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Matrix: definition and properties

A =

a11 a12 ... a1m

a21 a22 ... a2m

... ... ... ...
an1 an2 ... anm

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Addition: A + B = C⇔ aij + bij = cij
Multiplied by a constant:   kA = B⇔ kaij = bij
Equality:      A = B⇔ aij = bij
Multiplication (inner product):   AB = C⇔ aikbkj

k
∑ = cij

AB( )C = A BC( ),      A B +C( ) = AB + AC

AB ≠ BAIn general Multiplication demands that A has the same 
number of columns as B has rows.



Matrix: special cases I

• Identity matrix: AI = IA = A     for   ∀A

I =

1 0 ... 0
0 1 ... 0
... 0 ... ...
0 0 ... 1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Iij = δ ij =
1   for i = j
0   for i ≠ j

⎧
⎨
⎪

⎩⎪

• Diagonal matrix:

A =

a11 0 ... 0
0 a22 ... 0
... 0 ... ...
0 0 ... ann

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

aij = 0   for  i ≠ j

AB = BA

If A and B are both diagonal 
matrix, they are commutative:



Matrix: special cases II
• Block diagonal matrix:

• Triangular matrix:

A and Ai are square matrix.

U =

a11 a12 ... a1n

0 a22 ... a2n

... ... ... ...
0 0 ... ann

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

L =

a11 0 ... 0
a21 a22 ... 0
... ... ... ...
an1 an2 ... ann

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Upper diagonal matrix: elements 
below diagonal are all zero

Lower diagonal matrix: elements 
below diagonal are all zero



Matrix V: transpose matrix

• A matrix, B, is called the transpose matrix of a matrix 
A if

The transpose matrix is often denoted as       ,
i.e.     

• A square matrix A is called an orthognal matrix if 
•
• A square matrix A is called symmetric matrix if 

and anti-symmetric if 

Aij = Bji

AT

Aij = AT( ) ji
AT = A−1

AT = A AT = −A



Matrix: trace
• In any square matrix, the sum of the diagonal 

elements is called the trace.

Tr A( ) = aii
i
∑

• A useful property: Tr AB( ) = Tr BA( )

• In general, Tr ABC( ) = Tr BCA( ) ≠ Tr BAC( )

• Trace is a linear operator:
Tr A + kB( ) = Tr A( ) + k ⋅Tr B( )



Matrix: determinant of a matrix

• For a square matrix,

• The determinant

is called the determinant of matrix A and is 
denoted by det(A).

A =

a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

D =

a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann

= det A( )



Determinant I

D =

a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann

n columns

n rows = ε ijk⋅⋅⋅a1ia2 ja3k ⋅⋅⋅
i, j ,k
∑

ε ijk⋅⋅⋅ =

1 if i, j,k...( )  is even permutation of (1, 2, 3...)

−1 if i, j,k...( )  is odd permutation of (1, 2, 3...)
0 if any of the two indices is repeated

⎧

⎨
⎪⎪

⎩
⎪
⎪

ε ijk⋅⋅⋅ is Levi-Civita symbol

ε ijk⋅⋅⋅l⋅⋅⋅m⋅⋅⋅ = −ε ijk⋅⋅⋅m⋅⋅⋅l⋅⋅⋅



Determinant II

D =

a11 ... a1 j ... a1n

a21 ... a2 j ... a2n

... ... ... ... ...

... ... ... ... ...
an1 ... anj ... ...

= Cijaij
i
∑

Mij =

a11 ... a1 j ... a1n

... ... ... ... ...
ai1 ... aij ... ain
... ... ... ... ...
an1 ... anj ... ann

n-1 columns

n-1 rows

a11 a12 a13

a21 a22 a23

a31 a32 a33

= a11

a22 a23

a32 a33

− a21

a12 a13

a32 a33

+ a31

a12 a13

a22 a23

A determinant of n dimension can be expanded over a column (or a row) into a sum of n determinants 
of n-1 dimension:

Cij = −1( )i+ j Mij
is called the ijth cofactor of D.



