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Matrices and matrix functions. As a practical matter, when somebody wants to build an 
accelerator, she or he should use some approximations. One of VERY popular design 
approximation is called “an element (usually a magnet)” with nearly constant parameters. 
Then our Hamiltonian is s-independent on at part of the trajectory.   

 
H = Hi (s); Hi (s) = const; si < s < si+1{ }; dM

ds
= SH ⋅M; D = SH

M so, s( ) = Mi
i=1
∏ ; Mi si , s( ) = exp SHi s − si( )( )

   (187) 

e.g. we just need to learn how to calculate exp SHi s − si( )( ) . Finally, she or he than 
should try to build such elements. They never ideal but can be relatively close to the ideal 
boxes…  

 
Typical elements of accelerators are dipoles and quadrupoles (or their combination), 
sextupoles and octupoles (they a nonlinear), solenoids, wigglers…. Let’s start from a 
linearized Hamiltonian (143) magnetic DC elements – this is typical accelerator beam-
line.  

!
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In 1883, English mathematician James Joseph Sylvester derived his famous formula for 
function of matrices which can be diagonalized. A bit later another British 
mathematician, Arthur Buchheim, extended it for a general case of matrices reducible to 
Jordan form, e.g. those with some eigen values having multiplicity >1.I did not find 
derivation of Arthur Buchheim and offering my own derivation when I was looking for a 
complete set of matrices for accelerators quite a long time ago… 
In most general case when matrix D cannot be diagonalized (i.e. there is degeneracy, 
some of eigen values have multiplicity, and D can be only reduced to a Jordan form) we 
can still write a specific from (generalization of Sylvester’s formula): 

 

where nk < 2n is so called height of the eigen value lk. It is also shown there that nk can 
be replaced in (226) by any number nn > nk – it will add only term, which are zeros, but 
can make (226) look more uniform. One of the logical choices will be nn =max{nk}. The 
other natural choice will be nn =2n+1–m, especially if computer does it for you. 
We will start from simplest case when matrix can be diagonalized and finish with full 
blown general case… 
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The general evaluation of the matrix exponent in (193) is straightforward using the eigen 
values of the D-matrix: 

� 

det D − λ⋅ I[ ] = det SH − λ⋅ I[ ] = 0    (201) 
When the eigen values are all different (2n numerically different eigen values, 

� 

λi = λi ⇒ i = j , no degeneration, i.e., D can be diagonalized),  
 

D = UΛU−1; Λ =

λ1 0 0
0 λ2 0

... 0
0 0 0 λ2n

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

;     (202) 

we  can use  Sylvester’s formula that is correct for any analytical f(D), 
http://en.wikipedia.org/wiki/Sylvester’s_formula for evaluating (193): 

� 

exp Ds[ ] = eλk s D− λ jI
λk − λ jj≠k

∏
k=1

2n

∑     (203) 
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Now, let’s build a unit projection operator on Yk : 

Pk = M − λi I
λk − λii≠k

∏     (211) 

It is easy to show that  
PkYk = Yk; PkYi≠k = 0;     (212) 

First, each of the elements of the product (211) is unit on Yk  

M − λi I
λk − λi

⋅Yk = λk − λi

λk − λi

Yk = Yk;i ≠ k    (213) 

while there is a zero-operator for all other eigen vectors: 
M − λi I
λk − λi

⋅Yi = λi − λi

λk − λi

⋅Yi = 0    (214) 
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Generalization of Sylvester’s formula. We had shown that for if  2nx2n matrix  has 2n 
unequal eigen values ,  

     (E1) 

it can be brought to the diagonal form of 

    (E2)
 

The we proved that a straight-forward Sylveter formula for an arbitrary (to be exact, 
analytical) functions: 

    (E3) 

In practice, there are always cases when eigen values have multiplicity, and denominators 
in (E3) turn into zeros, e.g. we have a degeneration of this simple form. Another easy 
case is when D can be diagonalized, even though the number of different eigen values is 
m < 2n  (there is degeneration, i.e. some eigen values have multiplicity >1). We can use 
again simple Sylvester’s formula (E3) again, which just has fewer elements (m instead of 
2n): 

    (E4) 

D
λk ≠ λi

DYk = λkYk; det D− λkI[ ] = 0
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⎥
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f Ds[ ] = f λks( ) D− λ jI
λk − λ jj≠k

∏
k=1

2n

∑

exp Ds[ ] = eλks D− λ jI
λk − λ jj≠k

∏
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∑

� 
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∏
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∑
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But the full consideration requires a bit more work – here we are walking through a 
general case. An arbitrary matrix M can be reduced to an unique matrix, which in general 
case has a Jordan form: for a matrix with arbitrary height of eigen values the set of eigen 
values  contains only unique eigen values, i.e. : 

 

  (E5) 

where Å means direct sum of block-diagonal square matrixes Gk which correspond to the 
eigen vector sub-space adjacent to the eigen value . Size of Gk , which we call lk, is 
equal to the multiplicity of the root  of the characteristic equation  

. 

