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Nonlinear dynamics



Outline
Ø Examples for nonlinearities in particle accelerator

Ø Approaches to study nonlinear resonances

Ø Chromaticity, resonance driving terms and dynamic 
aperture
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Nonlinearities in accelerator
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δ = ω0

2πβ 2E
eV (sinφ − sinφs ),    φ = hω0ηδ

In accelerator, to the lowest order of δ(the relative energy deviation), 
particles’ motion is governed by transversely, the Hill’s equations

and longitudinally, the pendulum’s equation

Both equations are nonlinear. In a modern accelerator, the particles’ 
motions (both transverse and longitudinal) are highly nonlinear!

The nonlinearity may arise from nonlinear field error (usually resides in 
high field magnets),usage of higher order magnets (sextupoles, 
octupoles,etc), RF cavities etc. We will see their effects in the following 
examples.
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Example 1: bunch compressor
Many modern light sources utilize a bunch compression system(chicane), 
composed of bending magnets, to perform bunch rotation in longitudinal 
phase space and reduce bunch length to achieve higher peak current. 

the strength of such system can be described by R56 (proportional to the 
contraction of bunch length) 

the system is composed of pure linear magnets and one would expect to 
see clean linear rotation in phase space 

R56 = −Lθ
2 − Ldipθ

2 +O(θ 4 )

Nonlinear	dynamics



Example 1: bunch compressor

Without considering any nonlinear effects, an initially chirped 
bunch experiences linear rotation in chicane, resulting in a 
shorter bunch length at the exit of the chicane. Is this real?
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Example 1: bunch compressor
A more realistic case, 
bunch has charge

After add the wakefield into consideration, the nice linear bunch 
distribution becomes a birdie shape, which deteriorates the 
beam quality as well as results in making the chicane less 
efficient in bunch compression . 
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Example 2: storage ring

We know in a storage ring, a particle with action J possesses an 
elliptical motion in the phase space. Its tune determines how 
many turns it travels along the ellipse during one beam 
revolution. If we plot the phase space with normalized 
coordinates (x, Px), it is a circle.

X’

X
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Example 2: storage ring

Tracking results show that with the existence of nonlinear 
magnets (sextupoles, for example), the ellipses in phase space 
deforms into a triangular shape. A stable region also forms 
where the particles inside are stable (confined in phase 
space)and particles outside are unstable and drifting in phase 
space (may cause real beam loss). 
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Nonlinearities in accelerator 
can’t be avoided

From above examples, we can see:

� Nonlinear effects are important in many diverse accelerator systems, 
and can arise even in systems comprising elements that are often 
considered “linear”.

� Nonlinear effects can occur in the longitudinal or transverse motion of 
particles moving along an accelerator beam line.

� To understand nonlinear dynamics in accelerators we need to be able 
to construct dynamical maps for individual elements and complete 
systems and analyze these maps to understand the impact of 
nonlinearities on the performance of the system.

� If we have an accurate and thorough understanding of nonlinear 
dynamics in accelerators, we can attempt to mitigate adverse effects 
from nonlinearities.
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Canonical transformation
Canonical transformation is a transformation from a set of canonical 
variables to another. For example, the new set of variables X is transformed 
by an existing set of canonical variables x by:

the new set of variables obeys Hamilton’s equations

and we call X canonical variables. Please note that from the definition of 
canonical transformation, it is naturally symplectic. 

In accelerator physics, it is often convenient to transform the cartesian
coordinates (x, px, y, py) into the action-angle variables (J, Φ).

∂X
∂x

= A, and AT JA = JX = X(x)

X = J ∂H
∂X
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Generating function
How to construct this canonical transformation? 

The generating functions (e.g. 1st kind) are used to transform the 
coordinates qi to Qi:

thus the momenta conjugates read: 

and the Hamiltonian becomes:

We expect by applying this transformation, the Hamiltonian has simpler 
form as it is easier to solve. For example: 

with                       becomes

F1 = F1(qi,Qi, t)

pi =
∂F1
∂qi
, Pi = −

∂F1
∂Qi

H = H +
∂F1
∂t

H = p2 + q2 − 4pq2 + 4q2 F1 = qQ− 2q
3 H = P2 +Q2

A simple harmonic oscillator!!
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Action-angle variables
The action angle variable (J, Φ) is defined as:

where (α,β,γ) are Twiss parameters. 
The action angle variable is very important for linear beam dynamics. As 
we all know, for linear dynamics, it has properties

using a generating function

and the Hamiltonian reduces to                  note this H is s dependent!  

