
About these notes: these notes are based on the US Particle Accelerator 
School (USPAS) series on plasma accelerators, which were taught by Alec 
Thomas, Warren Mori, and myself in winter of 2019.



Preamble: relativistic electrodynamics: 

A prerequisite for this class is being well-versed in electrodynamics and 
relativity. In particular, you are expected to know Maxwell’s equations













as well as the fundamental relations in special relativity
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Strength parameters for single-particle motion in laser and beam fields

We start with the equation of motion for a particle in the fields of a laser or 
particle beam, ignoring force terms due to radiation pressure, etc:







Consider two idealized situations


Linearly polarized laser field of an infinite plane wave 
1.
An infinite cylinder of charge moving at              at radius       with uniform 2.
density of


These two cases are selected because they have simple solutions
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Another thing to note is the importance of constants of motion, which greatly 
simplified the steps needed to get to the solution here and will be used 
extensively throughout the class. So go ahead and memorize these now! 



















Consider a test particle within the beam experiencing the fields
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The implied mechanical dynamic is that as the radius of motion increases, 
the momentum decreases. The maximum value for the oscillation 

for the beamThis is an importantparameter as it allows us to

convert a multi dimentioul equations into a ID eye Recall

from electrostatics
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momentum, corresponding to r=r0 is given by

























































Normalizations: 

In this section, we made extensive use of the normalized parameters, where 
we divided a quantity by a “natural scale”, e.g.         . Normalized quantities 
are very useful because they allow you to understand the relative strength of 
a parameter, e.g. a laser pulse with                     creates only a minor 
perturbation (regardless of what combination of intensity and wavelength 
create that value of      ), whereas a laser with               creates highly 
nonlinear phenomena. The normalized parameters are used extensively in 
description of plasma accelerators, so here we review them for the quantities 
in our studies. 

We have already seen the natural scales for velocity and momentum: 
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Particle number density is commonly used as part of                 In the context 
of plasma, we normalize this variable to the background (or initial) density:
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For the scalar and vector potential, we have also already seen the 
normalizations:

From the definition of 

















The choice of         in the normalizations above depends on the relevant 
frequency in the problem of interest. Several possible choices include: 












































Using Ampere's Law it can be shown that once normalized

Mo will also become
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The co-moving coordinates 

This is one of the most important concepts and a source of much confusion 
for those who are just starting out the study in this field. Because this fields 
includes drivers of physical phenomena that are moving at near the speed of 
light, many variables depend on the quantity            , rather than on ‘t’ or ‘z’ 
alone. Therefore, a new coordinate system is developed to work with this 
explicit dependence:











Physical interpretation: Those of you who have taken laser physics classes 
will immediately recognize this variable as the normalized phase of a laser 
pulse traveling in vacuum, i.e. 

 





The phase velocity is calculated as the velocity with which a “particle” would 
need to move to be at a constant phase. Mathematically, this is equivalent to 





















Physically then, this new variable,    , indicates the location of stationary 
phase for a laser moving at the speed of light.  
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Similarly, a particle moving at the speed of light will maintain its position in

while it is moving in the Cartesian coordinates. 



Note that while you may see this coordinate transform being referred to as 
“going to the speed of light frame”, there are no Lorentz transforms 
performed in this operation, and as such, this is not a proper change of 
frame. I prefer to call this “a change of coordinate systems to a co-moving 
variable”, because this operation is simply a relabeling of variable that allows 
for much more intuitive interpretation of the equations of motion and fields.  



Derivatives in this new coordinate system can be obtained with the use of 
chain rule: Recall,









































Total time derivative: recall that the total derivative is meaningful when all the 
variables are a function of time, which is the case when we look at a single 
particle. In that case,  
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This means that the wave equation operator becomes













This means that if there are no explicit time variation, i.e.                ,the the 
wave equation reduces to a 2D Poisson-like solution 







Another useful situation to consider is when the object is dependent on 

                , instead of             . This is the scenario for laser drivers for 
instance, which have a group velocity in plasma slower than the speed of 
light in vacuum. 
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Developing Exact Solutions and Constants of Motion Using the Framework 
of Co-Moving Variables: We start by reframing the equations of motion in 
terms of the scalar and vector potentials






































