Vector Calculus Refresher

Jun Ma

Center for Accelerator Science and Education
Collider-Accelerator Department, Brookhaven National Laboratory
Department of Physics \& Astronomy, Stony Brook University

October 2, 2023

Gradient

$$
\begin{aligned}
\operatorname{grad}(f)=\nabla f & =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k} \\
\mathbf{A} & =\left(A_{1}, \ldots, A_{n}\right) \\
\mathbf{J}_{\mathbf{A}} & =d \mathbf{A}=(\nabla \mathbf{A})^{T}=\left(\frac{\partial A_{i}}{\partial x_{j}}\right)_{i j}
\end{aligned}
$$

Divergence

$$
\begin{aligned}
\mathbf{F} & =F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k} \\
\operatorname{div} \mathbf{F} & =\nabla \cdot \mathbf{F}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(F_{x}, F_{y}, F_{z}\right)=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}
\end{aligned}
$$

Curl

$$
\begin{aligned}
\mathbf{F} & =F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k} \\
\text { curl } \mathbf{F} & =\nabla \times \mathbf{F}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times\left(F_{x}, F_{y}, F_{z}\right)=\left\lvert\, \begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right. \\
& =\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \mathbf{i}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \mathbf{j}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \mathbf{k}
\end{aligned}
$$

Laplacian

$$
\begin{aligned}
\Delta f & =\nabla^{2} f=\nabla \cdot(\nabla f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \\
\Delta \mathbf{T} & =\nabla^{2} \mathbf{T}=(\nabla \cdot \nabla) \mathbf{T}
\end{aligned}
$$

Properties

$$
\begin{array}{rll}
\nabla \cdot(\nabla \times \mathbf{A})= & 0 \\
\nabla \cdot(\nabla \psi)= & \nabla^{2} \psi=\Delta \psi \\
\nabla \cdot(\nabla \cdot \mathbf{A})= & \text { is undefined } \\
\nabla \times(\nabla \varphi)= & \mathbf{0} \\
\nabla \times(\nabla \times \mathbf{A})= & \nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}
\end{array}
$$

Maxwell's equations

Permittivity of free space ε_{0}, permeability of free space μ_{0}, speed of light $c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$. In SI units

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} & =\mu_{0}\left(\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)
\end{aligned}
$$

$\mathbf{D}=\varepsilon \mathbf{E}, \mathbf{H}=\frac{1}{\mu} \mathbf{B}$.

Maxwell's equations

Vacuum with no charge ($\rho=0$) and no currents $(\mathbf{J}=\mathbf{0})$

$$
\begin{aligned}
& \nabla \cdot \mathbf{E}=0 \\
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \cdot \mathbf{B}=0 \\
& \nabla \times \mathbf{B}=\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t} \\
& \frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}-\nabla^{2} \mathbf{E}=0 \\
& \frac{1}{c^{2}} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}-\nabla^{2} \mathbf{B}=0 \\
& \mathbf{E}=\mathbf{E}_{0} \sin (-\omega t+\mathbf{k} \cdot \mathbf{r}) \\
& \mathbf{B}=\mathbf{B}_{0} \sin (-\omega t+\mathbf{k} \cdot \mathbf{r}) \\
& \mathbf{E}_{0} \cdot \mathbf{B}_{0}=0=\mathbf{E}_{0} \cdot \mathbf{k}=\mathbf{B}_{0} \cdot \mathbf{k}
\end{aligned}
$$

Refer to the reading material "Least Action Principle, Geometry of Special Relativity, Particles in E\&M fields, by Prof. Litvinenko" for details. 4-potential (φ, \vec{A}), where φ is called the scalar potential and \vec{A} is termed the vector potential of electromagnetic field.
$\vec{E}=-\operatorname{grad}(\varphi)-\frac{1}{c} \frac{\partial \vec{A}}{\partial t} \Rightarrow \operatorname{curl} \vec{E}=-\operatorname{curl}(\operatorname{grad}(\varphi))-\frac{1}{c} \operatorname{curl} \frac{\partial \vec{A}}{\partial t}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$
$\vec{B}=\operatorname{curl} \vec{A} \Rightarrow \operatorname{div} \vec{B}=\operatorname{div}(\operatorname{curl} \vec{A})=0$