2Jz = γ zz
2 + 2αzzz '+βzz '

2,

tanφz = −αz −βz
z '
z

dJz
ds

= 0, dφz
s
=
1
βz

H =
Jz
βz

F1(z,φz ) = −
z2

2βz
(tanφx +αx )
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Action-angle variables
To study nonlinear dynamics, it is more useful to further construct a 
Hamiltonian that is s independent with canonical transformation. Consider 
a generating function of 2nd kind

where θis the angle of reference orbit. The conjugate coordinates can be 
expressed as 

The new Hamiltonian becomes

Further changing the coordinate from s to θreduces the Hamiltonian to

F2 (φ, J ) = (φ −
ds
β
+νθ

0

s

∫ )J

H = H +
∂F2
∂s

=
νJ
R

φ = φ −
ds
β
+νθ

0

s

∫ , J = J

H = R H =νJ z = 2βJ cosΦ Φ = φ +
ds
β
−νθ

0

s

∫ = φ + χ −νθ
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Treatments of nonlinearities
A number of powerful tools for analysis of nonlinear systems can be 
developed from Hamiltonian mechanics to describe the motion for a 
particle moving through a component in an accelerator 
beamline:(truncated) power series; Lie transform; (implicit) generating 
function.

Hamiltonian is usually not integrable. However, if the Hamiltonian can be 
written as a sum of integrable terms, an explicit symplectic integrator that 
is accurate to some specified order can be constructed to solve the 
system.

For a storage ring, We mainly discuss two approaches to analyze nonlinear 
dynamics:
1. Canonical perturbation method where nonlinear terms are treated as 

perturbation to the linear Hamiltonian (may not give correct pictures 
when nonlinear magnets are strong)

2. Normal form analysis, based on Lie transformation of the one-turn map 
(especially useful when dealing with resonance driving terms and 
dynamic aperture problems) Nonlinear	dynamics



Perturbation treatment
The Hamiltonian for a linear system in action angle variable (J, Φ):

the nonlinear elements’ contribution can be written as 

where ε is a small parameter. Please note that the perturbation V from 
nonlinear element is also a periodic function of the circumference L. Thus 
it is usually convenient to express it in terms of a sum over different 
orders:

and treat them order by order (m being the order of nonlinear term).

V (φ, J, s) = Vm (J, s)e
imφ

m
∑

H =νJ

H =νJ +εV (φ, J, s) = H0 +εV (φ, J, s)
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Perturbation treatment for 
quadrupole error

Lets first apply it to the linear case (taking a quadrupole error as an 
example). Assume we have a small quadrupole field error k(s), the 
Hamiltonian (for horizontal motion) reads:

If transformed into action angle variables, it reads:  

thus the term H0 (independent of Φ) is

and the tune becomes

The change of tune

H =
1
2
x '2+Kxx

2( )+ k(s)x
2

2

H =
J

β(s)
+
1
2
k(s)β(s)J(1+ cos2Φ) = H0 +

1
2
k(s)β(s)J cos2Φ

x = 2β(s)J cosΦ

H0 =
J

β(s)
+
1
2
k(s)β(s)J

ν =
1
2π

dH
dJ

ds =∫ 1
2π

1
β(s)

+
1
2
k(s)β(s)

"

#
$

%

&
'ds∫

Δν =
1
4π

k(s)β(s)ds∫ ✔
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Perturbation treatment for 
sextupole

We can follow the same procedure to deal with the Hamiltonian for 
sextupoles:

where k2(s) is the sextupole gradient. Transform it into action-angle 
variables, we have

Using trigonometry

It becomes

H =
1
2
x '2+Kxx

2 + y '2+Kyy
2( )+ 16 k2 (s) x

3 −3xy2( )

x = 2βxJx cosΦx y = 2βyJy cosΦy

V =
1
6
k2 (s) 2 2βx

3/2Jx
3/23 cos3Φx − 6 2βx

1/2βyJx
1/2Jy cosΦx cos

2Φy( )
cos3φ = cos3φ +3cosφ

4
, cos2φ = cos2φ +1

2

V =
2
12

k2 (s)βx
3/2Jx

3/23(cos3Φx +3cosΦx )

−
2
4
k2 (s)βx

1/2βyJx
1/2Jy 2cosΦx + cos(Φx + 2Φy )+ cos(Φx − 2Φy )( )

Φ = φ + χ −νθ
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Perturbation treatment for 
sextupole

From here we already see the contribution of a sextupole to different 
frequencies (tunes). To see sextupole’s different modes’ contribution, it is 
convenient to expand the perturbed potential in Fourier series as stated 
earlier

where G is the Fourier transform of the perturbed potential induced by 
sextupoles. Note that this integral take out the χ and ν from the expression 
of Hamiltonian. 

