
Generalization of Sylvester formula

English mathematician James Joseph Sylvester derived his famous formula only for
diagonal matrices. Another British mathematician, Arthur Buchheim, extended it for a
general case of matrices reducible to Jordan form, e.g. those with some eigen values
having multiplicity li >1:

I did not find derivation of Arthur Buchheim
https://en.wikipedia.org/wiki/Sylvester%27s_formula and below is my own derivation that
I found in my notes when I attempted to have complete set of matrices for accelerator quite
long time ago…

Matrix functions and Projection operators

An arbitrary matrix M can be reduced to an unique matrix, which in general case has a Jordan
form: for a matrix with arbitrary height of eigen values the set of eigen values
contains only unique eigen values, i.e. :

 (E-1)

where Å means direct sum of block-diagonal square matrixes Gk which correspond to the eigen
vector sub-space adjacent to the eigen value . Size of Gk , which we call lk, is equal to the
multiplicity of the root of the characteristic equation

.

In general case, Gk is also a block diagonal matrix comprised of orthogonal sub-spaces
belonging to the same eigen value

 (E-2)

where we assume that we sorted the matrixes by increasing size: , i.e. the
 (E-3)

is the maximum size of the Jordan matrix belonging to the eigen value . General form of the
Jordan matrix is:

det[M − λI]= λ − λi()
i=1

m

∏ li

�

λ1,...,λm{ }

�

λk ≠ λ j ; ∀ k ≠ j

�

size[M] = M; λ1,.....,λm{ }; m ≤ M; det λkI−M[] = 0;

�

M =UGU−1; G = Gk
⊕k=1,m
∑ =G1 ⊕⊕Gm ; size[Gk]∑ = M

�

λk

�

λk

�

det λI−M[] = λ − λk()lk
k=1,m
∏

�

Gk = Gk
j

⊕ j=1, pk

∑ =G1
1 ⊕⊕Gm

pk ; size[Gk
j]∑ = lk

�

size[Gk
j+1] ≥ size[Gk

j]

�

nk = size[Gk
pk] ≤ lk

�

λk

 (E-4)

This is obviously including non-degenerate case when matrix M has M independent eigen values
and all is just perfectly simple: matrix is reducible to a diagonal one

 (E-5)

An arbitrary analytical matrix function of M can be expended into Taylor series and reduced to
the function of its Jordan matrix G :

 (E-6)

Before embracing complicated things, let’s look at trivial case, when Jordan matrix is diagonal:

(E-7)

The last expression can be rewritten as a sum of a product of matrix U containing only specific
eigen vector (other columns are zero!) with matrix U-1:

 (E-8)

Still both eigen vector and U-1 in is very complicated (and generally unknown) functions of M….
Hmmmmm! We only need to find a matrix operator, which makes projection onto individual
eigen vector. Because all eigen values are different, we have a very clever and simple way of
designing projection operators. Operator

 (E-9)

has two important properties: it is unit operator for Yi , it is zero operator for Yk and multiply the
rest of them by a constant:

�

Gk
n =

λk 1 0 0
0 λk ... 0
...
0 0 ... λk

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

�

size[M] = M; λ1,.....,λM{ }; det λkI−M[] = 0;

�

M =UGU−1; G =
λ1 0
0 ...

λM

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
; U = Y1,Y2,....YM[]; M ⋅Yk = λkYk ; k = 1,...M

f M() = f i
i=1

∞

∑ Mi = f i
i=1

∞

∑ UGU−1()i ≡ f i
i=1

∞

∑ U G()iU−1⎛
⎝⎜

⎞
⎠⎟
= U f

i=1

∞

∑ G()i⎛
⎝⎜

⎞
⎠⎟
U−1 = Uf G()U−1

�

f G() = f i
i=1

∞

∑ G i = f i
i=1

∞

∑
λ1 0
0 ...

