Today schedule:

1. Questions from the comp. simulation class

2. HW1 Review. Results of injector simulation .
1. Emittance vs solenoid strength plots.
2. Is minimum emittance location different for different solenoids field?

Q: UED beam line simulation. Do you have all necessary information?
RF acceleration (short lecture.)

Questions

Start Simulation linacs HW 2

If we have time today Beam transport components (or during the next comp.
class)

No AW

Next week March 6 class will take place at BNL:
 TLD distribution, safety announcement, ATF tour
* UED QE measurements,

* Energy measurements using diffraction

* Comparison UED line simulation results with measurements

— solenoid field requirements for smallest bunch size at the cathode for different
bunch charges

you will need to finish these simulation before the class



UED beamline layout
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Main accelerators components (continue)

e Beam Acceleration



-  Beam quality measures:
« emittance (¢): volume of phase-space
« Brightness (B): density of phase-space

* We desire high brightness & low
emittance beams




Acceleration is needed!!

* Incolliders: The minimum energv reauired to create a particle (or group of
particle) with total mass M is: £, = Mc~

— High energy colliding particles=>high energy center mass=> massive particles
production (cross section o)

— luminosity: = f—L

Numbers of events

| _ )
N,y g=0,,5"L

— ,‘]"'. \/ o _’
€. =By (s (s ) —{ss")

* Normalized emittance ~preserved during acceléétion, geon‘{rical
emittance reduced ~1/y.

where s 1s either x or vy.

The peak normalized rms brightness 1s given by

27
* In light source: Brightness B ~1/vy>. B, = —

‘n.x%ny



Geometrical emittance transformation

Thin gap acceleration (dpz)

A
particle angle x’
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« Circular accelerators * Linear accelerators
* Repeated passage of beams » Particles pass only once

via a series of cavities

through each cavity




Acceleration

Q= (/(E+X 3) d—E - q([f* \7);
dt C dt

* Single pass acceleration
e Limited by maximum voltage per until discharge. ~¥1.5 MV in air
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Maxwell equation prohibits multiple acceleration is DC electric field:

* In RF cavities energy gain

(toward

theright] + | behindthe bunch —p amount of energy boost depends on the phase‘
 The main purpose of using
Electric Positive particles Position RF cavities in accelerators is
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RF Field acceleration:

Beam fube | Cell | Beam tube
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The RF field must be synchronous (correct phase relation) with the beam for a sustained energy transfer.

E (z,t) = E(z)cos (Ul—fk(:)(/:+(/) i
0

For efficient particle acceleration, the phase velocity of the wave must closely match the beam velocity.
If we consider a particle of charge g moving along +z direction with a velocity at each instant of time
equal the phase velocity of the traveling wave, then the electric force on the particle is given by

L2
A£=(/f E(().:)COS[(UI(:)+¢] dz

-L/2

F.=qE(z)cos ¢ Energy gain



RF Cavity connected to RF power source

waveguide circulator waveguide
M  input coupler
L

HM

RF power source




R cavities

Beam tube | Cell | Beam tube

Magnetic field

Typical Single cell

BNL ERL: 5Cell cavity 704MHz

Electromagnetic field data from file 5CELLCU.AM
Problem title line 1: SuperFish File 5c¢1724s.af
CHLLCOL 1ol 11-09-2005 1e:ds.

Quarter-wave 112MHz resonator
SRF GUN at CEC-X oL *

SRF LINAC at CEC-X



ATF accelerator system
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Multi linacs acceleration

5 MeV 36 MeV 36 MeV
tail
(& = head
(toward
. . the right)  + amount of energy boost
E=E;,+Elinacl+Elinac2 i
. Positive particles "

. . Electric Position
Elinacl=eUlcos(phil) Fiod O \SNegaﬁve particles
Elinac2=eU2cos(phi2) = \/2

\_‘.\‘ on ime
(toward behind
the left) -
If there is enough voltage provided by one linac. ohi1 ohi2
The final energy can be reached by combination different phases. 65.4 65.4
For ATF: 65.4 -65.4
U1=U2=36MV, Einj=5MeV ‘ 83 3;’2
Efinal=35MeV 90.0 336
Why one operation could be better then others? -90.0 -33.6
33.6 90.0

-33.6 -90.0



Few things to remember

* Space charge force depends on energy
— High => | harge effect
igher energy ess sp}e charge effects

£
O-” ) 2. X > ’;’x
(¥ 150 S)270x &) _
* Focusing due to entrance and exit of RF field

— More energy gain => stronger focusing

Apr=§ [E, dz

Ap; 1 _ADPout r
1. _BPinr T out=

r
n
-— o) inz Pout z

Apin_rN_Apout_r Eout= Ein+AE

Entrance kick is larger then exit kick



PHY 542
COMPUTATIONAL EXERCISE - RF Linac

Exercise: RF linac accelaration

1. Open file ATF _LINAC.in. Find acceleration linac line description. There are two linacs.
Make sure that the both cavities gradient is sufficient to accelerate e-beam on 36 MeV by
each cavity. Change adjust maximum gradient (maxE parameter).