Determinant III
• Multiplied by a constant

a11 a12 a13

a21 a22 a23

a31 a32 a33

=
a11 + ka12 a12 a13

a21 + ka22 a22 a23

a31 + ka32 a32 a33

a12 ka12 a13

a22 ka22 a23

a32 ka32 a33

=
0 a12 a13

0 a22 a23

0 a32 a33

= 0

• The value of a determinant is unchanged if a multiple of one column (row) is 
added to another column (row)

• A determinant is equal to zero if any two columns (rows) are proportional

ka11 a12 a13

ka21 a22 a23

ka31 a32 a33

= k
a11 a12 a13

a21 a22 a23

a31 a32 a33



Linear equation system
• Existence of non-trivial solution of homogeneous equations

a11x + a12y + a13z = 0
a21x + a22y + a23z = 0
a31x + a32y + a33z = 0

⎧

⎨
⎪

⎩
⎪

x ⋅D ≡ x ⋅
a11 a12 a13

a21 a22 a23

a31 a32 a33

=
a11x + a12y + a13z a12 a13

a21x + a22y + a23z a22 a23

a31x + a32y + a33z a32 a33

= 0

• Thus a set of homogenous linear equations have non-trivial solutions 
only if the determinant of the coefficients, D, vanishes.

Similarly,                       and y ⋅D = 0 z ⋅D = 0



Matrix: properties of the determinant of a matrix

• Some properties of the determinant of matrices
o

o

o det AB( ) = det A( )det B( )
det kA( ) = kn det A( )

ε ijk ...aαiaβ jaγ k ...
i, j ,k ...
∑
= εαβγ ... ε ijk ...a1ia2 ja3k ...

i, j ,k ...
∑

= εαβγ ... A

AB = ε ijk ... AB( )1i AB( )2 j AB( )3k ...
i, j ,k ...
∑

= ε ijk ...A1αBαiA2βBβ jA2γ Bγ j ...
α ,β ,γ
∑

i, j ,k ...
∑

= A1αA2βA2γ ...
α ,β ,γ
∑ ε ijk ...BαiBβ jBγ j ...

i, j ,k ...
∑⎧⎨

⎩⎪

⎫
⎬
⎭⎪

= B εαβγ ...A1αA2βA2γ ...
α ,β ,γ
∑

= A B

det AT( ) = det A( )
ε ijk ...aβiaα jaγ k ...

i, j ,k ...
∑
= ε jik ...aβ jaαiaγ k ...

j ,i,k ...
∑

= ε jik ...aαiaβ jaγ k ...
i, j ,k ...
∑

= − ε ijk ...aαiaβ jaγ k ...
i, j ,k ...
∑

(1)

(2)

(3)

Proof of 
det(AB)=det(A)det(B):



B is called the inverse matrix of A and 
often denoted by         , i.e. 

Matrix IV: inversion

• Inversion of a square matrix A is to find a 
square matrix B such that

AB = BA = I

A−1

AA−1 = A−1A = I

• One way to find the inverse matrix is by

A−1( )ij =
Cji

A
,     where Cji   is the jith   cofactor of A



Matrix VI: similarity transformation
and diagonalization 

• Two matrix, A and B, are called similar if there 
exists a invertible matrix P such that

and the transformation from A to B is called   
similarity transformation.

• Diagnolization of a matrix, A, is to find a 
similarity transformation matrix, P, such that

is a diagonal matrix:      

B = P−1AP,

P−1AP



Matrix VII: diagonalization

• If we look at the jth column of the second equation, 
it follows

P−1AP =

λ1 0 ... 0
0 λ2 ... 0
0 0 ... 0
0 0 0 λn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

or    AP = P

λ1 0 ... 0
0 λ2 ... 0
0 0 ... 0
0 0 0 λn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

aik pkj
k
∑ = pikλkδ kj

k
∑ = λ j pij

Defining a nx1 matrix (i.e. a column vector)            
such that P j

i
= pij      (note: j is fixed)

Equation (*) becomes:

(*)

A P j = λ j P
j

PJ



Matrix VIII: eigenvalue and eigenvector 

• For a matrix A, a vector matrix X is called an 
eigenvector of A if

where      is called the eigenvalue associated 
with the eigenvector X.