λM

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

i

=

f i
i=1

∞

∑ λ1
i 0

0 ...

f i
i=1

∞

∑ λM
i

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
f (λ1) 0
0 ...

f (λM)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

f M() =U
f (λ1) 0
0 ...

f (λM)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
U−1

�

f M() = Y1...Yk ...YM[] ⋅
f (λ1) 0
0 ...

f (λM)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
U−1 = f (λk)

k=1

M

∑ 0....Yk ...0[]U−1

�

Pk
i = M − λkI

λi − λk

 (E-10)

I.e. it project U into a subspace orthogonal to Yk. We should note the most important quality of
this operator: it comprises of known matrixes: M and unit one. Also, zero operators for two eigen
vectors commute with each other – being combination of M and I makes it obvious.
Constructing unit projection operator Yi which is also zero for remaining eigen vectors is straight
forward from here: it is a product of all M-1 projection operators

 (E-11)

Observation that
 (E-12)

allows us to rewrite eq. (E-8) in the form which is easy to use:

 (E-13)

which with (E-11) give final form of Sylvester formula (E-for non-degenerated matrixes):

 (E-14)

One can see that this is a polynomial of power M-1 of matrix M, as we expected from the
theorem of Jordan and Kelly that matrix is a root of its characteristic equation:

 (E-15)
which is polynomial of power M. It means that any polynomial of higher order of matrix M can
reduced to M-1 order. Equation (E-14) gives specific answer how it can be done for the arbitrary
series.
 If matrix M is reducible to diagonal form, where some eigen values have multiplicity, we
need to sum only by independent eigen values:

 (E-14-red)

and it has maximum power of M of m-1. Prove it trivial using the above.
 Let’s return to most general case of Jordan blocks, i.e. a degenerated case when eigen
values have non-unit multiplicity. For a general form of the Jordan matrix we can only say that it
is direct sum of the function of the Jordan blocks:

Pk
iYk =

M ⋅Yk − λkI ⋅Yk

λi − λk

= λk − λk

λi − λk

Yk ≡ 0;

Pk
iYi =

M ⋅Yi − λkI ⋅Yi

λi − λk

= λi − λk

λi − λk

Yi ≡ Yi;

Pk
iYj =

M ⋅Yj − λkI ⋅Yj

λi − λk

=
λ j − λk

λi − λk

Yj

Punit
i = Pk

i

k≠i
∏ = M − λkI

λi − λk

⎛
⎝⎜

⎞
⎠⎟k≠i

∏ ;

Punit
i Yj = δ j

iYj =
Yi , j = i
O, j ≠ i

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

�

Punit
k U = Punit

k Y1...Yk ...YM[] = 0....Yk ...0[]

�

f M() = f (λk)
k=1

M

∑ 0....Yk ...0[]U−1 = f (λk)Punit
k

k=1

M

∑ U ⋅U−1 = f (λk)Punit
k ;

k=1

M

∑

�

f M() = f (λk)
M − λiI
λk − λi

⎛

⎝
⎜

⎞

⎠
⎟

i≠k
∏ ;

k=1

M

∑

�

g λ() = det M − λI[]; g M() ≡ 0;

f M() = f (λk)
M − λiI
λk − λi

⎛
⎝⎜

⎞
⎠⎟λi≠λk

∏ ;
k=1

m

∑

(E-16)

Function of a Jordan block of size n contains not only the function of corresponding eigen value
l, but also its derivatives to (n-1)th order:

 (E-17)

The prove is attached in Appendix Eq. 17. We are half-way through.

There is sub-space of eigen vectors which corresponds to to the eigen value and the

block :

 (E-18)

 (E-19)
It is obvious from equation (E-17) that projection operator (E-11) will not be zero operator for

, and it also will not be unit operator for . Now, let’s look on how we can project on

individual sub-spaces, eigen vectors, including zero-operator for specific sub-spaces. Just step by
step (from eq. (E-6) and (E-17):

 (E-20)

 (E-21)

i.e.

�

f G() = f i
i= 0

∞

∑ G i = f i
i= 0

∞

∑
G1
1 0 0 0
0 ... 0 0
0 0 ... 0
0 0 0 Gm

pm

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

i

=

f i
i= 0

∞

∑ G1
1()i 0

0 ...

f i
i= 0

∞

∑ Gm
pm()i

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
f (G1

1) 0
0 ...

f (Gm
pm)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

== f Gk
j()

⊕k=1,m, j=1, pk

∑ = f G1
1() ⊕⊕ f Gm

pm();

G =

λ 1 ... 0
0
...

