Transverse (Betatron) Motion

Linear betatron motion

Dispersion function of off momentum particle
Simple Lattice design considerations
Nonlinearities



Frenet-Serret coordinate system:

1. The tangential vector points toward the direction of beam

motion
2. We define the normal vector points outward from the
G curve. Magnetic field direction y. So that s =—x Xy

(electron for this case)

http://en.wikipedia.org/wiki/Frenet-Serret



Particle Position

Lorentz force: F =qg(E +V x B)

d . ympc’
F =—(ymx)= =—qfcB ndl
o= (mt) = qpcB,

d .
F, = ;(Wty) = qpcB,
! Reference Orbit
d : .V Bct d’x v’
I X) = X—-——)= —_
dt(m) ym( R) ym( FERpTE R)

How to transform from the original coordinate system into the Frenet-Serret coordinate

system?
6 = S @ Constant when
R R B, ~ x°or x*

2 0 2 0B
IX 1+ L0 Y L a2 ) =0
do B, o0x do B, ox Jo,

2 dzy
Zﬁ)§+(l_n)x=0 dgz"'ny:()

Z—’; = J1-n(-Asin\1-n6 + Bcos/1-nb) % = Jn(~CsinVn6 + Dcosv/n8)

Number of transverse oscillation in one beam
revolution ~ v1—7 /\/72, weak focusing!



For weak focusing, stable solution requires 0<n<1, which makes transverse
(betatron) oscillation having a tune (hnumber of circles per revolution)

Qx,Oy:\/l—n ,\/72 less than 1. The beam sizes in such machines scales with
CM/2 /(A=) /A CT /2 /nlTl /A
For a modern machine, especially light sources where smaller beam sizes are

required to achieve higher beam brightness, strong focusing is required => external
focusing magnets (quadrupoles) are often used.

AB
X"+ K (s)x=x—=, y'+K (s)y=F7
Lo

B
K (s)=—F K (s)=+—L
(5) F L (8) B

Higher order
magnet, usually field
errors

Natural focusing Focusing from
from dipoles guadrupoles



CROSS SECTION OF THE DIPOLE MAGNET WITH THE VACUUM CHAMBER
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For two dimensional magnetic field, one can expand the magnetic field using Beth
representation.

B =B (x,y)X+B,(x,))

B —_ 1 d(h.A,) __l 04, B - 1 d(h.A,) _ 1 04,
) h ay hs ay Y h 0X hs Ax

S S

For h;=1 or p=%, one obtains the multipole expansion:

1

n+l

B,+ B, = B, b, + ja, N+ ), A, - Re{Bo}; (b, + ja, \x + W}

b, :dipole, a, :skew (vertical) dipole; B, = Bb,, B, = Ba,,
b, :quad, a,:skewquad; B, =Bbx, B, =Bby, B,=-Bay, B =Ba~x,

b, :sextupole, a, : skew sextupole;

BL/)(By +jB.) = 1%};(@ + ja, N+ jy)
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We will learn how to optimize the arrangement of beam control elements in achieving
the wanted beam properties.
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Particle Position

How to solve the Hill’s equation?

AB AB
X"+ K (s)x=—">, y'+K (s)y=-—" S -
Bpo Bp

Ideal Linear accelerator:

x" + Kx (S)X =0, y" + Ky (S)y =0 Reference Orbit

N\

Let X represent x or y:

X"+ K(s)X =0,

X(s)

= (X'm

) = M(S,SO)(X(SO) )

X'(s,)

M(s,s,) is the betatron transfer matrix. For any two linearly independent solutions
Y., Y, of Hill's equation, the Wronskian is independent of time

(Iy' o W(s) = [det MW (sp)

W (y1,y9.5) = 195 — Y1 Yo,

Det(M(s,,s))=1




The focusing function is piecewise constant!

+ K (AsinVKs + BcosvKs
K(s)=1-K y=<Asinh\/Es+Bcosh\/Es
0 A+ Bs

cosvK (s—s,) ﬁsin\/f(s—so)

M(s,s,) =
{ = s — sp. —\/ESHI\/E(S—SO) COS\/E(S—SO)

( cos VK —-lr sin VK¢ K =0 f , l

v { > U: Iocusing quad.
—VEKsinVEKl  cos VKL i
l [ g : QTNQ O
M (ssg) = ¢ (() 1) K = 0: dnft space

cosh ,-‘Im(. L_sinh ,TM
— \ __ VIK \_ K < 0: defocussing quad.
| \/|K[sinhy/| K| cosh/| K|

In thin-lens approximation with € - 0, the transfer matrix for a quadrupole reduces to

10 | /10 1
-‘\[focusing — ( - l’f 1 ) : "”dofocrussmg — ( le 1 ) f — }1_1}6 |1\,‘(‘

9 eee



1 1 9B

1 oB
X"+K(s)X =0, K(s)=—F , K (s)== 95,

Bp ox Bp ox
Thin lens approximation: Let |K|{—1/f as {—0.

1. focusing quadrupole: i's
LsinVK/ e
M(s.s,) = cosK ! 7SI %(1 O) f
~JK sinVK! cosvK/ -y 1
2. de-focusing quadrupole:
1 0
v

cosh /| K |/ ﬁsmhwﬂl{w
VIK [smh|K |l cosh /| K|/
(cost  psin< 1/
3. Dipole: K (s)=1/p%.  M(s,s)=| " | -
\—;sm; COS;

M(s,s,) =

1 7/
4. Drift space: K=0 M(s,s,) = (O 1)



Sector dipole \/\":\/J / — \

\
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|

|

/2 / 8/2
| | g, </ \Q, P
cosL  psin- [ \ )/
p p - - )
M(s,s,) = » o
) / / N/
- ; Sin ; COS ; ‘ v
(a) sector dipole {b) rectangular dipole

{0 1 ()

where 4 is the entrance or the exit angle
of the particle with respect to the normal
direction of the dipole edge. Thus the ‘ |
edge effect with & > 0 gives rise to hori- (5
zontal defocussing and vertical focusing.

