Beam Cooling (Hadron)
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Introduction

* Beam cooling is to reduce beam temperature,
i.e. phase space volume, emittance and
momentum spread.

e Beam cooling processes does not violate
Liouville’s theorem since it involves non-
conservative forces, which typically depends
on the velocities of the particles to be cooled.
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Introduction

Why beam cooling is needed?

— Improve beam quality (higher density, smaller
angular spread): higher luminosity in collider,
brighter radiation in light source

— Compensation of heating: IBS, beam-gas
scattering, beam-beam interaction

— Beam accumulation (antiprotons, rare isotopes):
accumulate more beam from a weak particle
source



Electron Cooling: introduction

Electron beam to dump Electron beam from gun

Cooling section

<« Hadron beam

il
g \\ Electron cooling

was invented by
-~ :i o L s Gersh Budker in
| 1966

In the beam frame, cold electrons interact with warm ions and take
heat away from the ions.




Electron Cooling: Energy loss
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1. Derive Ap, in 10n's frame

2. Ap, 1s also the momentum change in the frame of <Ve>

3. Get the energy change of the electron 1n the frame of <ve> from
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since the total energy 1s conserved.



Electron Cooling: Energy loss

A Y Inthe frame of the movingion
electron e

The energy gained by
the electron is equal to
the energy loss by ion.
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Electron Cooling: Energy loss

e Back to the frame of the electrons’ average velocity,
the electron’s energy gain is

AE (b) ~ Ap; _ 2Z°%¢"
2m, myv,*(4zg,) b?

which has to be the energy loss by the ion.

272" Energy loss by a moving ion due to its
<— interaction with one electron sitting at

AElOSS (b) = o) 22
MV, (47[80) o) impact parameter b.




Electron Cooling: friction force

Energy loss by a moving ion due to its
passing through a slice of electrons with
velocity V, . (assuming electron spatial
density is a constant)

ze

bh. = 5
4re,myV,

min

i

b,.. ~ Debye length

bmax
— L.=In Buw | 210
Asice = 27[Ameb;‘: bAEk& (b) db Coulomb Logarithm: L, (bmmJ
dE_, " 4nnze (b
lon energy loss rate: d— =27n, j bAE, (b) db = . e - ln[ bmax ]
S Binin rnevei (472.80) min

Since the energy loss slows down the ion in the frame of the electron’s initial velocity, it is
equivalent to a friction force in the direction of V,—V, and can be defined as
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Electron Cooling: friction force

* The friction force due to electrons with velocity
distribution f (V) is

- 4nnZ’e'L. T V \7 VP Similar to Coulomb force but in
F = 4 _[ d Ve velocity space.
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Electron Cooling: friction force

For anisotropic Gaussian distribution of electrons’ velocity, numerical integration is

required. However, the asymptotic solution has been derived. iES _L]
248, 24°
AF, Vi) fv)= Q)7 &2, A
In the longitudinal direction (v,, = 0) (Fig. 5.6)
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Fig. 5.6 Shape of the "non-magnetised” longitudinal cooling force

AFL(Vip
] In the transverse direction (v, = 0) (Fig. 5.7)
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l - the forces are not independent of the ion relative velocities

V

el - for large ion velocities the forces scale as 1/(v; 2), suggesting that a beam with a
relatively large emittance will have a large cooling time

Fig. 5.7 Shape of the "non-magnetised” ransverse cooling force . for small velocities the forces are proportional (o v,



Electron Cooling: cooling rate

L ldy_ 1dE__F(
T, v dt p ds P
In lab frame: Ty jab =

my,

7/02-\/i ==

4rZ’e'nL, V

F (viA)/

) If 7,,is independent of t

For cold beam: F=-— ? )2‘ ‘3 (V)= 4rZ’e'nL, 1
e, ) |V, i)
T ’ m, (47¢,) ‘Vl‘
203 213
oy MV MM (47e) [ mm(472,) | &S 1
T E(v) Y 4rZen,l. ArZ’e'L, N, ,EC
_smm (47z,) c'ecS[ m'|v[" | 1 - .
=% 2 4 33 3 |7 Cooling time increases dramatically
drle Lc mc7, Ib with energy. Therefore, electron

N T e L

S: area of beam cross section

smm, (47, ) c'se

3 1

N LHO Z* 4mrr L, 1,

cooling is not efficient to cool high
energy beam.
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Introduct

Kicker

Sotchastic Cooling (transverse)

Stochastic cooling was

At kicker

_up

At pick

/ Nyquist theorem
&~ T,

invented by Simon van

der Meer in 1972.

Mix / randomize

A



Stochastic Cooling: cooling rate

For the i" particle, its transverse offset after one correction is
1 &
X =X = g(X), <X>SZWZXJ
s J=

2 2 _ 2

Xor =% ==20% (%), + 9" (X).

<X§>5_<X2>S:(_2g+g2)<x>i One turn kick is

random in nature.