λ
...

...

...
0
...

0 0 ... 1
0 0 ... λ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

; f G() =

f (λ) ′f (λ) /1! ... f (k)(λ) / k! f (n−1)(λ) / (n −1)!
0
...

f (λ)
....

...

...
f (n−2)(λ) / (n − 2)!

...
0 0 ... ′f (λ) /1!
0 0 ... f (λ)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

�

Y k
n

�

λk

�

Gk
n

�

Y k
n ∈ Yk

n,1 ,....,Yk
n,q{ }; q = size Gk

n()
M ⋅Yk

n,1 = λkYk
n,1; M ⋅Yk

n,l = λkYk
n,l +Yk

n,l−1; 1< l ≤ q

�

Y k
n

�

Y i n

�

f M() =Uf G()U−1

Uf G() =
f (i) λk()
i!i=1

nk −1

∑
k=1

m

∑ 0
λ1
! 0

λ2
! ... 0

λk−1
! Ak

i

λk
! ...0... 0

λm
!

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

�

Ak
i = B1

i k Bpk
i k

λk
! " # # $ # #

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ ;Bn

i k = 0.....0
i collumns
! " $ Yk

n,1 Yk
n,qn−1

⎡

⎣
⎢

⎤

⎦
⎥

(E-22)

From (E-19) we get:

 (E-23)

(E-24)

i.e. we collected all eigen vectors belonging to the eigen value . Now we need a projection
non-distorting operator on the sub-space of . First, let’s find zero operator for sunspace of :

(E-25)

Tk is projection operator of sub-space of , but it is not unit one! To correct that we need an
operator which we crate as follows:

Uf G() = f (i) λk()
i!i=1

nk−1

∑
k=1

m

∑ 0
λ1

! 0
λ2

! ... 0
λk−1

! ...
1
! ... 0.....0

i collumns
! Yk

n,1 Yk
n,qn−1

n−th
" #$$$$ %$$$$

...
pk
!

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

λk
" #$$$$$$$$ %$$$$$$$$

...0... 0
λm
!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

�

M − λkI[] ⋅Ykk,q = 0; M − λkI[] ⋅Ykn,k = Yk
n,k−1; 1 < k ≤ q

U1
n k = Yk

n,1...Yk
n, l ...Yk

n,q[];
M − λkI[] ⋅U1

n k =U2
n k = 0,Yk

n,1...Yk
n, l ...Yk

n,q−1[]
......

M − λkI[] j ⋅U1
n k =U j

n k = 0..0
j zeros
! ,Yk

n,1...Yk
n, l ...Yk

n,q− j
⎡

⎣
⎢

⎤

⎦
⎥

.....

M − λkI[]q ⋅U1
n k = 0

�

Uf G() =
f (i) λk()
i!

M − λkI[]i
i=1

nk −1

∑
k=1

m

∑ 0
λ1

! 0
λ2

! ... 0
λk−1

! Uk 1 ... Uk n

n− th
! Uk pk

⎡
⎣ ⎢

⎤
⎦ ⎥

λk
" # $ $ $ $ $ % $ $ $ $ $

...0... 0
λm
!

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�

λk

�

λk

�

λi

�

Oi = M − λiI[]ni ⇒ M − λiI[]ni U1
r i = M − λiI[]ni Ykr,1...Ykr, l ...Ykr,q[] = 0;

Tk = Oi

λk − λi()nii≠k
∏ = M − λiI

λk − λi

⎛

⎝
⎜

⎞

⎠
⎟
ni

i≠k
∏

�

λk

�

R = M − λiI
λk − λi

; T =M − λkI; α = αk,i = 1/(λk − λi)

RU1 =U1 + αU2 U1 =U1

.....
RUq−1 =Uq−1 + αUq Uq−1 = Tq−2U1

RUq =Uq Uq = Tq−1U1

so, we get it:

 (E-26)

The final stroke is:

 (E-27)

and

 (E-28)

Proof of eq. (E-17):

Induction:

�

Q = αT
Uq = RUq = RTq−1U1

Uq−1 = R I + Q()Uq−1 = RQTq−2U1

Uq−1 = RQUq−1 = RQTq−2U1

.....

