Generalization of Sylvester formula

English mathematician James Joseph Sylvester derived his famous formula only for
diagonal matrices. Another British mathematician, Arthur Buchheim, extended it for a
general case of matrices reducible to Jordan form, e.g. those with some eigen values

having multiplicity /; > 1I:

det[M — Al]= ]ﬂ[(,l— )"

i=1
1 did not find derivation of Arthur Buchheim

https://en.wikipedia.org/wiki/Sylvester%27s_formula and below is my own derivation that

I found in my notes when I attempted to have complete set of matrices for accelerator quite

long time ago...

Matrix functions and Projection operators

An arbitrary matrix M can be reduced to an unique matrix, which in general case has a Jordan
form: for a matrix with arbitrary height of eigen values the set of eigen values {A4,..,4 }

contains only unique eigen values, i.e. 4, #4,; V k# j:

sizelM]=M; {A,.... A}y m<M; det[LI-M]=0;

M=UGU"; G= Y.G, =G, ®...8G,; Y. sizelG,]=M (E-1)
®k=1,m
where @ means direct sum of block-diagonal square matrixes Gk which correspond to the eigen
vector sub-space adjacent to the eigen value A,. Size of Gk , which we call /, is equal to the
multiplicity of the root A, of the characteristic equation
det{1-M] = [J(A-2,)".
k=1,m

In general case, Gk is also a block diagonal matrix comprised of orthogonal sub-spaces
belonging to the same eigen value

G, = .G/=G| ®..0G!; Y siz[G]]=, (E-2)
@ j=1,p;
where we assume that we sorted the matrixes by increasing size: size[G]"'] > size[G] ], i.e. the
n, = sizelGIF 1< 1, (E-3)

is the maximum size of the Jordan matrix belonging to the eigen value A . General form of the
Jordan matrix is:



A 1 0 0
G| © A o O (E-4)
0 0 .. A

This is obviously including non-degenerate case when matrix M has M independent eigen values
and all is just perfectly simple: matrix is reducible to a diagonal one

sizelM]=M; {A,.....4, }; det[LI-M]=0;
A0
M=UGU"; G=|0 .. U=[Y.Y,,..Y, ] M- Y, =4Y,; k=1..M (E-5)
Ay
An arbitrary analytical matrix function of M can be expended into Taylor series and reduced to
the function of its Jordan matrix G :

f(M)zgf,.Mf:2fi(UGU‘1)islgfiU(G)"U‘l)=U(§f (G)’)U'1 =Uf(G)U™ (E-6)

Before embracing complicated things, let’s look at trivial case, when Jordan matrix is diagonal:

. C[no 7|20 fG) 0
f(G)sziGEZin =l o0 .. =l 0 ..
o o A, S o FOukg 7,
f(A) 0
fM=Uy o .. -
L f ()

The last expression can be rewritten as a sum of a product of matrix U containing only specific
eigen vector (other columns are zero!) with matrix U:

f) 0 ”
fM)=[Y..Y...Y, ]| O ! :Zf(lk)[o....Yk L0JU" (E-8)

f()vM ) k=1
Still both eigen vector and U™ in is very complicated (and generally unknown) functions of M.....
Hmmmmm! We only need to find a matrix operator, which makes projection onto individual

eigen vector. Because all eigen values are different, we have a very clever and simple way of
designing projection operators. Operator

_M-A1

/li - )“k
has two important properties: it is unit operator for Y;j, it is zero operator for Yk and multiply the
rest of them by a constant:

P, (E-9)




P’Y MY -A1Y, l l"Y —0;
A-2A A4

P;.Yi:M-YI.—),kI-Y - /l"Y, Y. (E-10)
A -4, A -2,

. M-Y,-ALY, A,-A
PkY] — J J — J Y]
' A=A A=A
I.e. it project U into a subspace orthogonal to Y. We should note the most important quality of
this operator: it comprises of known matrixes: M and unit one. Also, zero operators for two eigen
vectors commute with each other — being combination of M and I makes it obvious.
Constructing unit projection operator Y;i which is also zero for remaining eigen vectors is straight
forward from here: it is a product of all M-1 projection operators

i _ M-A1)
e, =TT® H(%_% J

" y (E-11)
Yi = i
Pljle] 61 = . .
O,j#i
Observation that
Ptfsz Plfn” [Yl Yk YM ] = [OYk 0] (E_IZ)

allows us to rewrite eq. (E-S) in the form which is easy to use:

Zf(it )[0...Y, ..0]U" = Zf(/l) “ U-U' = Zf(/l) (E-13)

k=1
which with (E-11) give final form of Sylvester formula (E-for non-degenerated matrixes):

Zf (A )H[ } (E-14)

izk
One can see that this is a polynomlal of power M-1 of matrix M, as we expected from the
theorem of Jordan and Kelly that matrix is a root of its characteristic equation:

g(A)=det[M—-AI]; g(M)=0; (E-15)

which is polynomial of power M. It means that any polynomial of higher order of matrix M can
reduced to M-1 order. Equation (E-14) gives specific answer how it can be done for the arbitrary
series.

