda_{k}-\lambda_{i}\right) \\
R U_{1}=U_{1}+\alpha U_{2} & U_{1}=U_{1} \\
\cdots \ldots . & \\
R U_{q-1}=U_{q-1}+\alpha U_{q} & U_{q-1}=T^{q-2} U_{1} \\
R U_{q}=U_{q} & U_{q}=T^{q-1} U_{1}
\end{array}
$$

$$
\begin{aligned}
& Q=\alpha T \\
& U_{q}=R U_{q}=R T^{q-1} U_{1} \\
& U_{q-1}=R(I+Q) U_{q-1}=R Q T^{q-2} U_{1} \\
& U_{q-1}=R Q U_{q-1}=R Q T^{q-2} U_{1} \\
& \cdots \cdot \\
& U_{1}=R\left(\sum_{j}^{q-1} Q^{j}\right) U_{1}
\end{aligned}
$$

so, we get it:

$$
\begin{equation*}
P_{k}^{i}=\frac{\mathbf{M}-\lambda_{i} \mathbf{I}}{\lambda_{k}-\lambda_{i}}\left(\mathbf{I}+\sum_{j=1}^{n_{k}-1}\left(\frac{\mathbf{M}-\lambda_{k} \mathbf{I}}{\lambda_{i}-\lambda_{k}}\right)^{j}\right) \tag{E-26}
\end{equation*}
$$

The final stroke is:

$$
\begin{equation*}
P_{k}=\prod_{i \not k k}\left(P_{k}^{i}\right)^{n_{i}}=\prod_{i \neq k}\left\{\frac{\mathbf{M}-\lambda_{\mathbf{I}} \mathbf{I}}{\lambda_{k}-\lambda_{i}}\left(\mathbf{I}+\sum_{j=1}^{n_{k}-1}\left(\frac{\mathbf{M}-\lambda_{\mathbf{I}} \mathbf{I}}{\lambda_{i}-\lambda_{k}}\right)^{j}\right)\right\}^{n_{i}} \tag{E-27}
\end{equation*}
$$

and

$$
\begin{equation*}
F(M)=\sum_{k=1}^{m}\left[\prod_{i \neq k}\left\{\frac{\mathbf{M}-\lambda_{i} \mathbf{I}}{\lambda_{k}-\lambda_{i}}\left(\mathbf{I}+\sum_{j=1}^{n_{k}-1}\left(\frac{\mathbf{M}-\lambda_{k} \mathbf{I}}{\lambda_{i}-\lambda_{k}}\right)^{j}\right)\right\} \sum_{i=1}^{n_{i}} \frac{n_{k-1}-f^{(i)}\left(\lambda_{k}\right)}{i!}\left[\mathbf{M}-\lambda_{k} \mathbf{I}\right]^{i}\right] \tag{E-28}
\end{equation*}
$$

Proof of eq. (E-17):

$$
\begin{aligned}
& \mathbf{G}^{0}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \ldots & 0 \\
0 & 0 & & 1
\end{array}\right] ; \mathbf{G}^{1}=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \ldots & 1 \\
0 & 0 & & \lambda
\end{array}\right] \\
& \mathbf{G}^{2}=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \ldots & 1 \\
0 & 0 & & \lambda
\end{array}\right] \cdot\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \ldots & 1 \\
0 & 0 & & \lambda
\end{array}\right]=\left[\begin{array}{cccc}
\lambda^{2} & \lambda & 1 \ldots & 0 \\
0 & \lambda^{2} & \lambda \ldots & 0 \\
0 & 0 & \ldots & \lambda \\
0 & 0 & 0 & \lambda^{2}
\end{array}\right]
\end{aligned}
$$

Induction:

$$
\begin{aligned}
& \mathbf{G}^{n}=\left[\begin{array}{cccc}
\lambda^{n} & n \lambda^{n-1} / 1! & n(n-1) \lambda^{n-1} / 2! & \ldots \\
0 & \lambda^{n} & n \lambda^{n-1} / 1! & \ldots \\
0 & 0 & \ldots & n \lambda^{n-1} / 1! \\
0 & 0 & 0 & \lambda^{n}
\end{array}\right] \\
& \mathbf{G}^{2}=\left[\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \ldots & 1 \\
0 & 0 & & \lambda
\end{array}\right] \cdot\left[\begin{array}{cccc}
\lambda^{n} & n \lambda^{n-1} / 1! & n(n-1) \lambda^{n-1} / 2! & \ldots \\
0 & \lambda^{n} & n \lambda^{n-1} / 1! & \ldots \\
0 & 0 & \ldots & n \lambda^{n-1} / 1! \\
0 & 0 & 0 & \lambda^{n}
\end{array}\right]= \\
& {\left[\begin{array}{cccc}
\lambda^{n+1} & (n+1) \lambda^{n} / 1! & (n(n-1)+2 n) \lambda^{n-1} / 2! & \ldots \\
0 & \lambda^{n+1} & (n+1) \lambda^{n} / 1! & \cdots \\
0 & 0 & \cdots & (n+1) \lambda^{n} / 1! \\
0 & 0 & 0 & \lambda^{n+1}
\end{array}\right]} \\
& \left.\left\lvert\, \begin{array}{ccccccc}
\lambda^{n} & C_{1}^{n} \lambda^{n-1} & C_{2}^{n} \lambda^{n-2} & \ldots & C_{k}^{n} \lambda^{n-k} & C_{k+1}^{n} \lambda^{n-k-1} & \ldots \\
0 & \lambda^{n} & C_{1}^{n} \lambda^{n-1} & \ldots & C_{k-1}^{n} \lambda^{n+1-k} & C_{k}^{n} \lambda^{n-k} & \\
\ldots . & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda^{n}
\end{array}\right.\right] \\
& {\left[\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \ldots & 1 \\
0 & 0 & & \lambda
\end{array}\right] \cdot\left[\begin{array}{ccccccc}
\lambda^{n} & C_{1}^{n} \lambda^{n-1} & C_{2}^{n} \lambda^{n-2} & \ldots & C_{k}^{n} \lambda^{n-k} & C_{k+1}^{n} \lambda^{n-k-1} & . . \\
0 & \lambda^{n} & C_{1}^{n} \lambda^{n-1} & \ldots & C_{k-1}^{n} \lambda^{n+1-k} & C_{k}^{n} \lambda^{n-k} & \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda^{n}
\end{array}\right]=} \\
& {\left[\begin{array}{ccccccc}
\lambda^{n+1} & \left(C_{1}^{n}+1\right) \lambda^{n} & \left(C_{2}^{n}+C_{1}^{n}\right) \lambda^{n-2} & \ldots & \left(C_{k}^{n}+C_{k-1}^{n}\right) \lambda^{n-k+1} & \left(C_{k+1}^{n}+C_{k}^{n}\right) \lambda^{n-k} & . . \\
0 & \lambda^{n+1} & \left(C_{1}^{n}+1\right) \lambda^{n} & \ldots & \ldots & \left(C_{k}^{n}+C_{k-1}^{n}\right) \lambda^{n-k+1} & \\
\ldots & \ldots . & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda^{n+1}
\end{array}\right]}
\end{aligned}
$$

polynomial coefficients: $C_{k}^{n+1}=C_{k}^{n}+C_{k-1}^{n} ; C_{k}^{n}=n!/ k!/(n-k)$! proves the point.
Hence, we can now calculate a polynomial functions or any function expandable into a Taylor series:

$$
f(\mathbf{G})=\sum_{n=0}^{\infty} f_{n} \mathbf{G}^{n}=\sum_{n=0}^{\infty} f_{n}\left[\begin{array}{cccc}
\lambda^{n} & C_{1}^{n} \lambda^{n-1} & \ldots C_{k}^{n} \lambda^{n-k} \ldots & \ldots \\
0 & \ldots & \ldots . \\
0 & \ldots & \lambda^{n}
\end{array}\right]=\left[\begin{array}{ccc}
\sum_{n=0}^{\infty} f_{n} \lambda^{n} \ldots & \sum_{n=0}^{\infty} f_{n} n_{k}^{n} \lambda^{n-k} & \ldots . \\
0 & \ldots & \ldots \\
0 & 0 & \sum_{n=0}^{\infty} f_{\lambda} \lambda^{n}
\end{array}\right]
$$

The final stroke is noting that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} f_{n} C_{k}^{n} \lambda^{n-k}=\sum_{n=0}^{\infty} f_{n} \cdot \frac{n!\lambda^{n-k}}{k!\cdot(n-k)!}=\frac{1}{k!} \sum_{n=0}^{\infty} f_{n} \cdot \frac{n!\lambda^{n-k}}{(n-k)!}=\frac{1}{k!} \sum_{n=0}^{\infty} f_{n} \cdot \lambda^{n-k} \prod_{j=0}^{k-1}(n-j) \\
& =\frac{1}{k!} \frac{d^{k}}{d \lambda^{k}} \sum_{n=0}^{\infty} f_{n} \cdot \lambda^{n}=\frac{1}{k!} \frac{d^{k} f}{d \lambda^{k}} \#
\end{aligned}
$$

Good HW exercise.

