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More Realistic Signal Suppression
and Detection

● Full theory, to including transverse dynamics
● Simulation comparisons
● Optimal kicker→detector transfer matrix
● Dipole radiation as a diagnostic?
● Sensitivity to motion within dipole
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Signal Suppression Schematic
Modulator – 
randomly distributed 
hadrons give energy 
kicks to electrons

Kicker – hadrons 
receive kicks from 
the electrons

Detector – look at 
Fourier spectrum of 
hadron density

MMK hadron transfer 
matrix plus misalignment

MKD hadron transfer matrix

Electron signal amplified – 
has correlation with initial 
hadron distribution!
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Derivation

● Assuming random shot noise in the modulator, get particle positions in detector

● Obtain densities in Fourier space

● Perform integrals in terms of impedance function

● Plug in analytic expression for MBEC wake function

● Note on notation – repeated “u” indices are summed from 1-6, excluding 5

                           –  wake defined as fractional momentum kick to hadron



  4

Derivation (cont.)
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Derivation (cont.)

11-D integrals such as (4th term):
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Derivation (cont.)

Defining impedance:

5th term (using ): 



  7

Derivation (cont.)
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Analytic Wake Model
(Saturation On)

See:
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Signal Suppression for Our Wake
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Linearized Simulation Full Simulation

(Saturation included)

Comparison with Simulation
(K→D Transfer Matrix Inverse of M→K )
(Normalized Relative to No-Offset Case)
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Optimal Transfer Matrix
● With current modulator → kicker transfer matrix, 

gradient-descent optimization of signal suppression 
formula gives maximum (in absolute value sense): 

with parmeters:

For comparison, inverse-matrix plots from last slide had used:
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Detection with Dipole Radiation
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Can We Make Hadron Signal 
Frequency the Critical Frequency?

Not realistic!

● 275GeV protons
● Gamma of 293
● Omega of ck = 3.11e14/s

(See Jackson E&M, 3rd ed., 
eqtn. 14.81) 
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Dipole Radiation Estimates

● 3.782 T magnets → 243m bending radius (CDR, pg 196)
● Gamma of 293
● Omega of ck = 3.11e14/s
● Look at 0 angle (on-axis)

(See Jackson E&M, 3rd ed., eqtn. 14.76 and 14.79) 
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Dipole Radiation, Continued

● Assume frequency bandwidth of ω/10
● Intensity 10m downstream is 4.5e-23 J/m2 per hadron per 

revolution
● With 7mm/6cm of h+ bunch overlapping with electrons, core 

has 8.1e9 h+
● Get 3.6e-13 J/m2 per bunch per revolution
● With 1160 bunches and revolution time of 13μs, have        

3.3e-5 W/m2 intensity from core protons
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Black-body Background Radiation

● At 300K, intensity of background in 10% bandwidth is 10 W/m2 – swamps any signal

● At 77.29K (LN2), have 1.7e-9 W/m2 within 10% bandwidth – much less than signal

But, total power over all frequencies is 2 W – again much larger than signal

● At 4.22K (LHe), total power over all frequencies is 1.8e-5 W – comparable to signal

● 3.3e-5 W/m2 on-axis radiation intensity from core protons

● If integrate over detector with radius 3.4mm (1/(10 gamma) angular acceptance), a 
intensity of ~3.1e-5 W/m2 10 m downstream – total power of 1.1nW = 35 billion 
photons/second at detector

See, eg,  J. P. Sethna, “Statistical Mechanics: 
Entropy, Order Parameters, and Complexity”, 
eqtn. 7.80 and 7.82
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Drift and Dipole to Generate R56?

● Need to also generate proper transfer matrix from kicker to 
detector

● What can be achieved by a drift and dipole?
● Use dipole of strength given previously, scan bend angle within 

dipole and drift length before (plus LK/2 unavoidable drift from 
kicker)

● Ignore edge focusing of dipole
● Amplitudes of signal suppression defined by -A cos(kΔz)
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Need large drift, and little bending
Note 
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Sensitivity to Extra Bend in Dipole
(Optimal Transfer Matrix)

Note: 
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Conclusions

● Can get optimal signal suppression amplitude of ~22%

● Can get ~1/10 of optimal power with only a short drift and dipole

● Operation at critical frequency not possible with a pure dipole

● Cryogenic detector likely needed so that we aren’t swamped by thermal noise

● Signal output is sensitive to where we observe in dipole, on scale comparable to 
radiation opening angle, leading to up to a few percent reduction in signal
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Backup Slides

● Decoherence of signal suppression

● Undulator radiation

● Parameter table
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Decoherence of Signal Suppression
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Undulator Radiation?

● For simplicity, say undulator field is also 3.782T 
Then, K = 0.20, need undulator period of 1.02m
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Undulator Radiation?

● For N=1 undulator period, 10% bandwidth, detector 10m from undulator, we get 
~5.5e-4W/m2 intensity on-axis from core protons

(cf. 3.3e-5 W/m2 for dipole radiation)
● Does not change any of our conclusions about thermal noise – still lose to 

10W/m2 thermal noise at 300K unless we have ~100 periods (impossible in arcs)
● Undulator likely not worth the extra effort (not considered: beam evolution within 

undulator also makes this tricky, as seen in dipole case)

(Assuming operation at first harmonic – see lecture 12 of 
https://www.slac.stanford.edu/~xiahuang/USPAS_2017.htm)
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