If matrix M is reducible to diagonal form, where some eigen values have multiplicity, we
need to sum only by independent eigen values:

Zf(/l >H(

Ai# A

] (E-14-red)

and it has maximum power of M of m-1. Prove it trivial using the above.

Let’s return to most general case of Jordan blocks, i.e. a degenerated case when eigen
values have non-unit multiplicity. For a general form of the Jordan matrix we can only say that it
is direct sum of the function of the Jordan blocks:



Gl 00 0 I¥r(G) o
Q==X =0 017
- 700 0 .. 0 - ,»
0 0 0 G %fi(Gﬁi")
fGy 0
= 0 .. = D f(G)=f(G))®..®f(GL)  (E-16)

f(GE.lm) @k=1,m, j=1,p,

Function of a Jordan block of size n contains not only the function of corresponding eigen value
A, but also its derivatives to (n-1)" order:

21 o] A P YK FY (=1)
0 A .. 0 0 f(A) ) [ (n=2)!
G=| ... .. .. .. [f(G)=] .. (E-17)
00 .. 1 0 0 P/
0 0 .. 4 0 0 fA)

The prove is attached in Appendix Eq. 17. We are half-way through.

There is sub-space of eigen vectors 7/1‘ which corresponds to to the eigen value A _and the

£
block G}:
7/[” e (Y Y} g =size(G}) (E-18)
M-YM=1LY™, M- YM =AY +YM"; 1<i<q (E-19)

It is obvious from equation (E-17) that projection operator (E-11) will not be zero operator for
7/””, and it also will not be unit operator for 7//2 Now, let’s look on how we can project on

£

individual sub-spaces, eigen vectors, including zero-operator for specific sub-spaces. Just step by
step (from eq. (E-6) and (E-17):

m =l (i) A{ ) (E_ZO)
Uf(G):ZZf _('k)g 0 0 A .0.. 0}
k=1 i=1 L o X At 7:‘ A
Al=|B* .. B B;’/‘:[ ..... 0 v Yk""f"‘l} (E-21)
A i collumns

e

1.€.



m =l f([) (Ak) N ’ (E-ZZ)

>{O
SO

From (E-19) we get:
[M-A1]- Yo =0; [M-A0]- Yt =Yt 1<k<q
ur e =YY
M-I 07 =02 = [0 X
(E-23)

M-AIl - U =y"* = 0.0 Y Y LY
k 1

] zeros

m =1 (,)
Uf(G)zzzf(' )[M 21]]0 0 .. 0 |:U/<l .U UW} 0. 0 E-24)
Mook

k=1 i=1 L 1 X n—th Ao

A’A
i.e. we collected all eigen vectors belonging to the eigen value A,. Now we need a projection
non-distorting operator on the sub-space of A,. First, let’s find zero operator for sunspace of A:

0,=[M-All" = [M-AI]"U/ '=[M-A1]" [, .Y, .X,"] =0;

LT O H[M ,11) (E-25)

i#k A‘ )‘ i#k

Tk 1s projection operator of sub-space of A, but it is not unit one! To correct that we need an
operator which we crate as follows:

R= M_M; T=M-AL a=o,=1/(4-A1)
/lk _)‘i ’

RU,=U, +aU, U =U,

RU_,=U_ +oU, U,,=T""U,

RU,=U, U,=T""U,



Q=arl
U,=RU, =RT"'U,

U, =R(I+Q)U, , =ROT"U,
U,,=RQU,_, =ROT"U,

q

U = R[EQ]]M

so, we get it:
 M-ALl, S(M-AT)
Pi= Gl R k E-26
¢ /lk—li[ jz‘;[/li—itk}] ( )
The final stroke is:
M-arl. mear)y |
P = P = I+ & E-27
‘ ll:k[( k) Ek[{z’k_ﬂ’i[ jz}(ﬁ‘i_z’kj]} ( :

and

i j=1 i

F()=3 H{hfl;(”z(M_—“]} S Ny @)

Proof of eq. (E-17):

1 000 A1 0 0
G00100Gl{0110

00 0 0 0 1

o0 1 0 0 A

21 0 ol[a 1 0 o] {2 4 1. 0
G220/110'07L10:o,12/1 0

0 0 .. 1|0 0 1/lo o .. A

0 0 A0 O Al O 0O 0 X

Induction:
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polynomial coefficients: C;*' =C} + C} ; C =n!/k!/(n—k)! proves the point.
Hence, we can now calculate a polynomial functions or any function expandable into a Taylor
series:



P ey R o/ N Bl DIV Wi ¥ i

) ) n=0

= 1.G" =210 .=l o
n=0 n=0

0 A 0 0

The final stroke is noting that

ch%"" S5 !=—Zf LU "H<n—j>

n=0 k'( k)‘ k'n 0

1 d' < Py 1d'f
k'd)t"zf “war "

Good HW exercise.




