PHY 554. Homework 5.

(a) The closed orbit of a three-bump system is

$$
y(s)=\frac{\sqrt{\beta}}{2 \sin \pi \nu} \sum_{i=1}^{3} \sqrt{\beta_{i}} \theta_{i} \cos \left(\pi \nu-\left|\psi-\psi_{i}\right|\right) .
$$

Using the condition $y\left(s_{3}\right)=y^{\prime}\left(s_{3}\right)=0$, Then

$$
\left\{\begin{array}{l}
\sqrt{\beta_{1}} \theta_{1} \cos \left(\pi \nu+\psi_{13}\right)+\sqrt{\beta_{2}} \theta_{2} \cos \left(\pi \nu+\psi_{23}\right)+\sqrt{\beta_{3}} \theta_{3} \cos \pi \nu=0 \\
\sqrt{\beta_{1}} \theta_{1} \sin \left(\pi \nu+\psi_{13}\right)+\sqrt{\beta_{2}} \theta_{2} \sin \left(\pi \nu+\psi_{23}\right)+\sqrt{\beta_{3}} \theta_{3} \sin \pi \nu=0
\end{array}\right.
$$

where $\psi_{13}=\psi_{1}-\psi_{3}$ and $\psi_{23}=\psi_{2}-\psi_{3}$, we find

$$
\theta_{2}=-\theta_{1} \sqrt{\frac{\beta_{1}}{\beta_{2}}} \frac{\sin \psi_{13}}{\sin \psi_{23}}, \quad \theta_{3}=\theta_{1} \sqrt{\frac{\beta_{1}}{\beta_{3}}} \frac{\sin \psi_{12}}{\sin \psi_{23}} .
$$

(b) When $\psi_{31}=n \pi$, we find $\theta_{2}=0$, i.e. only two steering dipoles are needed for a local bump. Since $\psi_{32}=\psi_{31}-\psi_{21}=n \pi-\psi_{21}$, we have $\sin \psi_{32}=(-1)^{n-1} \sin \psi_{31}$, and $\theta_{3}=(-1)^{n-1} \sqrt{\beta_{1} / \beta_{2}} \theta_{1}$.