In this case It is not exactly zero but the time variation isslow
F Ust z Flat Z Cub C t

fees cub c t

Jf CE C Y Cfg l l E

If we were to cheat just set n c how good an

approximation would we be making
i E litho Ii

e g for the beam driver at SLAC
where Tb lot I E 158

So there would be a correction almost on the order on 1 in

a billion So these approximations are pretty accurate

Equation of motion Ipf 9É ExB momentum eyn

P IE g E É

E If Im IE Em that tacoma 447
Fa rmc Tue

rmc 9 I É energy eyn

Substitute It
É JAE TA

BI Ex I







































This set of equations are incredibly important in this class & you should 
memorize them!

The top equation is an alternative formulation of the momentum equation. If 
the right hand side is zero for some reason, then we recover the conservation 
of canonical momentum in Classical Mechanics. These equations also 
include the seed of the ponderomotive force, when ‘v’ in the second equation 
is replaced by a term that has the vector potential. 



One of the primary constants of motion in the plasma acceleration field is 
obtained by combining the ‘z’ component of the first equation with the 
second equation to get the following scalar equation: 





If we change the variables to the co-moving coordinates and drop the 
primes, we get:
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This is a very important constant of motion, and it can also be derived from 
the analysis of the Lagrangian of the system (see Appendix).



One specific case that will be very useful later is the case of a particle that 
starts from rest in the region where there are no fields. In this case, the 
constant of motion becomes: 















































Single Particle Equation of Motion in the Fields of a Laser

So now, let’s look at the equation motion for an electron in a laser field and 
then in the field of a beam. 



Consider a plane laser pulse (i.e. uniform transverse spatial profile) with a 
temporal profile moving along the ‘z’ direction 
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A plane laser field in vacuum can be described by a transverse only vector 
potential, which is a function of      only.  







This motion is more complicated than before because now we are going to 
have an electron start out in front of the laser where there are no fields. The 
electron will get accelerated in ‘z’ also and will spend more time in one part 
of the laser than another. But while the motion in time is very complicated, 
the co-moving coordinates allow for a simpler understanding of this motion. 









Long before laser arrives, we assume that the electron is at rest & the 
equation of the constant of motion becomes 





The transverse component of the momentum equation (Eqn. 14) becomes













If the particle is initially at rest, then this constant is zero, which means 
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From Eqn. 19, we see that when we are in a relativistic regime (i.e.          ), the 
longitudinal momentum actually becomes larger than the transverse. Since 
the force of the magnetic field depends on the velocity, the importance of the 
magnetic field is dependent on this parameter as well. 



The results obtained so far don’t depend on the longitudinal shape of the 
magnetic field. Let’s constrain the problem slightly by considering a specific 
form of laser field: 
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Notice that these equations describe a 

parabola in phase space. Also note that

      is a positive quantity. 







Next, the position of the particle can be found through integrating the 
momentum equations:















































If a0 was constant, it would be trivial to integrate, but even if it is not, one can 
integrate by parts to get
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Assuming all orders of the derivatives for        to be zero at          (i.e. the 
pulse has not arrived yet) allows us to develop an infinite series solution for               
.       ; i.e. the second integration by parts would give: 

































This is the same solution as we would get if a0 was constant, except that 
now the solution is modulated by the slowly varying amplitude of the laser 
pulse. 



Likewise, for           we get 













We can treat the fast oscillation term in the same way as we did for “x”, 
keeping the lowest order of fast oscillations modulated by the laser envelope, 
but this cannot be done for the slow drift term, and that one just has to get 
integrated. Let’s look at the results for several canonical cases: 
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These two cases are illustrated in the figures below. The Gaussian vector 
potential is implemented for both set. The momentum equations are 
implemented exactly as above and the ‘z’ and ‘x’ positions are calculated by 
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Note that at how ao ao so Vaso meaning that if the
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numerically integrating the momentum along     in each respective direction. 



Case 1. Plane Wave

The plane wave is achieved by choosing the variables such that                 , 
i.e. the pulse contains many fast oscillations, i.e.













