PHY543 spring 2021
Class meet time and dates | Instructors |
---|---|
|
|
Contents
Course Overview
TThis graduate level course covers application of radio frequency (RF) superconductivity to contemporary particle accelerators: particle colliders, storage rings for X-ray production, pulsed and CW linear accelerators (linacs), energy recovery linacs (ERLs), etc. The course addresses both physics and engineering aspects of the field. It covers fundamentals of RF superconductivity, types of superconducting radio frequency (SRF) accelerating structures, performance-limiting phenomena, beam-cavity interaction issues specific to superconducting cavities, approaches to designing SRF systems and engineering of superconducting cavity cryomodules. The course is intended for students interested in accelerator physics and technology who want to learn about application of RF superconductivity to particle accelerators.
Course Content
- The course includes a brief introduction of the basic concepts of microwave cavities and fundamental concepts of RF superconductivity.
- Then it covers the beam-cavity interaction issues in accelerators: wake fields and higher-order modes (HOMs) in superconducting structures, associated bunched beam instabilities and approaches to deal with these instabilities (HOM absorbers and couplers, cavity geometry optimization, …), bunch length manipulation with SRF cavities, beam loading effects, etc.
- Following that we discuss a systems approach and its application to SRF systems for accelerators.
- We discuss the ways in which the superconducting material, and in particular the surface, can be modified to improve quality factor and accelerating gradient.
- Finally, we address issues related to engineering of the SRF system components: cryostats, cavities, input couplers, HOM loads, and frequency tuners.
Learning Goals
Upon completion of this course, students are expected to understand the physics underlying RF superconductivity and its application to accelerators, as well as the advantages and limitations of SRF technology. The aim is to provide students with ideas and approaches that enable them to evaluate and solve problems related to the application of superconducting cavities to accelerators, as well actively participate in the development of SRF systems for various accelerators.
Main Texts and suggested materials
While all necessary material will be provided during lectures, we recommend the following textbook for in-depth study of the subject:
- RF Superconductivity for Accelerators, by H. Padamsee, J. Knobloch, and T. Hays, John Wiley & Sons, 2nd edition (2008).
Other Reading Recommendations It is recommended that students re-familiarize themselves with the fundamentals of electrodynamics at the level of
- Fields and Waves in Communication Electronics (Chapters 1 through 11) by S. Ramo, J. R. Whinnery, and T. Van Duzer, John Wiley & Sons, 3rd edition (1994)
- Classical Electrodynamics (Chapters 1 through 8) by J. D. Jackson, John Wiley & Sons, 3rd edition (1999)
or other similar textbooks. Additional reference books:
- Handbook of Accelerator Physics and Engineering, edited by A. W. Chao, K. H. Mess, M. Tigner, and F. Zimmermann, World Scientific, 2nd Edition (2013)
- RF Superconductivity: Science, Technology, and Applications, by H. Padamsee, Wiley-VCH (2009)
Online resources:
- The Physics of Electron Storage Rings: An Introduction, by M. Sands
- Microwave Theory and Applications, by S. F. Adam
- High Energy Electron Linacs: Applications to Storage Ring RF Systems and Linear Colliders, by Perry B. Wilson
Grades
Students will be evaluated based on the following performance criteria: final exam (50%), homework assignments and class participation (50%). Credits earned upon successful completion of this course can be applied toward receiving a Certificate in Accelerator Science and Engineering under the Ernest Courant Traineeship in Accelerator Science & Engineering.
The Rules
- You may collaborate with your classmates on the homework's if you are contributing to the solution. You must personally write up the solution of all problems. It would be appropriate and honorable to acknowledge your collaborators by mentioning their names. These acknowledgments will not affect your grades.
- We will greatly appreciate your homeworks being readable. Few explanatory words between equations will save us a lot of time while checking and grading your home-works. Nevertheless, your writing style will not affect your grades.
- Do not forget that simply copying somebody's solutions does not help you and in a long run we will identify it. If we find two or more identical homeworks, they all will get reduced grades. You may ask more advanced students, other faculty, friends, etc. for help or clues, as long as you personally contribute to the solution.
- You may (and are encouraged to) use the library and all available resources to help solve the problems. Use of Mathematica, other software tools and spreadsheets are encouraged. Cite your source, if you found the solution somewhere.
- You should return homework before the deadline. Homework returned after the deadline could be accepted with reduced grading - 15% per day. Otherwise, it will be unfair for your classmates who are doing their job on time. Therefore, you should be on time to keep your grade high. Exceptions are exceptions and do not count on them (if your dog eats your homework on a regular basis - feed it with something healthy, eating homework is bad for your pet and for you grade).
Presentation on a Research Project
- This presentation will be in place of the final exam. You will pick an accelerator project of your interest from a list provided by the instructors. We allow presentations on papers directly related to your research if they are linked to accelerator physics, but you will have to get it approved by the instructors. The presentations will be in a PowerPoint or equivalent a form.
