
Generalization of Sylvester formula  

English mathematician James Joseph Sylvester derived his famous formula only for 
diagonal matrices. Another British mathematician, Arthur Buchheim, extended it for a 
general case of matrices reducible to Jordan form, e.g. those with some eigen values 
having multiplicity li >1: 

 

I did not find derivation of Arthur Buchheim  
https://en.wikipedia.org/wiki/Sylvester%27s_formula and below is my own derivation that 
I found in my notes when I attempted to have complete set of matrices for accelerator quite 
long time ago… 

Matrix functions and Projection operators 
 
An arbitrary matrix M can be reduced to an unique matrix, which in general case has a Jordan 
form: for a matrix with arbitrary height of eigen values the set of eigen values  
contains only unique eigen values, i.e. : 
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where Å means direct sum of block-diagonal square matrixes Gk which correspond to the eigen 
vector sub-space adjacent to the eigen value . Size of Gk , which we call lk, is equal to the 
multiplicity of the root  of the characteristic equation  

. 

In general case, Gk is also a block diagonal matrix comprised of orthogonal sub-spaces 
belonging to the same eigen value 
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where we assume that we sorted the matrixes by increasing size: , i.e. the  
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is the maximum size of the Jordan matrix belonging to the eigen value . General form of the 
Jordan matrix is: 
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This is obviously including non-degenerate case when matrix M has M independent eigen values 
and all is just perfectly simple: matrix is reducible to a diagonal one 

 

 (E-5) 

An arbitrary analytical matrix function of M can be expended into Taylor series and reduced to 
the function of its Jordan matrix G : 
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Before embracing complicated things, let’s look at trivial case, when Jordan matrix is diagonal: 
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The last expression can be rewritten as a sum of a product of matrix U containing only specific 
eigen vector (other columns are zero!) with matrix U-1: 

 (E-8) 

Still both eigen vector and U-1 in is very complicated (and generally unknown) functions of M…. 
Hmmmmm! We only need to find a matrix operator, which makes projection onto individual 
eigen vector. Because all eigen values are different, we have a very clever and simple way of 
designing projection operators. Operator  
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has two important properties: it is unit operator for Yi , it is zero operator for Yk and multiply the 
rest of them by a constant: 
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I.e. it project U into a subspace orthogonal to Yk. We should note the most important quality of 
this operator: it comprises of known matrixes: M and unit one. Also, zero operators for two eigen 
vectors commute with each other – being combination of M and I makes it obvious. 
Constructing unit projection operator Yi which is also zero for remaining eigen vectors is straight 
forward from here: it is a product of all M-1 projection operators  
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Observation that  
    (E-12) 

allows us to rewrite eq. (E-8) in the form which is easy to use: 

 (E-13) 

which with (E-11) give final form of  Sylvester formula (E-for non-degenerated matrixes): 
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One can see that this is a polynomial of power M-1 of matrix M, as we expected from the 
theorem of Jordan and Kelly that matrix is a root of its characteristic equation: 

    (E-15) 
which is polynomial of power M. It means that any polynomial of higher order of matrix M can 
reduced to M-1 order. Equation (E-14) gives specific answer how it can be done for the arbitrary 
series.  
 If matrix M is reducible to diagonal form, where some eigen values have multiplicity, we 
need to sum only by independent eigen values: 

    (E-14-red) 

and it has maximum power of M of m-1. Prove it trivial using the above. 
 Let’s return to most general case of Jordan blocks, i.e. a degenerated case when eigen 
values have non-unit multiplicity. For a general form of the Jordan matrix we can only say that it 
is direct sum of the function of the Jordan blocks: 
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Function of a Jordan block of size n contains not only the function of corresponding eigen value 
l, but also its derivatives to (n-1)th order: 
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The prove is attached in Appendix Eq. 17. We are half-way through. 

There is sub-space of eigen vectors  which corresponds to to the eigen value  and  the 

block : 
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It is obvious from equation (E-17) that projection operator (E-11) will not be zero operator for 

, and it also will not be unit operator for . Now, let’s look on how we can project on 

individual sub-spaces, eigen vectors, including zero-operator for specific sub-spaces. Just step by 
step (from eq. (E-6) and (E-17): 
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From (E-19) we get:  
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i.e. we collected all eigen vectors belonging to the eigen value . Now we need a projection 
non-distorting operator on the sub-space of . First, let’s find zero operator for sunspace of : 
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Tk is projection operator of sub-space of , but it is not unit one! To correct that we need an 
operator which we crate as follows: 
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so, we get it: 
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The final stroke is: 
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Proof of eq. (E-17): 
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polynomial coefficients:  proves the point.  
Hence, we can now calculate a polynomial functions or any function expandable into a Taylor 
series: 
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The final stroke is noting that 

  

 
 
 
Good HW exercise. 
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