Difference between revisions of "PHY543 spring 2021"

From CASE
Jump to: navigation, search
(Main Texts and suggested materials)
(Lecture Notes)
Line 62: Line 62:
 
== Lecture Notes==
 
== Lecture Notes==
 
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 1: Introduction]''', by Prof. Belomestnykh
 
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 1: Introduction]''', by Prof. Belomestnykh
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 2: Introduction]''', by Dr. Posen
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 3: Introduction]''', by Prof. Belomestnykh
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 4: Introduction]''', by Prof. Belomestnykh
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 5: Introduction]''', by Dr. Posen
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 6: Introduction]''', by Dr. Posen
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 7: Introduction]''', by Dr. Posen
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 8: Introduction]''', by Dr. Petrushina
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 9: Introduction]''', by Dr. Posen
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 10: Introduction]''', by Prof. Belomestnykh
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 11-12: Introduction]''', by Dr. Posen
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 13: Introduction]''', by Dr. Petrushina
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 14: Introduction]''', by Dr. Posen
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 15: Introduction]''', by Prof. Belomestnykh
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 16: Introduction]''', by Prof. Belomestnykh
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 17: Introduction]''', by Prof. Belomestnykh
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 18: Introduction]''', by Dr. Posen
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 19: Introduction]''', by Prof. Belomestnykh
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 20: Introduction]''', by Prof. Belomestnykh
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 21: Introduction]''', by Prof. Belomestnykh
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 22: Introduction]''', by Mr. Klebaner
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 23: Introduction]''', by Mr. Klebaner
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 24: Introduction]''', by Dr. Posen
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 25: Introduction]''', by Prof. Belomestnykh
 +
*'''[https://drive.google.com/file/d/1_M5AsSUmmzbmPgYp-vaOQhjFNanrnRuq/view?usp=sharing Lecture 26: Introduction]''', by Prof. Belomestnykh
  
*'''[[media:PHY564_Lectures_1&2_compressed.pdf|Lectures 1 and 2: Least Action Principle, Geometry of Special Relativity, Particles in E&M fields]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_3_2020.pdf|Lecture 3: Linear Algebra]], by Prof. Wang'''
 
*'''[[media:PHY564_Lecture_4_compressed.pdf|Lecture 4: Accelerator Hamiltonian]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_5_compressed.pdf|Lecture 5: Hamiltonian Methods for Accelerators]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_6_compressed.pdf|Lecture 6: Matrix function, Sylvester formulae]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_7_compressed.pdf|Lecture 7: Matrices of arbitrary accelerator elements]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_8_compressed.pdf|Lecture 8: How to build a magnet]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_9_compressed.pdf|Lecture 9: Linear accelerators and RF systems]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_10_compressed.pdf|Lecture 10: Periodic systems: stability and parameterization]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_11_compressed.pdf|Lecture 11: Full 3D linearized motion in accelerators]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_12_compressed.pdf|Lecture 12: Synchrotron oscillations]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_13_compressed.pdf|Lecture 13: Action and phase variables]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_14_15_compressed.pdf|Lectures 14 & 15: Solving standard accelerator problems]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_16_compressed.pdf|Lecture 16: Effects of synchrotron radiation]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_17_compressed.pdf|Lecture 17: Fokker-Plank and Vlasov equations]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_18_19_compressed.pdf|Lectures 18 & 19: Eigen beam emittances and parameterization]],  by Prof. Litvinenko'''
 
*'''[[media:PHY564_Lecture_20_2020.pdf|Lecture 20: Collective Effects I: Wakefield and Impedances]], by Prof. Wang'''
 
*'''[[media:PHY564_Lecture_21_2020.pdf|Lecture 21: Collective Effects II: Examples of Collective Instabilities]], by Prof. Wang'''
 
*'''[[media:PHY564_Lecture_22_2020.pdf|Lecture 22: Free Electron Lasers: Introduction and Small Gain Regime]], by Prof. Wang'''
 
*'''[[media:PHY564_Lecture_23_2020.pdf|Lecture 23: Free Electron Lasers: Free Electron Lasers: High Gain Regime]], by Prof. Wang'''
 
*'''[[media:PHY564_Lecture_24_2020.pdf|Lecture 24: Hadron Beam Cooling]],  by Prof. Wang'''
 
*'''[[media:PHY564_Lecture_25_2020.pdf|Lecture 25: Nonlinear dynamics: Part I, Chromaticity and its correction]],  by Prof. Jing'''
 
*'''[[media:PHY564_Lecture_26_2020.pdf|Lecture 26: Nonlinear dynamics: Part II, Nonlinear resonances]],  by Prof. Jing'''
 
*'''[[media:PHY564_Lecture_27_2020.pdf|Lecture 27: Nonlinear dynamics: Part III, Normalization of maps]],  by Prof. Jing'''
 
  
  
  
 
+
*'''Final Exam due May 10'''
*'''Final Exam, December 16'''
+
*'''Part 1:  Lead Prof. Jing'''
+
*'''3:00 pm Xiangdong Li, Free electron lasers'''
+
*'''3:30 pm  Jiayang Yan, Laser-Plasma Accelerators'''
+
*'''4:00 pm  Nikhil Bachhawat, e+e- colliders'''
+
*'''Part 2:  Lead Prof. Wang'''
+
*'''4:45 pm Kristina Finnelli - Industrial applications of accelerators'''
+
*'''5:15 pm Nikhil Kumar - Medical application of accelerators'''
+
*'''5:45 pm  Ian Schwartz - Accelerators in  Food Processing'''
+
 