This G can be evaluated order by order, e.g. G3,0,l (which is correspondent 
to                 resonance) reads:

G =
1
2π

Vm (J, s ')e
i(mχ−mνθ+lθ ) ds '∫

l
∑

G3,0,l =
2

24π
k2 (s)βx

3/2ei(3χ x−3ν xθ+lθ )∫ ds

3ν x = l
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Perturbation treatment for 
sextupole

The Hamiltonian (in orbit angle θ) can be written as

where G’s drive the correspondent resonances and … drives parametric 
resonance 

H =ν xJx +ν yJy + G3,0,l Jx
3/2 cos(3φx − lθ )

l
∑

+ G1,2,l Jx
1/2Jy cos(φx + 2φy − lθ )+

l
∑ G1,−2,l JxJy

1/2 cos(φx − 2φy − lθ )
l
∑ +…

ν x = l
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Resonance lines in tune space
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Nonlinear	dynamics

Fixed points and separatrix
Stable and unstable fixed points are the points in phase space where 
particle can stay there indefinitely (without any perturbation). Considering 
the mode              , with generating function

The Hamiltonian becomes

Solve for unstable fixed points

Gives 3 solutions

UFPs define separatrix (the boundary of stable region)

3ν x = l

F2 = (φx −
l
3
θ )J φ = φx −

l
3
θ, J = Jx

H = δJ +G3,0,l J
3/2 cos3φ, δ =ν x −

l
3

dJ
dθ

=
dφ
dθ

= 0

proximity

JUFP
1/2 =

2δ
3G

φUFP = 0,±2π / 3, if δ /G < 0
φUFP = ±π / 3,π if δ /G > 0

Triangle changes direction when 
at different sides of resonance



Nonlinear	dynamics
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Tracking of sextupole
If sextupole can be treated as thin length (usually true with large radius R), 
the tracking of a particle dynamics in existence of sextupole magnets can 
be treated as a one turn map and an instantaneous kick. Starting from 
Hill’s equation

The change in the derivatives of coordinates can be written as

Given the initial particle distribution, the Poincare maps can be obtained 
by long term tracking applying the one turn map and instant kick in x’,y’. 

xysSysKyyxsSxsKx yx )()(      ),)((
2
1)( 22 −=+ʹ́−=+ʹ́

∫∫ −=−=ʹΔ−=−=ʹΔ xySxydssSyyxSdsyxsSx )(      ,)(
2
1))((

2
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Normal form treatment
Instead of describing the dynamics in a beam line using an s-dependent 
Hamiltonian, we can construct a map, for example, in the form of a Lie 
transformation. Such a map may be constructed by concatenating the 
maps for individual elements. The beam dynamics (for example, the 
strengths of different resonances) may then be extracted from the 
transformation.

To better understand the concept of map (transformation), we take a look 
at the well-known linear transport matrix for a periodic accelerator (say, a 
storage ring)

the matrix is symplectic. 

Normal form analysis of a linear system involves finding a transformation 
to variables in which the map appears as a pure rotation.

M =
cosΦ+α sinΦ
−γ sinΦ
#

$
%     

β sinΦ
cosΦ−α sinΦ

&

'
(,  βγ =1+α 2
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Normal form treatment
Consider matrix

We find that

Becomes a pure rotation in phase space.

N =

1
β

0

α
β

β

!

"

#
#
#
#
#

$

%

&
&
&
&
&

NMN −1

=

1
β

0

α
β

β

"

#

$
$
$
$
$

%

&

'
'
'
'
'

cosΦ+α sinΦ
−γ sinΦ
"

#
$     

β sinΦ
cosΦ−α sinΦ

%

&
'

β

α
β

"

#

$
$
$

  
0

1
β

%
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cosµ sinµ
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Normal form treatment
The coordinates are “normalized”

And the normalized coordinates transform in one revolution as

Is simply a rotation in phase space.

Note that since the transformation N is symplectic, the normalized 
variables are canonical variables.

xN = N
x

xN → NMx = NMN −1Nx = RNx = RxN
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Normal form treatment
The treatment of nonlinear dynamics follows the same procedure however 
more complicated. 