(hint: set acceleration phase to 0 in both linacs and run ASTRA for this project)

2. Search for optimum linac set points for fix energy gain 30 MeV. Set up linac acceleration
gradient 16 MV/m. Set the same phase for both linac to accelerate 15 MeV each. (phi=65
deg). Find final energy spread and emittance.

3. Repeat step 2 for different linac phases:

a. Linac Phase1=65 LinacPhase2=-65
b. Linac Phasel=34 Linac Phase2=90
c. Linac Phase1=90 LinacPhase2=34 (have you got the same energy?)
d. Linac Phase1=0 LinacPhase2=100
4. What linacs phase settings provide minimum emittance?
5. What linacs phase settings provide minimum energy spread?

Same exercise without space charge:

6. Try turn off space charge and repeat steps 2-5.
7. Why final emittance is different without space charge?



Main accelerators components

* Beam transport



Each particle is defined in 6-D space (coordinates and

momentums) X = (X, 00 V. 0y, Z.D;)

In accelerators physics is more convenient to use reference
particle and paraxial approximation pz>>px,py then:
x = (x,x",y,y', cAt, AE /E)
;  DPx , Py
= — Vo= —=
Pz P

x

At, AE-it s time and energy difference energy from reference
particle.



Beam phase space modification drift space only

If there is no coupling between X and Y we can work with 2D phase spaces
For example u=x ory

"divergent”

Eventually beam spreads out and hits the aperture

Focusing is needed. _
Vacuum pipe aperture

radius=a (+/- a)



Magnetic lattice

Usually the set of different kind of magnets is
needed in order to successfully propagate
charge beam through the system. %
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How can we say that these are quadrupoles?



Why magnetic field not electric field?

Ratio of magnetic and electric forces
Fy VB Fy

F=q(E+ v XB) F.  E FE=1

* For ultra-reletivistic particles v~c

- B=1T s equivalent to E=300MV/m!!!!
 Forlow energy (v=0.01c)

- B=1T is equivalent of E=3MV/m

* Electrostatic accelerators existed but the use of such systems are very
limited of low energy!!



The light optics similarity

Focusing: Defocusing:
lenses
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Bending magnets

 Adipole magnet with constant magnetic
field

* Positive particle coming in the screen
will bend to the right.

* Using combination of the dipoles one
could create any kind of transport lines.

lllllllllllll

¢
Bending angle 6 :—del:
p{] S

5

° [Bdl
Bp !

Where, p, 1s the momentum and Bp=p,/e

1s the momentum ‘rig1dity’ of

the beam.




Dispersion

e Particle with different momentum will be bend
on different angle

e Can cause beam quality degradation but also
used for some experiments.

i~ * Mask at ATF

Equidistant
Witness Drive Bunches

Bunch

° Q‘/OOOO—b

» Plasma

b Az=i sx az=h,




Quadrupoles

- -
_4':-,.’ &

B=B,(zx + x7)

* Due to special field symmetry focus beam in one
direction but defocus in other.

e Particles moving at axis are not experienced any force.

Beam direction

Sometimes in accel. physics ‘
especially in circular accel. (X,Z, -
S) coordinates are used / S

X



Quadrupoles(cont.)

e Particle displaced by (x,z) from the center

B=B,(zx + x2)

F=evBsx(zX + xz) = —evB,zz + evB,xx

the equations of motion become:

1 d°x eB, 1 d°z  eB,
pl 7 — X? pl ') — Z
vo dt©  ymv vo dt” Ymv
ﬂ'2 X . dzZ eB1
or =X =KX — = —KZ K =
ds* ds? where ymuv

When matrix transformation from entrance to exit of quadrupole :

1

1 .
)L @) ) (o o)
"7\ —VxsinykL cosvkL x0’ ’ ViesinhvkL - coshykL z0'

X zZ



Thin lens approximation

* For thin lens when K<<1/LA2

cos(VKL) \/I—Ksin(\m’L) . ( 1 0 ) ( 1 0 )
—VKsin(vKL)  cos(vVKL) "\-KL 1)\ - 1

 |f the quadrupole is thin enough, the particles
coordinate doesn’t change while momentum
change. The quad works almost as a optical

VA

lens... / .

8 1 . AX, = ?

f

* With only one difference: |t Focusin the one plane and
defocus in the other plane




Focus the beam in both directions.

Using doublets

Using optical analogy one can calculate
The combined f is:

.

| 1 1 d

'——IP ‘ ‘f;o:rrbr'ared N fl jz fljz

\h/.f'; / \_\\- ')
1 £2 What if f1 = -f2? fl—

fcmnbined — d

A quadrupole doublet is focusing in both planes.

Strong focusing by sets of quadrupole doublets with
alternative gradient. Could keep beam inside vacuum

chamber. //F\\Wﬂ
U R U\X/@\




Solenoid

A solenoid is a set of helical coils.
Typically, solenoid radius is smaller
than the its length.

Magnetic field is generated along
the axis line.

Solenoid couples X and Y motion.
Solenoid produced focusing in both
direction

1/f = efBzzdz/(ch)2

1400

Solenoids are preferable at low o 1
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