+
 
+
 
+
 
+
*'''Additional Material'''
+
*'''[[media:Lorentz_Group.pdf|Lorentz Group]],  by Prof. Litvinenko'''
+
*''' [[media:Special_relativity_intro.pdf|Special Relativity intro]],  by Prof. Litvinenko'''
+
*''' [[media:Proof_detM_is_1.pdf|Proof: determinant of a symplectic matrix is 1]],  by Prof. Wang'''
+
*'''[[media:Differential_operators_compressed.pdf |Differential operators in curvelinear coordinate systems ]],  by Prof. Litvinenko'''
+
*'''[[media:Hamiltonian_expansion.pdf |Accelerator Hamiltonian expansion]],  by Prof. Litvinenko'''
+
*''' [[media:Appendix_F.pdf|Solution of inhomogeneous equation ]],  by Prof. Litvinenko'''
+
*'''[[media:Extra_RF_and_SRF_accelerators.pdf|Extra material - RF and SRF accelerators]],  by Prof. Litvinenko'''
+
*'''[[media:Derive_Saldin_chap_2_1.pdf|Derivation of FEL Hamiltonian]],  by Prof. Wang'''
+
*'''[[media:SC_test.pdf|Matlab script to test concept of Stochastic Cooling]],  by Prof. Wang'''
+
*'''[[media:PHY564_Lecture_27_F2017.pdf|Lecture: Colliders]],  by Prof. Litvinenko'''
+
  
 
== Home Works==
 
== Home Works==

Revision as of 21:31, 15 April 2021

Class meet time and dates Instructors
  • When: M, 6:05p-8:00p
  • Where: The course is taught remotely via Zoom. A Zoom meeting link was sent to registered students via email before the first lecture.

  • Prof. Sergey Belomestnykh
  • Dr. Sam Posen
  • Dr. Irina Petrushina


Course Overview

TThis graduate level course covers application of radio frequency (RF) superconductivity to contemporary particle accelerators: particle colliders, storage rings for X-ray production, pulsed and CW linear accelerators (linacs), energy recovery linacs (ERLs), etc. The course addresses both physics and engineering aspects of the field. It covers fundamentals of RF superconductivity, types of superconducting radio frequency (SRF) accelerating structures, performance-limiting phenomena, beam-cavity interaction issues specific to superconducting cavities, approaches to designing SRF systems and engineering of superconducting cavity cryomodules. The course is intended for students interested in accelerator physics and technology who want to learn about application of RF superconductivity to particle accelerators.

Course Content

  • The course includes a brief introduction of the basic concepts of microwave cavities and fundamental concepts of RF superconductivity.
  • Then it covers the beam-cavity interaction issues in accelerators: wake fields and higher-order modes (HOMs) in superconducting structures, associated bunched beam instabilities and approaches to deal with these instabilities (HOM absorbers and couplers, cavity geometry optimization, …), bunch length manipulation with SRF cavities, beam loading effects, etc.
  • Following that we discuss a systems approach and its application to SRF systems for accelerators.
  • We discuss the ways in which the superconducting material, and in particular the surface, can be modified to improve quality factor and accelerating gradient.
  • Finally, we address issues related to engineering of the SRF system components: cryostats, cavities, input couplers, HOM loads, and frequency tuners.

Learning Goals

Upon completion of this course, students are expected to understand the physics underlying RF superconductivity and its application to accelerators, as well as the advantages and limitations of SRF technology. The aim is to provide students with ideas and approaches that enable them to evaluate and solve problems related to the application of superconducting cavities to accelerators, as well actively participate in the development of SRF systems for various accelerators.

Main Texts and suggested materials

While all necessary material will be provided during lectures, we recommend the following textbook for in-depth study of the subject:

  • RF Superconductivity for Accelerators, by H. Padamsee, J. Knobloch, and T. Hays, John Wiley & Sons, 2nd edition (2008).

Other Reading Recommendations It is recommended that students re-familiarize themselves with the fundamentals of electrodynamics at the level of

  • Fields and Waves in Communication Electronics (Chapters 1 through 11) by S. Ramo, J. R. Whinnery, and T. Van Duzer, John Wiley & Sons, 3rd edition (1994)
  • Classical Electrodynamics (Chapters 1 through 8) by J. D. Jackson, John Wiley & Sons, 3rd edition (1999)

or other similar textbooks. Additional reference books:

  • Handbook of Accelerator Physics and Engineering, edited by A. W. Chao, K. H. Mess, M. Tigner, and F. Zimmermann, World Scientific, 2nd Edition (2013)
  • RF Superconductivity: Science, Technology, and Applications, by H. Padamsee, Wiley-VCH (2009)

Online resources:

  • The Physics of Electron Storage Rings: An Introduction, by M. Sands
  • Microwave Theory and Applications, by S. F. Adam
  • High Energy Electron Linacs: Applications to Storage Ring RF Systems and Linear Colliders, by Perry B. Wilson

Grades

Students will be evaluated based on the following performance criteria: final exam (50%), homework assignments and class participation (50%). Credits earned upon successful completion of this course can be applied toward receiving a Certificate in Accelerator Science and Engineering under the Ernest Courant Traineeship in Accelerator Science & Engineering.


Lecture Notes



  • Final Exam due May 10

Home Works

Recitation sessions

  • Session 1, September 29, 2020, HWs 1-3 by Prof. Jing
  • Session 2, October 13, 2020, HWs 4-8 by Prof. Jing
  • Session 3, October 27, 2020, HWs 9-12 by Prof. Jing
  • Session 4, November 10, 2020, HWs 13-15 by Prof. Jing