We can assume the map can be represented by a Lie transformation and 
factorized as

Where f3 is a homogeneous polynomial of order 3 of the phase space 
coordinates and f4 is a homogeneous polynomial of order 4. The detailed 
order depends on the truncation.

The linear part of the map can be written in action angle variables as

Μ = Re: f3:e: f4:

R =e:−µJ:
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Normal form treatment
To simplify this map, i.e., separate the contribution from different orders, 
we can construct a map M3

Where F3 is a generator that removes resonance driving terms from 

So we have

Using relation

U =e:F3:Me:−F3:

e:h:e:g:e:−h: =e:e
:h:g:

e: f3:

U =e:F3:Re: f3:e: f4:e:−F3: = RR−1e:F3:Re: f3:e:−F3:e:F3:e: f4:e:−F3:

U =Re:R
−1F3:e: f3:e:−F3:e:e

:F3: f4:
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Normal form treatment
Using Baker-Campbell-Hausdorff formula

The map now becomes

We can further reduce it to (non-trivial)

Where                                                contains all the 3rd order 
contribution.

e:A:e:B: = e:C:, where C = A+B+ 1
2
[A,B]+

U =Re:R
−1F3+ f3−F3+O(4):e:e

:F3: f4:

U =Re: f3
(1):e: f4

(1): = Re:R
−1F3+ f3−F3:e: f4

(1):

f3
(1) = R−1F3 + f3 −F3
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Normal form treatment
Thus the solution is 

Since f3 is periodic in the angle variable Φ, we can write

We can construct a f3(1) that does not have phase dependence, i.e., we 
can write it as 

Thus now the generation function F3 reads

F3 =
f3 − f3

(1)

I − R−1

f3 = f3,m (J )e
imφ

m
∑

f (1)3 = f3,0 (J )

F3 =
f3,m (J )e

imφ

1− e−imµm≠0
∑
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Normal form treatment
Taking Octupole as an example (assume it is the only nonlinear element in 
the beam line), we can write the map as 

where f4 is

Rewrite it in action-angle variables

Thus the generation function for normalized map f4,0 reads

And the normalized map becomes (with BCH theorem)

f4 = −
1
24
k3lx

4

Nonlinear	dynamics

Μ = Re: f4:

f4 = −
1
6
k3lβ

2J 2 cos4Φ = −
1
48
k3lβ

2J 2 (3+ 4cos2Φ+ cos4Φ)

x = 2βJ cosΦ

f4,0 = −
1
16
k3lβ

2J 2

Μ4 = Re
: f4,0: = e

:−µJ− 1
16
k3lβ

2J 2:



Normal form treatment
Thus the mapping of action-angle variables becomes

In other words, we see the tune shift with amplitude right away.

Similar to previous case for sextupole, we have

Last equation is valid if we keep the normalization up to 4th order.

We can obtain the normalization generator F4 easily

Nonlinear	dynamics

J→ J

Φ→Φ+µ +
1
8
k3lβ

2J

Μ4 = Re
: f4,0: = e

:−µJ− 1
16
k3lβ

2J 2:
= e:F4:Me:−F4:

F4 = −
1
96
k3lβ

2J 2 4[cos2Φ− cos2(Φ+µ)]
1− cos2µ

+
cos4Φ− cos4(Φ+µ)

1− cos4µ
#

$
%

&

'
(

F4 =
f4,m (J )e

imφ

1− e−imµm≠0
∑



Normal form treatment
The normalized map now contains only action variable (easy to integrate) 
while all the phase information has been pushed to higher order. 

From the generator F4, we see the octupole drives half integer and quarter 
integer resonances. We can track the Poincare map using exact map and 
the normalized map respectively (assum k3l= 4800 m-3 and β=1 m). 
Assuming the tune μ is 0.33✕2π far from resonances

Nonlinear	dynamics

exact	map																																															normalized	map

30	turns

Tune shift with 
amplitude!!



Normal form treatment

Nonlinear	dynamics

exact	map																																									normalized	map

2500	turns

Tracking for longer turns results in different feature where we pay the price 
of the simplified (normalized) map. Some of the phase information (3rd

order resonance island) is lost during this process. 