U1 = R Q j

j

q−1

∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ U1

�

Pk
i = M − λiI

λk − λi
I+ M − λkI

λi − λk

⎛

⎝
⎜

⎞

⎠
⎟
j

j=1

nk −1

∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

�

Pk = Pk
i()ni

i≠k
∏ = M − λiI

λk − λi
I+ M − λkI

λi − λk

⎛

⎝
⎜

⎞

⎠
⎟
j

j=1

nk −1

∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪

ni

i≠k
∏

�

F M() = M − λiI
λk − λi

I+ M − λkI
λi − λk

⎛

⎝
⎜

⎞

⎠
⎟
j

j=1

nk −1

∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪

ni
f (i) λk()
i!

M − λkI[]i
i=1

nk −1

∑
i≠k
∏
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

k=1

m

∑

�

G0 =

1 0 0 0
0 1 0 0
0 0 ... 0
0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

; G1 =

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

G2 =

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

λ2 λ 1... 0
0 λ2 λ... 0
0 0 ... λ
0 0 0 λ2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

polynomial coefficients: proves the point.
Hence, we can now calculate a polynomial functions or any function expandable into a Taylor
series:

�

Gn ==

λn nλn−1 /1! n(n −1)λn−1 /2!
0 λn nλn−1 /1! ...
0 0 ... nλn−1 /1!
0 0 0 λn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

G2 =

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅

λn nλn−1 /1! n(n −1)λn−1 /2!
0 λn nλn−1 /1! ...
0 0 ... nλn−1 /1!
0 0 0 λn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

λn+1 (n + 1)λn /1! (n(n −1) + 2n)λn−1 /2!
0 λn+1 (n + 1)λn /1! ...
0 0 ... (n + 1)λn /1!
0 0 0 λn+1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

�

λn C1
nλn−1 C2

nλn−2 ... Ck
nλn−k Ck+1

n λn−k−1 ..
0 λn C1

nλn−1 ... Ck−1
n λn+1−k Ck

nλn−k

....
0 0 0 0 0 0 λn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

�

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅

λn C1
nλn−1 C2

nλn−2 ... Ck
nλn−k Ck+1

n λn−k−1 ..
0 λn C1

nλn−1 ... Ck−1
n λn+1−k Ck

nλn−k

....
0 0 0 0 0 0 λn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

λn+1 (C1
n +1)λn (C2

n + C1
n)λn−2 ... (Ck

n + Ck−1
n)λn−k+1 (Ck+1

n + Ck
n)λn−k ..

0 λn+1 (C1
n +1)λn (Ck

n + Ck−1
n)λn−k+1

....
0 0 0 0 0 0 λn+1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

�

Ck
n+1 = Ck

n + Ck−1
n ; Ck

n = n!/k!/(n − k)!

The final stroke is noting that

Good HW exercise.

�

f G() = f n
n= 0

∞

∑ Gn = f n
n= 0

∞

∑
λn C1

nλn−1 Ck
nλn−k

0
0 ... λn

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

i

=

f nλ
n ...

n= 0

∞

∑ f nCk
nλn−k

n= 0

∞

∑

0

0 0 f nλ
n

n= 0

∞

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

�

f nCk
nλn−k

n= 0

∞

∑ = fn ⋅
n!λn−k

k!⋅(n − k)!n= 0

∞

∑ = 1
k!

fn ⋅
n!λn−k

(n − k)!n= 0

∞

∑ = 1
k!

fn ⋅ λ
n−k (n − j)

j= 0

k−1

∏
n= 0

∞

∑

= 1
k!
dk

dλk
fn ⋅ λ

n

n= 0

∞

∑ = 1
k!
dk f
dλk

 #