 













The top row shows the position and the bottom row shows the momentum 
curves. Note these important features:
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The position drift in ‘z’ is linear, indicating a constant drift velocity as •
expected

The “figure 8” curve that emerges when ‘x’ is plotted against ‘z’ (with the •
drift taken out) is a very famous curve and can be used to understand the 
radiation due to this motion. It also shows that ‘z’ oscillates at twice the 
frequency of ‘x’

The momentum curves plotted individually as a function of phase show •
sinusoidal oscillation with ‘z’ oscillating with twice the frequency of ‘x’

Plotted against each other, the momentum curves trace a parabola as •
expected, with the maximum of       being equal to      and the maximum of       
.    being equal to           as expected. 






Case 2. Gaussian Wave

Now we are going to give the wave an 
envelope by the proper choice of      with 
respect to        :
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Again, the top row shows the position and the bottom row show the 
momentum curves. Note the following important features of these curves


The envelope now covers only a few periods. 
•
The ‘x’ position just oscillates about a centroid as it follows the laser pulse. •
The ‘z’ curve shows a drift again, but now the drift is not linear. So if we 
took the derivative of the drift to get the velocity, unlike the plane-wave 
case where we would get a constant velocity, now we would get a varying 
velocity, which implies an acceleration. This implies a time-averaged force, 
which is called a ponderomotive force, which we will get back to later. 

The momentum curves follow the vector potential, so one can see the •
amplitude of oscillation of momentum curves following the envelope of the 
vector potential. 

The longitudinal period oscillates at the second harmonic and is only •
positive. So while might think of the electron moving back and forth in the 
oscillating field of the laser, in the longitudinal direction, the electrons are 
only pushed forward. 

Looking at the momentum phase space (the right curve) one can see •
however that the relation between the momentum curves stays the same 
as before even though now the amplitude of the momenta are changing. 
However because the amplitude of momenta are changing, the peaks are 
not reached during every oscillation. Nevertheless the particle in phase 
space still traces the parabolic curve. 




Note that so far, we have assumed a transversely uniform laser pulse. In 
reality, laser pulses have finite width, which complicated the problem, but for 
now, we are going to leave this topic and look at a particle beam. 
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Single Particle Equation of Motion in the Fields of a Particle Beam Driver

Assume we have a cylindrically symmetric beam traveling with negligible 
focusing effects (e.g. because of a long focal length optic)



















For a driver that is moving at a velocity close to the speed of light, we can 
often enormously simplify the problems by introducing the quasistatic 
approximation:  
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With this quasistatic approximation, and assuming that the fields associated 
with accelerating the beam have propagated far away, we calculate the fields 
starting from the Maxwell’s equations in the Cartesian coordinates in terms 
of potentials and in the Lorentz Gauge: 
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The two equations above are very important as they completely define the 
vector potential and its relation to the scalar potential. Scalar potential in turn 
can be solved from equation 29, which is a 2D Poisson’s equation. Moreover,   

















Assuming cylindrical symmetry, we can solve for the fields using the 
Maxwell’s equations: 


Also from 280 012 1 0

Boundary condition At 20 at open boundary

since At o satisfies both equation320 the boundary
condition the uniqueness theorem dictates that AL o is the

only solution A o 330

ZzAz La Je o 340
In the co moving coordinate

It It t 3 Effie off o

Iz Ig t
f o in the comoving coordinate

Leg Aza o

From 31 35 considering the open boundary condition

360
A1 0

4 10 Az o Ml Bz l 3

i e The constantof motion equation becomes the same as the

Laser case Ceyn 17 we can takethe same approach
to solving the equations of motion as in the Laser field





































Physically, this is understood as the field lines bunching transversely 



































For an electron beam, the directions are reversed. 



So far, we haven’t said anything about the profile of the beam. The only 
stipulation has been that the beam is highly relativistic and cylindrically 
symmetric. Now we look at the motion of a particle in the field of the beam: 
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In general, this is fairly complicated, but as we see later, we are interested in 
a tightly focused beam, and we want to look at particles outside of this 
beam. So choose a beam with compact support, i.e. a beam with nonzero 
charge density only up to radius 
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For a top-hat beam,
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