• The eigenvalues are found by solving the 
following polynomial equation

A ⋅X = λX
λ

A − λI( ) ⋅X = 0 ⇒ det A − λI( ) = 0



Defective Matrix
• Not all square matrix can be diagonalized:

A = 2 −3
3 −4

⎛
⎝⎜

⎞
⎠⎟

; det A − λI( ) = 2 − λ −3
3 −4 − λ

= 0 ⇒ λ +1( )2 = 0 ⇒λ = −1

2 −3
3 −4

⎛
⎝⎜

⎞
⎠⎟

x1

x2

⎛

⎝
⎜

⎞

⎠
⎟ = −

x1

x2

⎛

⎝
⎜

⎞

⎠
⎟ ⇒

3x1 − 3x2 = 0
3x1 − 3x2 = 0

⎧
⎨
⎪

⎩⎪
⇒

x1

x2

⎛

⎝
⎜

⎞

⎠
⎟ =

1
1

⎛
⎝⎜

⎞
⎠⎟

;

We end up with only one eigenvector.
• A square matrix that does not have a complete set of 

eigenvectors is not diagonalizable and  is called a 
defective matrix.

• If a matrix, A, is defective (and hence is not similar to a 
diagonal matrix), then what is the simplest matrix that A 
is similar to?



Jordan form matrix
• Definition: a Jordan block with value is a square, upper

triangular matrix whose entries are all on the diagonal, all 1
on the entries immediately above the diagonal, and zero
elsewhere:

λ
λ

1D:

2D:

3D:

• Definition: a Jordan form matrix is a block diagonal matrix 
whose blocks are all Jordan blocks

• Theorem: Let A be a nxn matrix. Then there
is a Jordan form matrix that is similar to A.
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Symplectic Matrix
• As long as the system has a Hamiltonian, the Jacobian matrix,        

, which describe the motion of the particles, satisfies

• A matrix satisfying condition (**) is called a symplectic matrix.
– inverse: 
– if M and N are both symplectic, then their product, MN, is 

also symplectic
– if M is symplectic, MT is also symplectic

MTSM = S           (**)
Mαβ =

∂Xα

∂ X0( )β

S =

S1D 0 ... 0
0 S1D ... 0
... ... ... ...
0 0 0 S1D

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

; S1D = 0 1
−1 0

⎛
⎝⎜

⎞
⎠⎟

MTSM = S⇒ SM TSM = S2 = −I ⇒ −SM TS( )M = I ⇒ M −1 = −SM TS

MN( )T S MN( ) = NTM TSMN = NTSN = S

MTSM( )−1
= −S⇒ M −1S M T( )−1

= S⇒ S = MSMT ⇒ MT( )T SM T = S



Symplectic Matrix II

• If λ is eigen value then 1/λ is also an
eigenvalue and the multiplicity of λ and 1/λ is
the same.
– It implies that  the eigenvalues are coming in pairs 

{λ, 1/λ}. 
• As a consequence of above property, the 

determinant of a symplectic matrix is 1.



Symplectic Matrix
• If a motion of a particle in n-D space can be 

described by a Hamiltonian, H, it follows

We can write above equations into a matrix form: 
!xi =

∂H
∂pi  

!pi = − ∂H
∂xi

for    i = 1,2...n

 

!X = S ∂H
∂X

⇔ !X( )α = Sαβ
∂H
∂X

⎛
⎝⎜

⎞
⎠⎟ β

  ∂H
∂X

=

∂H
∂x1

∂H
∂p1

...

...
∂H
∂xn
∂H
∂pn

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

for    α ,β,γ = 1,  2,  ...,  2n

 

X =

x1

p1

...

...
xn
pn

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

;     !X =

!x1

!p1

...

...
!xn
!pn

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

;   S1D = 0 1
−1 0

⎛
⎝⎜

⎞
⎠⎟

S =

S1D 0 ... 0
0 S1D ... 0
... ... ... ...
0 0 0 S1D

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

; 



Symplectic Matrix
• Let M to be the Jacobian matrix of a map (for linear 

motion, this is the transfer matrix)

where X is the coordinate vector at some final   
location s and X0 is the cooridnates vector at 
the initial location s=0
• It can be shown that                         , which means                 

does not change with s. When the particle   
is still at its initial location, M is a unit matrix, and 
hence  

Mαβ =
∂Xα

∂ X0( )β

d
ds

M TSM( ) = 0

MTSM

MTSM = I TSI ⇒ MTSM = S