For very large number of turns, we need to find out the average correction per
turn, i.e. the expectation value

E(0),)-E((¢), )= (-20+9") E((x)



Stochastic Cooling: cooling rate

* For random samples drawn from a distribution, the expectation value of the variance
of the sample is the same as the variance of the distribution

E((),)=(x)

e Central limit theory

Let {X;, X, ...X,,} be a random sample of size n drawn from distributions of
expected values given by p and variances given by 2. For large enough n, the
distribution of the sample average

1 n
S ==>.X%
is close to the normal distribution with mean p and variance o?/n.

Thus the expectation value of the sample average is



Stochastic Cooling: cooling rate

A<X2>=(—29+92)<X—2>

S 0N

Cooling due to self Heating due to neighbors
(Incoherent kick)

induced correction
(Coherent kick)

A<x2>=[(g—1)2 —1]<X—2>

S

In the ideal case (no noise, 1 turn good mixing
and no bad mixing), the optimal gain is 1 and the

optimal relative cooling rate is

T NsTrev } Nst Trev - Nb Tre\//

Full bunch length
| | 7, | . 2W Tb‘/ Revolution period

Heating
or
cooling

Heating

Gain

0

Assuming T, <7,

N,: total number of particles in a bunch



Stochastic Cooling: cooling rate

* Cooling rate of X .
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* For coasting beam, r, =T _ and N =N,




Stochastic Cooling: cooling rate

* In the presence of noise, bad mixing and non-ideal
good mixing, the cooling rate as well as the optimal

gain will be affected.

- % [2g(1 ~ M%) - 2(M+ U)] .

1
-

1-M?
0= Mt+U
1 W/[(1-M??
?O‘N( M+U )

The optimal cooling requires small U , small
M and large M .

U =E(x)/E((x).) is the ratio of the
expected noise to the expected signal
power, or noise to signal ratio.

M is the number of turns required for
good mixing / re-randomization.
(Typically, it is for a particle of typical
momentum error to move by one
sample length with respect to the
nominal particles. )

M =(lig /I )M is the number of
turns required for complete bad
mixing and | is the distance from
the pickup to the kicker



Not fully convinced? Test it on your pc.

1. Generate an array or random numbers of dimension N;
X( 5 Xy s Kgveeenrearueenuneenneesseenseesnseesseesneennne Xy
2. Calculate and record the variance of the array;

3. Group the array into N sub-group with each group having M=N/ N,,... random
numbers and calculate the average of each sub-group (i.e. errors to be corrected);

\(xl,xz,...xM}) (\ - ,XQM/) ............... ’(X(Ngice—l)-MH""XNs.iceM)
\ )

Y M Y Y
K =2% (X, (x)
i=1
4. Subtract each element of the array by its sub-group average (apply correction);

(xl = (X)yomX0 = O, oo (Kpcin = o X = (X,

Array after
c,2° Xc 3 O XC,N

correction C 1, oooooooooooooooooooooooooooooooooooooooooooooooooo

slice

5. Randomize the order of the elements in the corrected array X.generated in
step 3 to get a new series
Yis Yoo Yoo Yn

6. Repeat 2~5 with the new array Y



Standard Deviation

Numerical Testing Stochastic Cooling

As an example, a matlab script ‘SC_test.m’ to do the test will be

N = 6000 uploaded to the course webpage and you can play with it or
Ngice =10 write one of your own.
N, = 2000 e Test how N, , gain, noise affect the cooling rate
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Coherent electron Cooling

Coherent electron cooling is to use electron beam as the cooling media and to
cool ions stochastically.

» The general idea was proposed by Y. Derbenev in 1980.
» A scheme based on using FEL as an amplifier was proposed by V. N. Litvinenko in
2007.

E <E
Dispersion section g~
Hadrons Modulator (for hadrons) ,»’:
7
|
Electrons
Each ion imprint a density Fach delta-like density bump Each ign gets a kick
bump in the electron, (~pick- generates a wave-packets with detgrmlngd by 't5§|f and
up session of stochastic width of the FEL coherent DV its nelghbour§ in the
cooling) length, i.e. the sample length sample. (~kicker in SC)

(~amplifier in SC)




CeC Cooling Rate

One of the major advantage
of CeC is that the bandwidth

PAY AN < 2) . are orders of magnitude
<5 > 25 5 _i_ D’ wider than the traditional
Stochastic cooling, which
make it possible to cool high

é‘ — —g(ﬁfIm[K(Ag{)gfklg,]>/<5z> intensity ion beam.

Delay of ion with respect to the on-momentum ion

Incoherent diffusive kick, i.e. D = 02N /2
heating due to neighbours 8 Veff FEL coherent length
/
The number of particles in one N =N Ak + N, Ak
efft — {Vh 3 )

sample length / coherent length Vadmo., X Jdwmo.,

_ - & % N~ Efficiency of modulation. X~Z

Maximal cooling rate S max eff  for effective modulation.