In general case, Gk is also a block diagonal matrix comprised of orthogonal sub-spaces 
belonging to the same eigen value 

  (E6) 

where we assume that we sorted the matrixes by increasing size: , 
i.e. the  

     (E7) 

is the maximum size of the Jordan matrix belonging to the eigen value . General form 
of the Jordan matrix is: 

    (E8) 

� 

λ1,...,λm{ }

� 

λk ≠ λ j ; ∀  k ≠ j

� 

size[M] = M;  λ1,.....,λm{ }; m ≤ M; det λkI−M[ ] = 0; 

� 

M = UGU−1;  G = Gk
⊕k= 1,m
∑ = G1 ⊕ ....⊕ Gm ;  size[Gk ]∑ = M

� 

λk

� 

λk

� 

det λI−M[ ] = λ − λk( )lk

k=1,m
∏

� 

Gk = Gk
j

⊕ j=1, pk

∑ = G1
1 ⊕ ....⊕ Gm

pk ;  size[Gk
j ]∑ = lk

� 

size[Gk
j +1] ≥ size[Gk

j ]

� 

nk = size[Gk
pk ] ≤ lk

� 

λk

� 

Gk
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λk 1 0 0
0 λk ... 0
... ... ... ...
0 0 ... λk
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⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 



16

This is obviously includes non-degenerate case when matrix M has M independent eigen 
values and all is just perfectly simple: matrix is reducible to a diagonal one 

 

 (E9) 

An arbitrary analytical matrix function of M can be expended into Taylor series and 
reduced to the function of its Jordan matrix G : 

  (E10) 

 
Before embracing complicated things, let’s again look at the trivial case, when Jordan 
matrix is diagonal: 

(E11) 

� 

size[M] = M;  λ1,.....,λM{ }; det λkI−M[ ] = 0; 

� 
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� 
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From (E23) we get a shifting operator for eigen value λk :  

M−λkI[ ] ⋅Yk
k,q = 0;   M−λkI[ ] ⋅Yk

n, j =Yk
n, j−1;  1< j ≤ q

U0
n k = Yk

n,1...Yk
n,l...Yk

n,q⎡⎣ ⎤⎦;

M−λkI[ ] ⋅U0
n k =U1

n k = 0, Yk
n,1...Yk

n,l...Yk
n,q−1⎡⎣ ⎤⎦

......

M−λkI[ ] j
⋅U0

n k =U j
n k = 0..0

j zeros
! , Yk

n,1...Yk
n,l...Yk

n,q− j
⎡

⎣
⎢

⎤

⎦
⎥

.....

M−λkI[ ]q
⋅U0

n k = 0

  (E27) 
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      (E28) 

i.e. we collected all eigen vectors belonging to the eigen value . Now we need a non-
distorting projection operator on the sub-space of .  

� 

λk

� 

λk
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Eigen values split into pairs with the opposite sign because it is a Hamiltonian system: 

.  (L3-35) 

First, it makes finding eigen values a easier problem, because characteristic equation is 
bi-quadratic: 

.  (L3-35-1) 

For accelerator elements it is of paramount importance, 1D case is reduces to trivial (L3-
37), 2D case is reduced to solution of quadratic equation and 3D case (6D phase space) 
required to solve cubic equation. For analytical work it gives analytical expressions – 
compare it with attempt to write analytical formula for roots of a generic polynomial of 
6-order? It simply does not exist! Thus, we have an extra gift for accelerator physics – the 
roots can be written and studied!  It is also allow us to simplify (202) into 

  (L3-36) 

where index k goes only through n pairs of . While (L3-36) does not look 
simpler, it really makes it easier (4 times less calculations) when we do it by hands… For 
example we can look at 1D case. First, we can easily see that  

   (L3-37) 

� 

det SH − λ ⋅ I[ ] = det SH − λ ⋅ I[ ]T = det −HS− λ ⋅ I[ ] =

(−1)2n det HS + λ ⋅ I[ ] = det S−1 HS + λ ⋅ I[ ]S( ) = det SH + λ ⋅ I[ ]#

� 
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⎠ 
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TraceD = λ1 + λ2 = 0→ λ1 = −λ2 = λ;   λ 2 = −det[D]
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What we learned today?
• Linear ordinarary equations with constant coefificents (D-matrix) 

have a natural solution as exp(D.s)
• We can use functions of matricies and built entire method have 

analytical expression of matrix function as soon as we know eigen 
values of matrix D

• Matrix function have a very simple and elegant form – called 
Sylvester formula- when eigen values are unique (e.g. in non-
degenrating case) and D can be diagonalized

• But even in a most general case, we can write analytical expression 
for matrix function

• In linear Hamiltonian case, eigne values split in pair of (λ,-λ) and the 
expression can be even further simplified

• The remaining task for linear matrices if accelerators is to find 
analytical expression for eigen values – the job for next class 
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Additional materail: Inhomogeneous solution 
Even though calculations are tedious, they are also transparent and straightforward. General 
expression for the inhomogeneous equation of 2n ordinary linear differential equations is found 
by a standard trick of variable constants (method developed by Lagrange), i.e. assuming that 

: 
 

   (F-1) 

with well known result of: 

.     (F-2) 

or 

.   (F-3) 

If you use computer, eq. (F-3) is one to use. For analytical folks, you should go though a tedious 
job is combining all terms together into final form: 

 

            (F-4) 

� 

R = M(s)A(s)

� 

dR
ds

= ′ R = D⋅ R + C;  ′ M = DM; 

R = M(s)A(s) ⇒ ′ M A + M ′ A = DMA + C
R(0) = 0 ⇒ Ao = 0
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0

s
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Proof of eq. (E-21): 
 

G0 =

1 0 0 0
0 1 0 0
0 0 ... 0
0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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