- We will grade your presentations on: adequate understanding (good physics), adequate preparation (clear way of presentation, Visual Aids - pictures and figures), adequate references (where you find materials).
- The research project should be fun and we encourage you to choose an original topic and an original way of presentation. Nevertheless, any topic prepared and presented properly will have high grade.
- Suggested topics for Projects, by Prof. Litvinenko
Lecture Notes
- Lectures 1 and 2: Least Action Principle, Geometry of Special Relativity, Particles in E&M fields, by Prof. Litvinenko
- Lecture 3: Linear Algebra, by Prof. Wang
- Lecture 4: Accelerator Hamiltonian, by Prof. Litvinenko
- Lecture 5: Hamiltonian Methods for Accelerators, by Prof. Litvinenko
- Lecture 6: Matrix function, Sylvester formulae, by Prof. Litvinenko
- Lecture 7: Matrices of arbitrary accelerator elements, by Prof. Litvinenko
- Lecture 8: How to build a magnet, by Prof. Litvinenko
- Lecture 9: Linear accelerators and RF systems, by Prof. Litvinenko
- Lecture 10: Periodic systems: stability and parameterization, by Prof. Litvinenko
- Lecture 11: Full 3D linearized motion in accelerators, by Prof. Litvinenko
- Lecture 12: Synchrotron oscillations, by Prof. Litvinenko
- Lecture 13: Action and phase variables, by Prof. Litvinenko
- Lectures 14 & 15: Solving standard accelerator problems, by Prof. Litvinenko
- Lecture 16: Effects of synchrotron radiation, by Prof. Litvinenko
- Lecture 17: Fokker-Plank and Vlasov equations, by Prof. Litvinenko
- Lectures 18 & 19: Eigen beam emittances and parameterization, by Prof. Litvinenko
- Lecture 20: Collective Effects I: Wakefield and Impedances, by Prof. Wang
- Lecture 21: Collective Effects II: Examples of Collective Instabilities, by Prof. Wang
- Lecture 22: Free Electron Lasers: Introduction and Small Gain Regime, by Prof. Wang
- Lecture 23: Free Electron Lasers: Free Electron Lasers: High Gain Regime, by Prof. Wang
- Lecture 24: Hadron Beam Cooling, by Prof. Wang
- Lecture 25: Nonlinear dynamics: Part I, Chromaticity and its correction, by Prof. Jing
- Lecture 26: Nonlinear dynamics: Part II, Nonlinear resonances, by Prof. Jing
- Lecture 27: Nonlinear dynamics: Part III, Normalization of maps, by Prof. Jing
- Final Exam, December 16
- Part 1: Lead Prof. Jing
- 3:00 pm Xiangdong Li, Free electron lasers
- 3:30 pm Jiayang Yan, Laser-Plasma Accelerators
- 4:00 pm Nikhil Bachhawat, e+e- colliders
- Part 2: Lead Prof. Wang
- 4:45 pm Kristina Finnelli - Industrial applications of accelerators
- 5:15 pm Nikhil Kumar - Medical application of accelerators
- 5:45 pm Ian Schwartz - Accelerators in Food Processing
- Additional Material
- Lorentz Group, by Prof. Litvinenko
- Special Relativity intro, by Prof. Litvinenko
- Proof: determinant of a symplectic matrix is 1, by Prof. Wang
- Differential operators in curvelinear coordinate systems , by Prof. Litvinenko
- Accelerator Hamiltonian expansion, by Prof. Litvinenko
- Solution of inhomogeneous equation , by Prof. Litvinenko
- Extra material - RF and SRF accelerators, by Prof. Litvinenko
- Derivation of FEL Hamiltonian, by Prof. Wang
- Matlab script to test concept of Stochastic Cooling, by Prof. Wang
- Lecture: Colliders, by Prof. Litvinenko
Home Works
- HW1 Due August 31 Solutions
- HW2 Due September 2 Solutions
- HW3 Due September 16 Solutions
- HW4_5 Due September 21 Solutions
- HW6 Due September 23 Solutions
- HW7 Due September 28 Solutions
- HW8 Due September 30 Solutions
- HW9 Due October 7 Solutions
- HW10 Due October 12 Solutions
- HW11 Due October 14 Solutions
- HW12 - STAR problem Due October 19 Solutions
- HW13 - STAR problem Due October 21 Solutions
- HW14 Due October 26 Solutions
- HW15 Due October 28 Solutions
- HW16 Due November 2 Solutions
- HW17 Due November 4 Solutions
- HW18 Due November 11 Solutions
- HW19 Due November 16 Solutions
- HW20 Due November 18 Solutions
- HW21 Due November 23 Solutions
Recitation sessions
- Session 1, September 29, 2020, HWs 1-3 by Prof. Jing
- Session 2, October 13, 2020, HWs 4-8 by Prof. Jing
- Session 3, October 27, 2020, HWs 9-12 by Prof. Jing
- Session 4, November 10, 2020, HWs 13-15 by Prof. Jing