Normal form treatment

Nonlinear	dynamics

exact	map																																									normalized	map

2500	turns

Tracking for tunes near 4th order resonance is a bit tricky. Since the k3l is 
positive, the tune shift with amplitude drives the tune up. Thus if the tune 
μ is 0.252✕2π, we barely see resonances. The two tracking results 
resemble



Normal form treatment

Nonlinear	dynamics

exact	map																																									normalized	map

2500	turns

For a tune less than quarter integer, i.e.,μ is 0.248✕2π, we see strong 
resonances from exact tracking while for the normalized map, we only see 
a rotation in phase space. 

Normal form of a one turn map preserves the information on tune 
amplitude dependence while loses the key phase information (when close 
to resonances). Need to retain higher order terms!



Resonance driving terms(RDTs)
We can interpret the Fourier coefficients            as resonance strengths. 
And the generating function diverges when resonance condition mμ=2π is 
satisfied, meaning such driving term has large effect. Put it into polynomial 
expression, the generating function can be written as 

where

hjklm are called resonance driving terms in many accelerator tracking 
codes. The entire process of the normal form the one turn map can be 
visualized as

f3,m (J )

!++==∑ −+−+

jklm
yyxxjklm FFfF 43ςςςς

])()[(21 yx mlkji
jklm

jklm e

h
f ννπ −+−−

=

)(nx )1( +nx
),( φJM

Φ ::Fe=Φ

)(nς
U(J ) = e:H :

)1( +nς
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Resonance driving terms(RDTs)
Incorporating the optics of a lattice, the resonance driving term (RDT) 
coefficients hjklm (1st order RDT) are usually calculated as

It is very sensitive to linear lattice thus a carefully designed linear lattice 
with proper phase advance per periodic structure benefits greatly in 
reducing the RDTs (we will talk about a few tactics later).

∑
=

−+−++=
N

i

mlkjiml
yi

kj
xijklm

yixieSch
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2

µµββ

Nonlinear	dynamics



Dynamic aperture (DA)
Dynamic aperture determines the stable region in 2d real space (x-y) while 
particles travel along the accelerator. It is very important for particle 
dynamic study especially in effects that requires tracking over many 
revolutions (decided by system’s damping time, could range from 1000 
(light sources) to 1,000,000 (proton/heavy ion storage rings). 

Dynamic aperture is a clear indication of nonlinear resonances that reside 
in an accelerator. Its size is limited by the utilize of nonlinear magnets to 
correct chromatic aberration. Thus designing the lattice with the nonlinear 
magnets’ strengths reduced is crucial in improving DA. 

Careful tuning of multipole nonlinear elements can also result in reducing 
the resonance driving terms thus improving the DA.

There are many ways of determining the DA of a specific lattice. Mostly 
commonly used techniques include line search mode (single-line, n-
line,etc…) and frequency map analysis. 
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Line search analysis
Line search mode requires tracking particles with different initial positions 
(or gradually increasing the particle offset till it is lost) to determine the 
boundary of the stable region. Itself is machine expensive however can be 
easily parallelized.

Nonlinear	dynamics



Frequency map analysis(FMA)
If we perform a discrete Fourier transform on the tracking data with initial 
position. We can obtain the betatron tunes (for N turn tracking, the 
precision is merely 1/N). If we repeat this process with different initial 
positions, we can obtain a tune map. To indicate the variation of the tunes 
over different turns of the ring, we can define a diffusion or regularity 
which describes the difference between the tunes over various periods 
(usually the first half of the tracking (Qx1, Qy1) and the second half(Qx2, 
Qy2)). In other words, we define a diffusion constant D

The rule of thumb is when D is small, the variation is low (or regular) and 
particle motion is stable. On the other hand, when D is large, the variation 
is high (or irregular) and particle motion is unstable (chaotic). The points 
in tune space with large variation (chaotic) usually lies on the crossing of 
different resonance lines.

Nonlinear	dynamics

D = log10 (Qy2 −Qy1)
2 + (Qx2 −Qx1)

2



Frequency map analysis(FMA)
The obtained resonance feature in 
frequency space (tune space) can then 
be easily related into 2 dimension x-y 
real space and used as an indicator of 
the size of stable region. It may 
discover some resonance islands that 
line search is not capable of finding as 
well as the important tune shifts and 
strong resonances that we need to 
avoid. FMA is often used in accelerator 
design to identify the dynamical 
behavior. 

Experimental construction of FM 
requires very high precision 
measurements and some data mining 
techniques to further improve the 
precision, e.g., Hanning filter, data 
interpolation, NAFF, etc…

Nonlinear	dynamics

A plot showing the FM for an ideal lattice for 
ALS in tune space (a) and real space (b). 
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