Using edge focusing, the zero-gradient synchrotron (ZGS) was designed and constructed in
the 1960’s at Argonne National Laboratory. The ZGS was made of 8 dipoles with a
circumference of 172 m attaining the energy of 12.5 GeV. Its first proton beam was
commissioned on Sept. 18, 1963. See L. Greenbaum, A Special Interest (Univ. of Michigan
Press, Ann Arbor, 1971).



The most general representation of the matrix M(s) with unit
modulus is given by the Courant-Snyder parameterization.

cos®+asin® Lsind _
M(s) = , . =/cos®+Jsind
—ysinP cos® —asin d
1 O a
I = , J= b , Jo=-1I, or Br=1+a’
0 1 -y -«

The ambiguity in the sign of sin can be resolved by requiring B to be a positive definite
number if |Trace(M)| £ 2, and by requiring Im(sin®)>0 if |Trace(M)| > 2. The definition of
the phase factor is still ambiguous up to an integral multiple of 2mit. This ambiguity will be

resolved when the matrix is tracked along the accelerator elements. Using the property of
matrix J, we obtain the De Moivere’s theorem:

M* = (Tcos® + Jsin®)* = Icosk® + J sin k.
:\I ! — I('(_)S P — ] Sill (I’.



The necessary and sufficient condition for stable orbital motion is that all matrix
elements of the matrix [M(s)]™" remain bounded as m increases. Let A, A, be the
eigenvalues and v,, v, be the corresponding eigenvectors of the matrix M. Since
M has a unit determinant, the eigenvalues are the reciprocals of each other, i.e.
A=1/A,, and A;+A,=Trace(M). The eigenvalue satisfies the equation

A* =Trace(M)A+1=0

Let Trace(M) = 2 cos(D), where O is real if Trace(M) < 2, and complex if Trace(M)
> 2. The eigenvalues are A;=e/® and A,=e7®, where @ is the betatron phase
advance of a periodic cell. Expressing the initial condition of beam coordinates
(Xo, X'p) a@s a linear superposition of the eigenvectors:

(‘ko )
av, + bv,
'O

we find that the particle coordinate after the mth revolution becomes
S ) (e A'v, +bA
= =ald v, + v,
X' X',
The stability of particle motion requires that A, and A,™ not grow with m. Thus
a necessary condition for orbit stability is to have a real betatron phase advance

®, or Trace(M)<?2



Example: FODO cell

QF /2 B QD B

A FODO cell is a basic block in beam

transport, where the transfer matrices
QF /2

|

for dipoles (B) can be approximated by
’_‘ drift spaces, and QF and QD are the

focusing and defocusing quadrupoles.

FODO CELL

v (3009096 50, )
—5; 1JN0 1)\ 1)J\0 1/)\—5 1
_ ( 1 — % 2L1(1+§;))
cos®+asin® Lsind
M(s) = _ :
—ysinP cosP —asinP
L
cos ® =2 Tr(M) 2L1(1+2}) 2Ll(1+sin(§)
I o I P="do = sno
cos®=1-—-, sin—=— a=0
2 f 2 2f



Example: FODO cell

HIDg CalL HIDg CalL HIDg ¢l

1 0\/1 L\(1 0\l £\ [cos®+asin® [sind
Z 101 |\ F-1)01 | —ysin® cos® — asin®

1 0\/1 &\ /cos®+asin® [sind
1ho1 | —ysmP cos® —asind
1 O)(
4

L cos®+asm® LsmP
1=
Questions:

—ysmP cosP — asin P
1) Will ® of these above matrix be identical?
2) Will a and B of these matrices be identical?

3) What are the meanings of these parameters?
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Stability of accelerator cells: FODO cell example

HIDg CalL HIDg CalL HIDg ¢l

F/2 B QD B F/E/e B QD B F/e/e B L1 B Ffi

_1 11 L1 []
1 1 1

1 0yl L\(1 0\1 L\ [cos® +a sin® [ sind,
F1No1 \ L 101 ) -y, sind, cos®_ —a, sind.

1 0\l L)1 01 L\ [cos®_ +a sin® [ sind,
Lo ){st1)lo1) (-y.sind, cos®, — . sin D

L 2
COS(I)x=1+ _L_ L =1+2X2—2X1—2X1X2
o f 2ff e
L L 2 0.8 [ /
cosd_ =1-—+—- L =1-2X,+2X,-2X,X, -
L f2s,
Stability condition: (necktie diagram) e

|cos® _|<1, |cosD_|=]1.
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TEVATRON
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A half-cell is composed of a quadrupole, a mini-straight section for correction coil
spool piece, and 4 dipoles. A cell deflects the beam by 3.59.

A0
Collider Aborts

~ RF
150 GeV p INJ
150 GeV prINJ

Defocusing

Tevatron
Tunnel

17 cells for each
sector. Since each
sector bends the
beam 60 degrees.

DO Detector
and Low f§

|

p Abort

The inductance of a typical “half cell”, that is the
inductance of either the upper or lower bus through
the cell, is about 0.18 H. The inductance for the
entire ring of 36 H. The inductive stored energy at 1

TeV (4440 A) is 350MJ.
: LI* = %(36[/ K4440A4) = 3.50x10% Joules.
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